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Abstract
Nowadays, studying of hydrodynamic instabilities such as Rayleigh–Taylor instability, Richtmyer–Meshkov instability and

Kelvin–Helmholtz instability is of great importance to scientists. These instabilities have plenty of applications in fluid

mechanics, meteorology, astronomy and inertial confinement fusion (ICF). They play an important role in many physical

phenomena. These instabilities are considered as negative factors in fusion reactions and play a significant role in

decreasing the rate of ICF reactions. Among hydrodynamic instabilities, Rayleigh–Taylor instability is of particular

importance. Different factors affect the growth rate of this instability. One of them is the viscosity effect of fluid molecules

that reduces the growth rate of this instability and increases the rate of ICF reactions. In this research, which is a new idea

and has not been presented or published anywhere up to now, the mass and the linear momentum conservation equations,

known as Euler equations, are solved analytically by considering the viscosity effect of fluid molecules. In this way, by

using boundary conditions and solving nonlinear equations, the growth rate of Rayleigh–Taylor instability as a function of

the perturbation wave number is obtained at the interface of two fluids with different densities. This quantity is an

important criterion for measuring the growth of fluid disturbances.
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1 Introduction

Rayleigh–Taylor instability is the most important type of

hydrodynamic instabilities studied by Lord Rayleigh

(1883) and G. I. Taylor (Asthana et al. 2012, 1950). When

a heavy fluid is on the light one in a gravitational field or

when a lower density fluid accelerates the dense one, the

Rayleigh–Taylor instability occurs at the interface of these

fluids (Atzeni and Meyer-ter-Vehn 2004). This instability

is initially as small perturbations at the interface of fluids

and then grows exponentially with time as bubbles from

lighter fluid to heavier one and also as spikes from heavier

fluid to lighter one (Banerjee et al. 2013). Finally, there

will be two disturbed fluids, and the growth of perturba-

tions enters the nonlinear phase (Abarzhi et al. 2003).

In fluid mechanics, from the stand point of thermody-

namics and statistical mechanics, this instability happens,

while a density gradient is in the opposite direction to the

pressure gradient (Eliezer 2002). In a special case, the

condition for the occurrence of RTI in terms of entropy is

expressed as r~s � r~p[ 0 in which s is specific entropy.

But when r~s � r~p\0, the perturbations at the interface of

fluids oscillate sinusoidally with finite amplitudes, which is

called steady state. On the other hand, in an incompressible

fluid, the specific entropy can be expressed as

s ¼ s� þ cVLn p=qcð Þ. Therefore, according to the above-

mentioned equation, RTI at the interface of two fluids

occurs when two fluids with different densities experience

a pressure gradient in the opposite direction of the density

gradient as r~q:r~p\0 (Drake 2018).

viscosity is the most important property in the study of

fluid flows (Silveira and Orlandi 2017). It is a property of

fluid by which the fluid resists to cutting, so that the vis-

cosity of gases increases with temperature and the viscosity

of liquids decreases with it. Air and water have little vis-

cosity. The resistance of a fluid to cutting depends on its
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coherence and its momentum transfer (Kim and Kim

2016). The molecules of liquids are closer to each other

than gases; as a result, their cohesive forces are larger than

gases. Therefore, it seems that coherence is the main reason

of liquid viscosity and as its coherence decreases with

temperature, the viscosity also reduces with it (Ger-

ashchenko and Livescu 2016). It should also be noted that

viscosity at normal pressures is independent of pressure

and depends only on temperature. But at high pressures, the

viscosity of gases and especially liquids changes irregu-

larly with pressure (Banerjee et al. 2011). The conse-

quences obtained from experimental works and simulations

show that the influence of viscosity on RTI may severely

quench the growth rate of this instability (Park et al. 2010),

so that the calculations performed in this paper confirm

these results.

