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Abstract
Let G be a second countable locally compact abelian group, L be a uniform lattice in G and SL be a fundamental domain for

L in G. Let Lp�ðGÞ ¼ fu : G �! C;
�
�
P

k2L juðk�1xÞj
�
�
LpðSLÞ\1g ð1 6 p 6 1Þ. In this paper we aim among other

things, to introduce the Banach space Lp�ðGÞ ð1 6 p 6 1Þ, with the norm j � jp, and for p ¼ 2 and a refinable function

u 2 L2�ðGÞ and the Riesz family generated by the shifts of u by L in G, construct a multiresolution analysis in L2(G). Also

some examples are provided to support our construction.
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1 Introduction

The idea of multiresolution analysis (MRA) was introduced

by Meyer (1990) and Mallat (1989). It was a framework for

construction of orthogonal wavelet bases and it was

improved by many authors including those in Daubechies

(1992) and Hernandez and Weiss (1996). From the physi-

cal point of view, MRA is a modern signal processing

device in a mathematical manner that allows one to analyze

the properties of signals at different resolution levels. In the

recent years, the concept of MRA has become an important

tool in pure and applied mathematics and many branches of

engineering (Chibani and Houacine 1998; Dahlke 1994;

Daubechies 1992; Jeng et al. 2009; Papadakis et al. 2003).

Moreover, comprehensive studies have been conducted in

which MRA has been investigated for the Euclidian group

Rs (s 2 N), e.g., Bownik and Garrigos (2004), Daubechies

(1992), Jia and Micchelli (1991), Mallat (1989), Meyer

(1990) and Zhou (1996). For example, Jia and Micchelli Jia

and Micchelli (1991) proved that the Riesz family gener-

ated by the integer shifts of a certain basis refinable func-

tion are sufficient to lead to an MRA of LpðRsÞ for

1 6 p\1 (for general scaling matrices and p ¼ 2, see also

Jia and Micchelli 1992; Madych 1992). Later, Zhou (1996)

developed this theory for p ¼ 1. Furthermore, in Baggett

(2000) and Bagget et al. (1999) Baggett, Medina, and

Merrill generalized the concept of MRA in terms of

wavelet dimension function properties. They investigated

its relation to wavelets (for further details on MRA, see

Arefijamaal and Ghaani Farashahi 2013; Arefijamaal and

Kamyabi-Gol 2009; Ghaani Farashahi 2017a, b; Hernandez

and Weiss 1996). Later Dahlke (1994) generalized the

definition of MRA to locally compact abelian group (LCA)

groups, and showed under certain conditions, the general-

ized B-splines generated an MRA (see also Galindo and

Sanz 2001; Kamyabi and Raisi 2010).

This paper deals with the construction of a multireso-

lution approximation in the Hilbert space L2(G) (G is a

LCA group) via the Riesz family generated by the shifts of

a certain refinable function u (see Mohammadian 2017). In

contrast to Kamyabi and Raisi (2010), the ‘‘orthogonality’’

condition is replaced by the weaker condition ‘‘Riesz
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family’’ generated by the shifts of a refinable function with

respect to a uniform lattice L in G.

The rest of the paper is organized as follows: In the

second section, first, we review some facts on LCA group

G and then define and investigate the specified Banach

spaces Lp�ðGÞ, 1 6 p 6 1, which are notably interesting by

themselves and are also needed in our study of MRA.

Section 3 is devoted to introducing the definition and two

propositions for construction MRA in the next sec-

tion. Finally, Sect. 4 contains construction and study the

multiresolution approximation in L2(G). This construction

is based on the Riesz family generated by the shifts of a

refinable function via a lattice in the second countable LCA

group G. Some examples are provided to clarify our

construction.

2 Preliminaries and Related Background

Let G be an LCA group with the identity 1G and the dual

group bG. For a closed subgroup H of G, let

H?:=fn 2 bG; nðHÞ ¼ f1gg, denote the annihilator of H in

bG. A discrete subgroup L of G is called a uniform lattice if

it is co-compact (i.e., G
L is compact). From (Folland

1995, Theorem 4.39) it follows that the subgroup L? is also

a uniform lattice in bG. Note that it is not decisive that all

groups should have uniform lattices, and the examples

which illustrate the concept are p-adic groups. Now a

fundamental domain for a uniform lattice L in G is a

measurable set SL in G, such that every x 2 G can be

uniquely written as x ¼ ks, for k 2 L and s 2 SL. For a

uniform lattice L, it is known that, there exists a relatively

compact fundamental domain SL which has a positive

measure. Moreover, L2ðG=LÞ ffi L2ðSLÞ, when G is a sec-

ond countable LCA (Kamyabi Gol and Raeisi Tousi 2008;

Kaniuth and Kutyniok 2008). For a uniform lattice L, L-

invariant subspaces are very useful (e.g., see Kamyabi Gol

and Raeisi Tousi 2008; Ron and Shen 1995). We recall that

a closed subspace V � L2ðGÞ is called L-invariant if f 2 V

implies Tkf 2 V , where Tk is the translation operator on

L2(G) defined by Tkf ðxÞ ¼ f ðk�1xÞ for all x 2 G, k 2 L. It

is well known that any LCA group G possesses Haar

measures and it is unique up to positive constants. Now if a
is a topological automorphism on G, then the Radon

measure ka defined by kaðEÞ ¼ kðaðEÞÞ (E Borel set, k
Haar measure on G) is also a Haar measure of G. So by the

uniqueness of Haar measure, there exists a positive con-

stant da (depending on a) such that kaðEÞ ¼ dakððEÞÞ. Now
consider the dilation operator D : L2ðGÞ �! L2ðGÞ by

Df ðxÞ ¼ d
1
2
af ðaðxÞÞ, (the fact da is a proper positive constant

depending on a makes the operator D an isometric iso-

morphism), and for j 2 Z, Djf ðxÞ is defined as d
j
2
af ðajðxÞÞ.

Now, we introduce the notion of multiresolution

approximation in L2(G), following Mallat (1989). A

sequence fVjgj2Z of closed subspaces of L2(G) forms a

multiresolution approximation of L2(G) if it satisfies the

following conditions:

(i) Vj � Vjþ1, 8j 2 Z.

(ii) f 2 Vj ¼) DjTkD
j�1

f 2 Vj, for all j 2 Z; k 2 L.

(iii) f 2 Vj () d
�1

2
a Df 2 Vjþ1.

(iv) There is an isomorphism from l2ðLÞ onto V0 which

commutes with shift operators.

(v)
T

j2Z Vj ¼ f0g.
(vi)

S

j2Z Vj ¼ L2ðGÞ.

From (iv), one may find that there exists a unique function

g 2 L2ðGÞ such that for any j 2 Z, fd
j
2
agðk�1ajð�ÞÞgk2L is a

wavelet orthonormal basis of Vj (see also Mallat 1989).

Note that l(L) is the linear space of all funtions on L, and

lpðLÞ ð1 6 p 6 1Þ, is the linear space of all functions on

L, as f ¼ ðf ðkÞÞk2L such that for 1 6 p\1,

kfkp ¼
P

k2L jf ðkÞj
p\1, and for p ¼ 1, f is bounded.

Also a function u on G is compactly supported if the

closure of the set of all points x 2 G at which uðxÞ 6¼ 0 is

compact.

For a 2 lðLÞ, the symbol of a is defined by ~aðnÞ :¼
P

k2L aðkÞnðkÞ for n 2 bG. It is worthwhile to note that the

symbol of a, ~a, is a continuous function on SL? if a 2 l1ðLÞ
and that l1ðLÞ is a unital commutative involutive Banach

algebra (d is unit element).

We recall that for a locally compact group G, a topo-

logical automorphism a : G ! G is said to be contractive if

limn!1 anðxÞ ¼ 1G for all x 2 G.

Also, a related concept with contractivity is expansive-

ness. Following Siebert (1986), a topological automor-

phism a of G is said to be expansive if there exists a

neighborhood U of 1G such that
T

n>1 a
�nðUÞ ¼ f1Gg. If a

is contractive then a�1 is expansive in view of Lemma 1.

Lemma 1 (Siebert 1986) For a locally compact group G,

let a 2 AutðGÞ be contractive and let U be a closed

neighborhood of 1G in G. For any n 2 Z, we

put Un ¼
T

k6n;k2Z a
kðUÞ. Then we have

(a) Unþ1 � Un and aðUnÞ ¼ Unþ1 for all n 2 Z.

(b)
S

n2Z Un ¼ G.

(c) every Un has non-void interior.

(d) for every compact subset C of G there exist

some n0 2 N such that anðCÞ � U for all n > n0.
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Note that the definition of contractivity of a agrees with

part (d) of Lemma 1. For a topological automorphism a on

G, we denote by â the topological automorphism on bG

defined by âðnÞðxÞ ¼ nðaðxÞÞ, (see Bagget et al. 1999). It

can be shown that a is contractive if and only if â is

contractive.