2 Euler Equations and the Effects of Fluid
Viscosity

The hydrodynamic equations describing fluid motion in the

study of hydrodynamic instabilities are mass and linear

momentum conservation equations which are called Euler

equations and they will be as follows (Drake 2018):

oq
ot

þr~ � q u~ð Þ ¼ 0 ð1Þ

q
o

ot
u~þ q u~ � r~

� �
u~¼ �r~Pþr~ � rm þ qg~ ð2Þ

In these equations, q is the fluid density, u is the flow

velocity, P is pressure, and qg~ is the external gravitational

force applied to fluid. In this paper, the Cartesian coordi-

nate system is shown with unit vectors x̂, ŷ and ẑ. Also, the

fluid system is defined as having the interface on the xy

plane, and the gravitational field (acceleration) is normal to

the interface of fluids. So we have:

g~¼ �g ẑ ð3Þ

In the analysis of hydrodynamic instabilities such as

Rayleigh–Taylor instability, we neglect the force of surface

tension. Because of the high temperature in high energy

density systems, there are no molecular interactions that

generate this force. We also ignore radiation pressure,

electromagnetic fields, and the other forces, but hold the

viscous force to look for viscosity effects. So, according to

the above statements, it can be said that the viscosity tensor

shown by rm has the following elements:

rmij ¼ qm
oui
oxj

þ ouj
oxi

� 2

3
dij

ouk
oxk

� �
þ f dij

ouk
oxk

ð4Þ

in which dij is the Kronecker delta function, m is the

kinematic viscosity, and f is the second coefficient of

viscosity which is not important here, because the sen-

tences containing it will be deleted in the divergence

operation. The sentence containing the viscosity tensor is

substantially simplified, because due to the condition of

fluid incompressibility, we will have oui=oxi ¼ 0. We also

assume that the only non-zero derivative of m is

dm=dz ¼ dm=dx3ð Þ. Eventually with all of the assumptions,

we have made, the k component of r~ � rm will be as

follows:

r~ � rm
� �

k
¼ q mr2uk þ

o qmð Þ
ox3

ouk
ox3

þ ou3

oxk

� �
ð5Þ

Our aim is to linearize the fluid, so that the unperturbed

pressure and density are considered as P ¼ P zð Þ and

q ¼ q zð Þ. Also, the first-order perturbations of pressure and

density are assumed as dP x; y; zð Þ and dq x; y; zð Þ, respec-

tively. It should be noted that we are working in a frame-

work where the interface is stationary, so the zero order of

flow velocity (unperturbed velocity) equals to zero and the

first order of the flow velocity as a function of x, y, z, is

u~ x; y; zð Þ. We also consider the perturbations to be incom-

pressible. Of course, it should be noted that the fluid itself

may not need to be incompressible, which this assumption

follows as r~ � u~¼ 0. Finally, with the assumptions we

made, we can now obtain the first-order continuity equation

as follows:

o dqð Þ
ot

þ u~ � r~q ¼ 0 ð6Þ

Also, since the expression q u~ � r~
� �

u~ in the left side of

Eq. (2) is removed due to the incompatibility assumption,

the first-order momentum equation will be:

q
ou~

ot
¼ �r~ dPð Þ þ r~ � rm � g dq ẑ ð7Þ

We define the x, y and z components of the flow velocity

as u, m and x. Consequently, if we include the expression

obtained from Eq. (5) in our calculations, Eq. (7) can be

written as three equations in terms of its components as

follows:

q
ou

ot
¼ � o

ox
dPð Þ þ q mr2uþ o qmð Þ

oz

ou

oz
þ ox

ox

� �
ð8Þ

q
om
ot

¼ � o

oy
dPð Þ þ q mr2mþ o qmð Þ

oz

om
oz

þ ox
oy

� �
ð9Þ

q
ox
ot

¼ � o

oz
dPð Þ þ q mr2xþ 2

o qmð Þ
oz

ox
oz

� �
� g d q

ð10Þ

Also, the compressibility condition and the z component

of Eq. (6) can be written as follows:
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ou

ox
þ om
oy

þ ox
oz

¼ 0 ð11Þ

o

ot
dqð Þ ¼ �x

oq
oz

ð12Þ

The last five equations are the ones that describe the

linear phase of the Rayleigh–Taylor instability. We are

looking for the waves that show the surface modulation

modes and so amplitudes with indefinite changes with z,

but are proportional to expðikxxþ ikyyþ ntÞ with respect to

x, y and t, so that kx and ky are the x and y components of

wave vector and n is the exponential growth rate of

instability. Therefore, with substitution of expðikxxþ
ikyyþ ntÞ statement in the amplitude of all modulations

including velocity, density and pressure and by simplifying

them, we will get the following equations:

q u n ¼ �ikx dPð Þ þ qm
o2

oz2
� k2

� �
uþ o qmð Þ

oz

ou

oz
þ ikxx

� �

ð13Þ

q m n ¼ �iky dPð Þ þ qm
o2

oz2
� k2

� �
mþ o qmð Þ

oz

om
oz

þ ikyx

� �

ð14Þ

qx n ¼ � o

oz
dPð Þ þ qm

o2

oz2
� k2

� �
xþ 2

o qmð Þ
oz

ox
oz

� �

� gdP

ð15Þ

ikxuþ ikym ¼ � ox
oz

ð16Þ

ndq ¼ �x
oq
oz

ð17Þ

In the above equations, we will have k2 ¼ k2
x þ k2

y . By

multiplying Eq. (13) in �ikx and also by multiplying

Eq. (14) in �iky and then by summing the two obtained

equations and by using Eq. (16) to simplify them, we will

attain:

qn
ox
oz

¼ �k2dPþ qm
o2

oz2
� k2

� �
ox
oz

þ o qmð Þ
oz

o2

oz2
þ k2

� �
x ð18Þ

Also, by using Eq. (17) for removing dP from Eq. (15),

we will obtain:

qx n ¼ � o

oz
dPð Þ þ qm

o2

oz2
� k2

� �
xþ 2

o qmð Þ
oz

ox
oz

� �

þ x
g

n

oq
oz

ð19Þ

Since all quantities in the above two equations except

dP are non-perturbed quantities, therefore, by removing it,

we can obtain an equation in terms of the parameters

specified for x as follows:

o

oz
�qn

ox
oz

þ qm
o2

oz2
� k2

� �
ox
oz

þ o qmð Þ
oz

o2

oz2
þ k2

� �
x

� �

¼ �k2 qx nþ qm
o2

oz2
� k2

� �
xþ 2

o qmð Þ
oz

ox
oz

� �
þ x

g

n

oq
oz

� �

ð20Þ

This equation with boundary conditions provides the

conditions we need to calculate the growth rate which can

be applied in both sides of the interface. Boundary condi-

tions play a central role in calculations. A clear boundary

condition is that the fluids must remain in contact with each

other, and this requires x to be continuous across the

interface. So we can integrate from fundamental equations

along the boundary to find boundary conditions.

3 Useful Integrals for Obtaining Boundary
Conditions

Suppose the interface of fluids is in the z = 0 plane. Con-

sider that the area with z\ 0 is denoted by subscript 1 and

the area with z[ 0 is denoted by subscript 2. We assume

that q(z) is an arbitrary function that is continuous and

derivable everywhere and f(z) and h(z) are also arbitrary

functions that are continuous and derivable everywhere

except at the interface. So we can write f(z) as follows

f(z) = f1(z) H(- z) ? f2(z) H(z), where H(z) is a step

function that equals to zero for z\ 0 and equals to 1 for

z[ 0 and f1 and f2 are continuous and derivable functions.

After integrating over a small area across the interface,

when the width of the desired area goes to zero, we take the

limit of the integral over a small area across the interface.

With these assumptions, the following integrals are used to

obtain the boundary conditions:

lim
e!0

Ze

�e

f ðzÞdz ¼ lim
e!0

ef2
e
2

� �
� ef1

e
2

� �h i
¼ 0 ð21Þ

lim
e!0

Ze

�e

of ðzÞ
oz

� �
dz ¼ f2 0ð Þ � f1 0ð Þ ð22Þ

lim
e!0

Ze

�e

q zð Þ of ðzÞ
oz

dz ¼ q0 f2 � f1ð Þz¼0þ lim
e!0

Ze

�e

e
oq

oz

of

oz
dz

¼ qs f2 � f1ð Þz¼0

ð23Þ
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lim
e!0

Ze

�e

f ðzÞ oq zð Þ
oz

dz ¼ q0 f2 � f1ð Þz¼0� lim
e!0

Ze

�e

q zð Þ of ðzÞ
oz

dz

¼ 0

ð24Þ

In the above equations, the subscript z = 0 shows that

quantities must be calculated as they approach the

interface.