Now, we introduce the Banach spaces

Lp�ðGÞ; 1 6 p 6 1. For uniform lattice L in G and func-

tion u on G, let

u�ðxÞ :¼
X

k2L
juðk�1xÞj;

then u� is a L-periodic function. Write

jujp :¼ ku�kLpðSLÞ ¼
�Z

SL

�
�
X

k2L
uðk�1xÞ

�
�pdx

�1
p

:

It is easy to see that j:jp is a norm. Put

Lp�ðGÞ ¼ fu : G �! C; jujp\1g ð1 6 p 6 1Þ:

One can check that Lp�ðGÞ equipped with the norm j � jp, is
also a Banach space (see Jia and Micchelli 1991 for the

case Lp�ðRsÞ, s is a positive integer), and obviously

kukp 6 jujp, for all 1 6 p 6 1. Indeed, for 1 6 p\1,

jujpp ¼
Z

SL

ð
X

k2L
juðk�1xÞjÞpdx

>

Z

SL

X

k2L
juðk�1xÞjpdx

¼
Z

G

juðk�1xÞjp ¼ kukpp:

For p ¼ 1,

juj1 ¼ ku�kL1ðSLÞ

¼ esssupf
X

k2L
juðk�1xÞj; x 2 SLg

¼ esssupf
X

k2L
juðk�1xÞj; x 2 Gg

ðsince u�is L� periodicÞ
> esssupfjuðxÞj; x 2 Gg ¼ kuk1:

Note that L1�ðGÞ ¼ L1ðGÞ. Because for u 2 L1ðGÞ,

juj1 ¼ kukL1ðSLÞ ¼
Z

SL

�
�
X

k2L
uðk�1xÞ

�
�dx

6

Z

G

�
�uðxÞ

�
�dx ¼ kuk1\1:

So u 2 L1�ðGÞ. Also, if u 2 LpðGÞ is compactly supported,

then u 2 Lp�ðGÞ, for all 1 6 p 6 1. Indeed by (Moham-

madian et al. 2016, Lemma 3.2),

jujp ¼ ku�kLpðSLÞ ¼
�
�
X

k2L
juðk�1�Þj

�
�
LpðSLÞ

6

X

k2L
kuðk�1�ÞkLpðSLÞ

¼
X

k2L
kukLpðSLÞ 6 1:

Now, for u 2 Lp�ðGÞ; 1 6 p 6 1, and a 2 l1ðLÞ, the

semidiscrete convolution u �0 a is defined by
P

k2L uðk�1�ÞaðkÞ. We also denote by u�0 the mapping

a ! u �0 a ða 2 l1ðLÞÞ.
Now the following theorem shows that u�0 maps lqðLÞ

to LpðGÞ where 1 6 q 6 p 6 1, and l1ðLÞ to Lp�ðGÞ.

Theorem 1 With notations as above for u 2 Lp�ðGÞ we
have,

(i) ju �0 ajp 6 jujpkak1
(ii) ku �0 akp 6 jujpkakq; ðq 6 pÞ

Proof Part (i) is obtained easily for every 1 6 p 6 1,

since,

ðu �0 aÞ� ¼
X

k2L
jðu �0 aÞðk�1:Þj

6

X

k2L

X

l2L

�
�u
�

ðklÞ�1 �
��
�
�
�aðlÞ

�
�

¼
X

l2L

�
�aðlÞ

�
�
X

k2L

�
�u
�

ðklÞ�1 �
��
�

¼ u�kak1:

Now

ju �0 ajp ¼ kðu � aÞ�kLpðSLÞ
6 k kak1u�kLpðSLÞ
6 kak1ku�kLpðSLÞ
¼ kak1jujp:

Part ðiiÞ, for p ¼ 1,

ku �0 ak1 ¼ esssupf
�
�
X

k2L
uðk�1xÞaðkÞ

�
�; x 2 Gg

6 esssupfkak1
X

juðk�1xÞj; x 2 Gg

¼ kak1esssupf
X

juðk�1xÞj; x 2 SLg
ðsince

X

k2L
juðk�1xÞj is L� periodicÞ

6 kak1ku�kL1ðSLÞ ¼ kak1juj1 6 kuk1kak1:

For 1 6 p\1, let I ¼ ku �0 akp, and so
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Ip ¼
Z

G

jðu �0 aÞðxÞjpdx

¼
X

l2L

Z

SL

jðu �0 aÞðxlÞjpdx

¼
Z

SL

X

l2L
jðu �0 aÞðxlÞjpdx:

For x 2 G, as a fixed point, let c be the sequence ðuðxlÞÞl2L,
that c 2 l1ðLÞ. Then

ðu �0 aÞðxlÞ ¼
X

k2L
uðk�1xlÞaðkÞ ¼ a � cðlÞ;

where a � c denotes the discrete convolution of a and c. By

Young’s inequality (Folland 1984, Proposition 8.9), it

follows that
X

l2L
jðu �0 aÞðxlÞjp ¼ ka � ckpp

6 kakppðu�ðxÞÞp:

Consequently, we have

Ip 6 kakpp
Z

SL

ðu�ðxÞÞpdx

¼ kakppjuj
p
p

6 kakpqjuj
p
p:

This completes the proof. h

We conclude this section with some definitions.

Recall that the shifts of u, via the lattice L in G is called

a Riesz family of LpðGÞ, if there exist constants Ap;Bp [ 0

such that

Apkakp 6 ku �0 akp 6 Bpkakp ð1 6 p 6 1Þ;

for all a 2 lpðLÞ.
The right-hand side of the above inequality is valid by

Theorem 1, so it is enough to say that the set of shifts of u,
via the lattice L in G, forms a Riesz family of LpðGÞ if there
exists a constant Ap [ 0 such that,

Apkakp 6 ku �0 akp ð1 6 p 6 1Þ;

for all a 2 lpðLÞ.
Let SpðuÞ be the image of lpðLÞ of the mapping u�0. In

this case, the set of shifts of u via the lattice L in G is a

Riesz basis of SpðGÞ. See also (Christensen

2016, Theorem 3.6.6).

3 Propositions

Throughout this section and afterward, G denotes a second

countable locally compact abelian group with a fixed Haar

measure k, and a is a topological automorphism on G such

that kðaðEÞÞ ¼ dakðEÞ for all Borel subsets E of G (da is a
positive constant depending on a). Furthermore, we assume

that a�1 is contractive and L is a uniform lattice in G.

Now for a refinable function u 2 L2�ðGÞ, we consider

V0 ¼ S2ðuÞ and Vj ¼ DjV0, where D is the dilation oper-

ator defined on L2(G) by Df ðxÞ ¼ d
1
2
af ðaðxÞÞ.

Note that a function u 2 L2�ðGÞ is said to be refinable, if

it satisfies the following refinement equation:

u ¼
X

k2L
bðkÞDTkuð�Þ

¼
X

k2L
d

1
2
abðkÞuðk�1að�ÞÞ;

ð1Þ

for some b 2 l1ðLÞ, that is called the mask of the refine-

ment equation.

The following proposition shows that for a refinable

function u 2 L1ðGÞ, ûðgÞ ¼ 0 for all g 2 L?nf1
bG
g, where

û is the Fourier transform of u. Although establishing this

condition is closely related to contractivity of a topological

automorphism â�1. According to this proposition,
P

k2L uðk�1�Þ is a constant. If in addition, the shifts of u
via the lattice L in G forms a Riesz family of L2(G), then

this constant must be nonzero. This fact will be shown in

proposition 2.

Proposition 1 If u 2 L1ðGÞ is refinable and a : G ! G is

a topological automorphism such that â�1 is contractive

and âðL?Þ � L?, then ûðgÞ ¼ 0 for

all g 2 L?nf1
bG
g. Moreover,

X

k2L
uðk�1�Þ ¼ ûð1

bG
Þ:

Proof By taking the Fourier transforms of the refinement

equation (1), we have

ûðnÞ ¼
X

k2L
bðkÞd�1

a nða�1ðkÞÞûðâ�1ðnÞÞ ðn 2 bGÞ

¼ d�1
a

~bðâ�1ðnÞÞûðâ�1ðnÞÞ;
ð2Þ

where ~bðnÞ ¼
P

k2L bðkÞnðkÞ, is the symbol of b. Then by

induction, we get

ûðnÞ ¼
Yk

j¼1

ðd�1
a

~bðâ�jðnÞÞÞûðâ�kðnÞÞ ðn 2 bGÞ: ð3Þ

Consider two cases j ~bð1
bG
Þj\da, and j ~bð1

bG
Þj > da. If

j ~bð1
bG
Þj\da, then by choosing n ¼ 1

bG
in (2), we obtain

ûð1
bG
Þ ¼ 0. Moreover, contractivity of â�1 and the conti-

nuity of ~b imply that ~bðâ�jðnÞÞ ! ~bð1
bG
Þ for any fixed
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n 2 bG, and sufficiently large j. Therefore, for any n 2 bG

and sufficiently large j, jd�1
a

~bðâ�jðnÞÞj\1. By letting k !
1 we obtain

Yk

j¼1

d�1
a

~bðâ�jðnÞÞ ! 0:

Thus u ¼ 0.

Now suppose j ~bð1
bG
Þj > da. By replacing n by âkðgÞ

ðg 2 L?nf1
bG
gÞ, in Eq. (3), we have

ûðâkðgÞÞ ¼
�

d�1
a

~b
�

â�j
�

âkðgÞ
���k

ûðgÞ

¼
�

d�1
a

~bð1
bG
Þ
�k
ûðgÞ;

then

jûðâkðgÞÞj > jûðgÞj: ð4Þ

Also u 2 L1ðGÞ implies u0 :¼
P

k2L uðk�1�Þ 2 L1ðGLÞ, so

cu0 ¼ û jL?2 c0ð cðGLÞÞ ffi c0ðL?Þ. Since â is an expansive

automorphism, then ûðâkðgÞÞ 2 c0ðL?Þ when k ! 1 in

(4). So ûðgÞ ¼ 0 for all g 2 L?nf1
bG
g. For

u0ð�Þ ¼
P

k2L uðk�1�Þ, we have cu0 2 L1ðL?Þ.
Now Poisson summation (Folland 1995, theorem 4.42),

implies that,
X

k2L
uðk�1�Þ ¼

X

g2L?
û0ðgÞgð�Þ ¼

X

g2L?
ûðgÞgð�Þ ¼ ûð1

bG
Þ;

and the proof is complete. h

For example, it is easy to see that for u ¼ v½0;1�, which is

refinable and belongs to L1ðRÞ, we have
P

k2Z uð� � kÞ ¼ 1 ¼ ûð0Þ.
Along with Proposition 1, the next proposition plays a

key role in reaching the result ûð1
bG
Þ 6¼ 0. Thus after

normalization we may assume that
P

k2L uðk�1�Þ ¼ ûð1
bG
Þ ¼ 1.

Proposition 2 Let u 2 L2�ðGÞ, and the shifts of u via the

lattice L in G forms a Riesz family of L2(G). Then

sup
g2L?

jûðngÞj[ 0;

for all n 2 bG.

Proof Suppose that for some n 2 bG, ûðngÞ ¼ 0 for all

g 2 L?. In the sequel, we show that the shifts of u via the

lattice L in G does not form a Riesz family of L2(G).

Consider x �! nðxÞuðxÞ ðx 2 GÞ. Without loss of

generality, we may assume that ûðgÞ ¼ 0 for all g 2 L?.
Therefore, by Poisson summation formula, we have

X

k2L
uðk�1xÞ ¼

X

g2L?
ûðgÞgðxÞ ¼ 0 ðx 2 GÞ: ð5Þ

Let U be a symmetric compact neighborhood of the iden-

tity 1G.

Set Um ¼ UU. . .U (m factors). Then every Um is

compact that contains finitely many k 2 L, by (Moham-

madian et al. 2016, Lemma 3.2). For each n 2 N, let an be

the sequence on L defined by,

anðkÞ ¼
1 k 2 Un2

0 o:w:

�

:

To prove that the shifts of u via the lattice L in G do not

form a Riesz family, it is enough to show that

ku �0 ank2
kank2

! 0 whenever n ! 1

To this end, consider the functions u
N
and w

N
on G defined

as follows,

u
N
ðxÞ :¼

uðxÞ x 2 U
N

0 o:w:

�

:

Without loss of generality we may choose N 2 N such that

SL � U
N
,

w
N
ðxÞ :¼

P

k2L
ðu� u

N
Þðk�1xÞ x 2 SL

0 o:w:

(

:

Set w :¼ u
N
þ w

N
which is compactly supported in U

N
,

that is,

wðxÞ ¼ 0 for x 2 Uc
N
: ð6Þ

Construction of w
N
guarantees that

jw
N
j2 6 ju� u

N
j2:

Hence we have

ju� wj2 6 ju� u
N
j2 þ jw

N
j2

6 2ju� u
N
j2:

ð7Þ

The above relation and Theorem 1 gives the following

estimate,

kðu� wÞ �0 a
N
k2 6 ju� wj2kaN

k2
6 2ju� u

N
j2kaN

k2:

Therefore,

ku �0 a
N
k2

ka
N
k2

6
kw �0 a

N
k2

ka
N
k2

þ 2ju� u
N
j2: ð8Þ

On the other hand, ju� u
N
j2 6 2juj2. As u 2 L1ðGÞ,

Dominated convergence theorem implies that ju� u
N
j2 !
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0 as N ! 1. It remains to estimate
kw �0 a

N
k2

ka
N
k2

. From (5)

and construction of w we have,
X

k2L
wðk�1xÞ ¼

X

k2L
uðk�1xÞ ¼ 0 ðx 2 GÞ; ð9Þ

because
X

k2L
w

N
ðk�1xÞ ¼

X

k2L
ðu� u

N
Þðk�1xÞ ðx 2 GÞ:

By (6) and (9) we obtain

w �0 a
N
¼

P

k2L aN
ðkÞwðk�1xÞ ¼ 0, for all

x 2 U
N2
Uc

N
[ Uc

N
Uc

N2
. Indeed,

X

k2UN2\L
a

N
ðkÞwðk�1xÞ þ

X

k2Uc

N2
\L

aNðkÞwðk�1xÞ

¼
X

k2UN2\L
wðk�1xÞ

¼ �
X

k2Uc

N2
\L

wðk�1xÞ:

Therefore, w �0 a
N

is supported in

E ¼ ðU
N2
Uc

N
Þc \ ðUc

N
Uc

N2
Þc. It follows that

kw �0 a
N
k22 6

Z

E

ð
X

k2L
ja

N
ðkÞjjwðk�1xÞjÞ2dx

6

Z

E

�

w�ðxÞ
�2
dx

¼
X

k2E\L

Z

SL

�

w�ðxÞ
�2
dx:

We have wðk�1xÞ 6¼ 0 if k�1x 2 U
N
(U

N
is symmetric), so

k 2 U
N
x. If x 2 E, k 2 U

N
E � U

N
U

N
¼ U

2N
, then

kw �0 a
N
k22 6 jwj22cardfk; k 2 U

2N
\ Lg;

and ka
N
k22 ¼

P

k2UN2\L
1 > cardfk; k 2 U

N2
\ Lg.

Therefore, we obtain the following estimate

kw �0 a
N
k2

ka
N
k2

6
jwj2cardfk 2 L; k 2 U

2N
\ Lg

cardfk 2 U
N2
\ Lg : ð10Þ

By (7),

jwj2 6 juj2 þ ju� wj2
6 juj2 þ 2ju� u

N
j:

ð11Þ

Consequently, from (10) and (11),

kw �0 ank2
kank2

! 0 whenever n ! 1;

which completes the proof. h

4 Multiresolution Analysis

In this section, we construct an MRA of L2(G) by a Riesz

family of shifts of u via the lattice L in G, for a refinable

function u 2 L2�ðGÞ. As mentioned priory, we consider

V0 ¼ S2ðuÞ and Vj ¼ DjV0, where D is the dilation oper-

ator defined on L2(G) by Df ðxÞ ¼ d
1
2
af ðaðxÞÞ. We recall a is

a topological automorphism on G and for Haar measure k
on G, da is a positive constant depending on a, such that

kðaðEÞÞ ¼ dakðEÞ for all Borel subsets E of G.

Theorem 2 With the notation as above let u 2 L2ðGÞ,
V0 ¼ S2ðGÞ and Vj ¼ DjV0. If u is refinable and shifts

of u via the lattice L in G forms a Riesz family,

then ðVjÞj2Z forms a multiresolution approximation

of L2(G).

Proof By the definition of V0, and that u is refinable, in

the definition of multiresolution approximation, ðiÞ is

obtained. ðiiÞ, ðiiiÞ are also followed by the definition of Vj.

ðivÞ is clear by the definition of V0 ¼ S2ðuÞ and the func-

tion u�0 is an isomorphism.

For the property ðvÞ, let f 2
T

j2Z Vj, we have

D�jf 2 V0. Hence there is an a 2 l2ðLÞ such that

D�jf ¼ u �0 a. Now by applying the hypothesis that the

shifts of u via the lattice L in G is a Riesz family, there

exists a constant B[ 0 such that

kak2 6 B�1ð
Z

G

jD�jf ðxÞj2dxÞ
1
2:

¼ B�1
�
Z

G

jd�
j
2

a f ða�jðxÞÞj2dx
�1
2

¼ B�1kfk2:

ð12Þ

On the other hand,

jD�jf ðxÞj ¼ jd�
j
2

a f ða�jðxÞÞj
¼ jðu �0 aÞðxÞj
6 j

X

k2L
uðk�1xÞaðkÞj

6 kak1
X

k2L
juðk�1xÞj

6 kak2u�ðxÞ;

for all x 2 G. Therefore,

jf ðxÞj2 6 d j
akak

2
2ðu�ða jðxÞÞÞ2:

Now suppose that V is a compact neighborhood of 1G. We

get

950 Iran J Sci Technol Trans Sci (2022) 46:945–953

123



Z

V

jf ðxÞj2dx 6 d j
akak

2
2

Z

V

ju�ða jðxÞÞj2dx

¼ kak22
Z

ajV
ju�ðxÞj2dx:

This together with relation (12) implies that,
Z

V

jf ðxÞj2dx 6 B�2kfk22
Z

ajV
ju�ðxÞj2dx:

Now for any e[ 0, let U be a neighborhood of 1G, such

that kðUÞ\e. Note that u� is L-periodic and belongs to

L2(G). So the contractivity of a�1 implies that for suffi-

ciently small j, a�jðVÞ � U. Then
Z

V

jf ðxÞj2dx 6 B�2kfk22
Z

U

ju�ðxÞj2dx:

Therfore f ¼ 0.

For the property ðviÞ, let us consider the refinable

function u 2 L2�ðGÞ � L1ðGÞ such that the set of shifts of u
forms a Riesz family. Propositions 1 and 2 guarantee

ûð1
bG
Þ 6¼ 0. After normalization, we may assume

ûð1
bG
Þ ¼ 1. Let U be a compact neighborhood of 1G, and

UN ¼ U. . .U; ðN factorsÞ. For j 2 Z, we define the oper-

ator T j as follows,

T jf ð�Þ ¼ Dj½u �0 D�jðf jLÞ�ð�Þ ¼
X

k2L
f ða�jðkÞÞuðk�1ajð�ÞÞ;

in which f 2 CcðGÞ is supported in UN , N 2 N. Then by

using the fact that the set of shifts of u via the lattice L in

G, forms a Riesz family, we have
�
�
�

X

k2L
f ða�jðkÞÞuðk�1ajð�ÞÞ

�
�
�
2
6 d

� j
2

a BkD�jðf jLÞkl2ðLÞ

6 d
� j

2
a B cardðQNÞ

1
2kfk1;

ð13Þ

where QN :¼ fk 2 L; a�jðkÞ 2 UNg. Note that the sets

a�jðkSLÞ, k 2 L, are pairwise disjoint. Moreover, contrac-

tivity of a�1 implies that, a�jðSLÞ � U for sufficiently large

j. Thus
[

k2QN

a�jðkSLÞ � UN :a
�jðSLÞ � UN :U ¼ UNþ1: ð14Þ

For each k 2 QN , kða�jðkSLÞÞ ¼ d�j
a kðSLÞ ¼ d�j

a . This fact

together with (14) reveals that, cardðQNÞ:d�j
a 6 kðUNþ1Þ.

This inequality with (13), show that for sufficiently large j,

kT jfk2 6 kðUNþ1Þ
1
2Bkfk1:

Hence T jf 2 L2ðGÞ. The proof is completed by if it is

shown that T jf converges to ûð1
bG
Þf weakly in L2(G) as

j ! 1, that is

lim
j!1

Z

G

T jf ðxÞ�gðxÞdx ¼ ûð1
bG
Þ
Z

G

f ðxÞ�gðxÞdx;

for any g 2 S�ðGÞ, the Segal algebra (S�ðGÞ is dense in

L2(G), see Feichtinger 1979, 1977, 1981).

According to Plancherel formula,
Z

G

T jf ðxÞ�gðxÞdx ¼
Z

bG

cT jf ðnÞ �̂gðnÞdn

¼
Z

bG

d�j
a

X

k2L
f ða�jðkÞÞnða�jðkÞÞûðâ�jðnÞÞ �̂gðnÞdn:

ð15Þ

As u 2 L1ðGÞ, so kûk1 6 kuk1. Hence the integrand (15)

is bounded by

kðUNþ1Þkuk1kfk1j �̂gðnÞj:

Since f 2 CcðGÞ and ĝ 2 L1ð bGÞ, by Dominated conver-

gence theorem, the integrand (15) converges pointwise to

f̂ ðnÞûð1
bG
ÞĝðnÞ as j ! 1. Then by applying Proposition 1

and Proposition 2, we may assume ûð1
bG
Þ ¼ 1, and the

desired result is obtained. h

Example 1 Consider Haar wavelet u ¼ v½0;1�. It satisfies

the refinement equation (1) and the set of shifts of u, via
the lattice Z in R forms a Riesz family of L2ðRÞ, therefore
by Theorem 2, shifts of u construct an MRA. Moreover, it

can be checked that by (Kamyabi and Raisi 2010, Corol-

lary 3.5, Proposition 4.5),
S

j2Z Vj ¼ L2ðRÞ and
T

j2Z Vj ¼ f0g.