4 The Boundary Conditions Used in Linear
Analysis of Rayleigh–Taylor Instability

By applying Eqs. (21)–(24) in Eqs. (18) and (19), we can

find that x and its derivatives are continuous across the

interface, and we will obtain the following equations:

q2m2

o2

oz2
þ k2

� �
x2 ¼ q1m1

o2

oz2
þ k2

� �
x1

� �

z¼0

ð25Þ

dP2 � dP1ð Þz¼0¼ 2 q2m2 � q1m1ð Þ ox1

oz

� �

z¼0

þx0

g

n
q2 � q1ð Þz¼0

ð26Þ

In Eq. (26), x0 is the value of x at the interface. This

equation is particularly necessary to analyze the Rayleigh–

Taylor instability, but we must eliminate the pressure dif-

ference to obtain an equation that contains only one

indefinite function. To do this case, we can attain another

condition involving dP for the pressure by subtracting

Eq. (18) from itself across the interface:

k2 dP2 � dP1ð Þ ¼ q1 n� m1

o2

oz2
� k2

� �� �

ox1

oz
� q2 n� m2

o2

oz2
� k2

� �� �
ox2

oz

þ o q2m2ð Þ
oz

o2

oz2
þ k2

� �
x2 �

o q1m1ð Þ
oz

o2

oz2
þ k2

� �
x1

ð27Þ

By combining the above equation with Eq. (26) and

eliminating the pressure, another boundary condition is

obtained as follows:

2k2 q2m2 � q1m1ð Þ ox1

oz

� �

z¼0

þk2x0

g

n
q2 � q1ð Þz¼0

¼ q1 n� m1

o2

oz2
� k2

� �� �
ox1

oz
� q2 n� m2

o2

oz2
� k2

� �� �
ox2

oz

ð28Þ

For problems involving viscosity, another boundary

condition is that the first derivative of x means ox=oz, just

as the other derivatives of u, must remain continuous

across the interface. The microscopic interactions of the

particles that create the viscosity insure this condition. So

the boundary conditions we have to work with include

Eqs. (25) and (28), continuity of x across the interface,

continuity of ox=oz along the interface for viscous flows

and any further restrictions inflicted by the geometry of the

problem.

5 Rayleigh–Taylor Instability in Two
Uniform Fluids without Viscosity

The simplest instance we can assume in the linear analysis

of Rayleigh–Taylor instability is a two-fluid identical sys-

tem with a boundary at z = 0 which has no viscosity. In this

case for uniform fluids, the phrase oq=oz equals to zero and

Eq. (20) is as follows:

o2x
oz2

¼ k2x ð29Þ

Since at great distances, the fluid must be unperturbed,

that is, when z ! �1, then x ! 0, therefore, the solu-

tions to Eq. (29) are as follows:

x1 ¼ x0 exp kzð Þ for z\0

x2 ¼ x0 expð�kzÞ for z[ 0

�
ð30Þ

So x0 is the same at both solutions because x must be

continuous at the interface. But the obtained differential

equation just gives us the velocity profile, but it does not

achieve the growth rate. So, in order to find the growth rate,

we must use Eq. (28) as follows:

x0

g

n
q2 � q1ð Þ ¼ n

k2
q2 þ q1ð Þkx0 ð31Þ

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � q1

q2 þ q1

k g

r
¼

ffiffiffiffiffiffiffiffiffiffi
Atk g

p
ð32Þ

In Eq. (32), At¼ q2 � q1ð Þ= q2 þ q1ð Þ is Atwood num-

ber which generally changes from -1 to 1 and measures the

amount of density jump at the interface. When At is neg-

ative it means that the denser fluid is at the bottom and the

lighter one is at the top, so in this case, the RTI growth rate

is a pure imaginary value in which the perturbations are

only oscillating but not growing. If we consider finite

viscosity, such fluctuations decline and this is called steady

state. But when At is positive it means that the denser fluid

is at the top and the lighter one is at the bottom, so in this

case, the growth rate of Rayleigh–Taylor instability is a

pure real value in which the perturbations grow exponen-

tially with time. Equation (32) yields the simplest conclu-

sion for the growth rate of Rayleigh–Taylor instability, and

therefore, it is often referred to as the classical growth rate

of Rayleigh–Taylor instability.
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6 Effects of Fluid Viscosity on the Growth
Rate of Rayleigh–Taylor Instability

If we suppose that the viscosity of fluids at both sides of

interface is non-zero and the densities and viscosity are

uniform at both areas; therefore, Eq. (20) can be written as

follows:

nþ m k2 � o2

oz2

� �� �
o2x
oz2

¼ nxþ m k2 � o2

oz2

� �
x

� �
k2

ð33Þ

The above equation can be expanded and written as

follows:

1

k2

o4x
oz4

� 1 þ n

k2m

� � o2x
oz2

¼ �k2 1 þ n

k2m

� �
xþ o2x

oz2
ð34Þ

By defining the parameter:

s ¼ k 1 þ n

k2m

� �1=2

ð35Þ

And for simplicity, we consider that the viscosity of the

two fluids is the same, so we can define a general answer

for Eq. (34) as follows:

x zð Þ ¼ A esz þ B e�sz þ C ekz þ De�kz ð36Þ

Since when z ! �1, x tends to zero, it is obvious that

A and C for z[ 0 and also B and D for z\ 0 equal to zero.