Example 2 Consider,

G ¼ fx ¼ ðxnÞn2Z; xn 2 Z2 ¼ f0; 1g; 9N 2 Z s:t: 8n[N; xn ¼ 0g;

with the operation given by

ðx1 þ x2Þn ¼ x1n þ x2n mod 2;

then G is an LCA group. We identify G with ½0;1Þ as a
measure space by x ! jxj where jxj ¼

P

j2Z xj2
j. This

induces the Haar measure of ½0;1Þ on G. We will be

interested in the following subgroups,

L ¼ fx 2 G; xj ¼ 0 for j\0g;
G

L
¼ fx 2 G; xj ¼ 0 for j > 0g:

The subgroup G
L is known as the Cantor group. We have

that L is countable, closed, discrete and that G
L is compact

(see Lang 1996 for more details). Consider the Hilbert

space H ¼ L2ðG; kGÞ. The dilation D : H ! H and trans-

lation T : H ! H are defined respectively by ðDf ðxÞÞj ¼
f ðxj�1Þ and Tkf ðxÞ ¼ f ðx� kÞ for f 2 H; x 2 G; k 2 L. The
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dual group of G, bG, is isomorphic to G, and that characters

are given by

\x; n[ ¼
Y

j2Z
ð�1Þn�1�jxj ;

for x 2 G; n 2 bG.

Let the scaling function be uðxÞ ¼ vG
L
ðxÞ, the character-

istic function of G
L. We have ðD�1uÞðxÞ ¼ uðxÞ þ uðxþ 1Þ,

so vG
L
is satisfied the refinable equation and shifts of u via

the lattice L in G, are an orthonormal basis of H. suppose

V0 ¼ S2ðuÞ and Vj ¼ DjV0, then by Theorem 2, fVjgj2Z,
construct a multiresolution approximation of H.

Example 3 Let

uðxÞ ¼

1; if 0 6 x\1

1

2
; if 1 6 x\2

0; o:w:

8

>><

>>:

:

Then it can be checked that the set of integer translates of

u, fuð� � aÞga2Z, forms a Riesz family, and u satisfies the

refinement equation u ¼
P

j2Z bðjÞuð2 � �jÞ, where the

mask b is given by bðzÞ ¼ ðzþ 1Þðz2 þ 2Þ=ðzþ 2Þ. Thus
the integer shifts of u construct an MRA.
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Basel

Dahlke S (1994) Multiresolution analysis and wavelets on locally

compact abelian groups, wavelets, images, and surface fittings,

pp 141–156

Daubechies I (1992) Ten lectures on wavelets. CBMS-NSF regional

conference series in applied mathematics, vol 61. Society of

Industial and Applied Mathematics, Philadelphia

Feichtinger HG (1979) Banach convolution algebras of functions II.

Monatsh Math 87(3):181–207

Feichtinger HG (1977) On a class of convolution algebras of

functions. Ann Inst Fourier (Grenoble) 27(3):135–162

Feichtinger HG (1981) On a new segal algebra. Monatsh Math

92:269–289

Folland GB (1995) A course in abstract harmonic analysis. CRC

Press, Boca Raton

Folland GB (1984) Real analysis. Modern techniques and their

aplications. Wiley, New York

Galindo F, Sanz J (2001) Multiresolution analysis and radon measures

on a locally compact Abelian group. Czech Math J 51:859–871

Ghaani Farashahi A (2017) Abstract harmonic analysis of wave

packet transforms over locally compact Abelian groups. Banach

J Math Anal 11(1):50–71

Ghaani Farashahi A (2017) Multivariate wave-packet transforms.

Zeitschrift für Analysis und ihre Anwendungen (J Anal Appl)

36(4):481–500

Hernandez E, Weiss G (1996) A first course on wavelets. CRC Press,

Boca Raton, FL

Jeng Y, Lin CH, Li Y W, Chen CS, Huang H H (2009) Application of

multiresolution analysis in removing groundpenetrating radar

noise. Frontiers ? Innovation - CSPG CSEG CWLS Convention

Jia RQ, Micchelli CA (1991) Using the refinement equation for the

construction of prewavelets II: powers of two. In: Laurent PJ, Le
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