Also, we have four boundary conditions which include

continuity of x(z), continuity of ox=oz and Eqs. (25) and

(28) which by placing this general answer in them, four

equations are obtained as follows:

A� Bþ C � D ¼ 0 ð37Þ
A sþ B sþ C k þ Dk ¼ 0 ð38Þ

n q2B� q1Að Þ þ 2q2 m k
2 Bþ Dð Þ � 2q1 m k

2 Aþ Cð Þ ¼ 0

ð39Þ

2At g k
2

n
Aþ Cð Þ � k n C 1 � Atð Þ þ D 1 þ Atð Þ½ �

þ 4Atk
2 C k þ A sð Þm ¼ 0

ð40Þ

These four equations can be written as the multiplication

of a matrix and a vector as follows:

As a result, the following equation is obtained for the

amount of the above-mentioned determinant:

n2 A2
t k � s


 �
þ 4nA2

t k
2m k � sð Þ þ 4A2

t k
3m2 k � sð Þ2

� At g k k � sð Þ ¼ 0
ð42Þ

In the above-mentioned equation, by substituting s

instead of n, as n ¼ m s2 � k2ð Þ, and using Eq. (35), a fifth-

order polynomial of s is obtained as follows:

� s5m2 þ s4k m2A2
t þ 2 s3k2m2 1 � 2A2

t


 �
þ 6 s2k3m2A2

t

þ s Atg k � k4m2 1 þ 4A2
t


 �
 �

� Atk
2gþ A2

t k
5m2 ¼ 0

ð43Þ

According to the above equation, it can be realized when

the viscosity is zero, the growth rate of instability becomes

its classical value,
ffiffiffiffiffiffiffiffiffiffiffi
At g k

p
, while Eq. (43) can be solved

explicitly with a mathematical computational program,

writing it in dimensionless form would be more useful. If

we compare the sentences in terms of the coefficient s, it is

clear that g is proportional to k3m2. So we can use the

normalized wave number as ~k ¼ k
.

g
�
m2


 �1=3
. Also, by

comparing the third sentence with the sixth one on the left

side of the equation, we conclude that g is proportional to

s3m2 and we can use the normalized value ~s ¼ s
�

g
�
m2


 �
. By

deriving Eq. (35), the corresponding normalized growth

rate will be obtained as ~n ¼ n
.

g2
�
m


 �1=3
. By the per-

formed normalization, the dispersion relation is expressed

as:

0 ¼ �~s5 þ ~s4 ~k A2
t þ 2~s3 ~k2 1 � 2A2

t


 �
þ 6 ~s2 ~k3A2

t

þ ~s ~k At � ~k3 1 þ 4A2
t


 �
 �
� At

~k2 þ A2
t
~k5

¼ 0 ð44Þ

Also, Eq. (35) can be written in a normalized form as

follows:

~s ¼ ~k 1 þ ~n
~k2

� �1=2

ð45Þ

With substituting Eq. (45) in Eq. (44), an equation in

terms of ~n will be obtained as follows:

1 �1 1 �1

s s k k
�q1 nþ 2mk2ð Þ �q2 nþ 2mk2ð Þ �2q1mk

2 2q2mk
2

2Atg k
2

n
þ 4Atk

2sm 0
2Atg k

2

n
� nk 1 � Atð Þ þ 4Atk

3m 0






















¼ 0 ð41Þ
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� ~nþ ~k2

 �5=2þ ~k A2

t ~nþ ~k2

 �2þ2 ~k2 ~nþ ~k2


 �3=2
1 � 2A2

t


 �

þ 6 ~k3A2
t ~nþ ~k2

 �

þ ~nþ ~k2

 �1=2 ~k At � ~k3 1 þ 4A2

t


 �
 �

� At
~k2 þ A2

t
~k5 ¼ 0

ð46Þ

In the above equation, if the Atwood number is speci-

fied, then with a computational program, the normalized

growth rate can be plotted in terms of the normalized wave

number as a specified curve, curves (1), as shown in

Figs. 1, 2 and 3. Also, for high viscosity, Eq. (35) can be

expanded as s � k 1 þ n
�

2k2mð Þ

 �

, so by doing this

expansion and putting it in Eq. (42), we will obtain the

following equation:

n2 þ 2k2m

 �

n� Atg k ¼ 0 ð47Þ

The above equation can be solved in terms of n and then

written in dimensionless form as follows (Drake, 2018):

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Atk gþ k4m2

p
� k2m ð48Þ

~n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
At

~k þ ~k4

q
� ~k2 ð49Þ

The obtained growth rate is shown as curves in Figs. 1,

2, 3 and 4 for different values of the Atwood number.

Now, we derive Eq. (49) with respect to k and then set

the result equal to zero. So the value of ~k ¼ A
1=3
t

.
2 or

k ¼ At g
�
m2


 �1=3
.

2 is obtained for the maximum amount

of growth wave number. As a result, the maximum value of

growth rate corresponding to this wave number in the

presence of viscosity is obtained as follows:
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Fig. 1 Rayleigh–Taylor instability with viscosity: The curve (1)

shows the actual growth rate, the curve (2) shows the high viscosity

approximation, and the curve (3) shows the zero-viscosity result or

classical growth rate for At = 0.9.
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Fig. 2 Rayleigh–Taylor instability with viscosity: The curve (1)

shows the actual growth rate, the curve (2) shows the high viscosity

approximation, and the curve (3) shows the zero-viscosity result or

classical growth rate for At = 0.5.
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Fig. 3 Rayleigh–Taylor instability with viscosity: The curve (1)

shows the actual growth rate, the curve (2) shows the high viscosity

approximation, and the curve (3) shows the zero-viscosity result or

classical growth rate for At = 0.25.
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Fig. 4 Rayleigh–Taylor instability with viscosity for different values

of Atwood number
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nMAX ¼ 3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
At gð Þ4=3

m2=3

s
� At gð Þ2=3

4 m1=3
ð50Þ

or

nMAX ¼ Atgð Þ2=3

2 m1=3
ð51Þ

Figures 1, 2, 3 and 4 show that with increasing the

Atwood number, the growth rate of Rayleigh–Taylor

instability increases. Also, for large values of the dimen-

sionless wave number, the growth rate of instability

decreases and the diagrams (1) and (2) tend to move toward

each other. In high energy density experiments, with an

initial approximation, m has a value of 0:01cm2
�
s and g has

a value of 1015cm
�
s2. Therefore, the maximum growth

wave number in the presence of viscosity for At ¼ 1 is

obtained from order of 106cm�1, so that the corresponding

wavelength is from order of 0:1 lm, and also, the maxi-

mum growth rate of instability in this case is almost from

order of 2 � 1010s�1. As we can be seen in Figs. 1, 2, 3 and

4, viscosity is more effective at larger wave numbers and

therefore at smaller wavelengths than a fraction of microns,

and substantially, it reduces the growth rate, but at the

wavelengths larger than that, it has no influence. Experi-

ments show that the most dangerous wavelengths that

destroy the fuel are those that are about three times the

thickness of cold fuel k � 3DRð Þ(Atzeni and Meyer-ter-

Vehn, 2004). Now assuming the shell is DR � 5 � 20 lm
thick, we can conclude that the most dangerous wave-

lengths that destroy a fuel pellet are about 15 to 60

microns. So, the viscosity is ineffective at the wavelengths

that destroy the fuel pellet more (Eliezer, 2002).

7 Conclusion

In this article, for the first time, using linear hydrodynamic

equations such as the mass and the linear momentum

conservation equations, called Euler equations, considering

the effects of viscosity of fluid molecules and applying

boundary conditions, we have been able to determine the

growth rate of Rayleigh–Taylor instability analytically,

which is the most important factor in measuring the growth

of fluid perturbations. Then, by using the physical relations

and thermodynamic equations, we have been able to obtain

the dimensionless growth rate of Rayleigh–Taylor insta-

bility analytically as a function of the dimensionless wave

number. In this way, we conclude that the viscosity or the

adhesion between the molecules of a fluid is considered to

be a positive factor reducing the growth rate of

hydrodynamic instabilities such as Rayleigh–Taylor insta-

bility which is the most important of them.
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