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Abstract

Let G be a second countable locally compact abelian group, L be a uniform lattice in G and S;, be a fundamental domain for

Lin G. Let 1(G) = {9:G — C || Syey lolk~)]

U,(SL><oo} (1 < p < 00). In this paper we aim among other

things, to introduce the Banach space L2(G) (1 < p < 00), with the norm |- |,, and for p =2 and a refinable function

¢ € L*(G) and the Riesz family generated by the shifts of ¢ by L in G, construct a multiresolution analysis in L*(G). Also

some examples are provided to support our construction.
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1 Introduction

The idea of multiresolution analysis (MRA) was introduced
by Meyer (1990) and Mallat (1989). It was a framework for
construction of orthogonal wavelet bases and it was
improved by many authors including those in Daubechies
(1992) and Hernandez and Weiss (1996). From the physi-
cal point of view, MRA is a modern signal processing
device in a mathematical manner that allows one to analyze
the properties of signals at different resolution levels. In the
recent years, the concept of MRA has become an important
tool in pure and applied mathematics and many branches of
engineering (Chibani and Houacine 1998; Dahlke 1994;
Daubechies 1992; Jeng et al. 2009; Papadakis et al. 2003).
Moreover, comprehensive studies have been conducted in
which MRA has been investigated for the Euclidian group
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R* (s € N), e.g., Bownik and Garrigos (2004), Daubechies
(1992), Jia and Micchelli (1991), Mallat (1989), Meyer
(1990) and Zhou (1996). For example, Jia and Micchelli Jia
and Micchelli (1991) proved that the Riesz family gener-
ated by the integer shifts of a certain basis refinable func-
tion are sufficient to lead to an MRA of L’(R*) for
1 < p < oo (for general scaling matrices and p = 2, see also
Jia and Micchelli 1992; Madych 1992). Later, Zhou (1996)
developed this theory for p = oo. Furthermore, in Baggett
(2000) and Bagget et al. (1999) Baggett, Medina, and
Merrill generalized the concept of MRA in terms of
wavelet dimension function properties. They investigated
its relation to wavelets (for further details on MRA, see
Arefijamaal and Ghaani Farashahi 2013; Arefijamaal and
Kamyabi-Gol 2009; Ghaani Farashahi 2017a, b; Hernandez
and Weiss 1996). Later Dahlke (1994) generalized the
definition of MRA to locally compact abelian group (LCA)
groups, and showed under certain conditions, the general-
ized B-splines generated an MRA (see also Galindo and
Sanz 2001; Kamyabi and Raisi 2010).

This paper deals with the construction of a multireso-
lution approximation in the Hilbert space L(G) (G is a
LCA group) via the Riesz family generated by the shifts of
a certain refinable function ¢ (see Mohammadian 2017). In
contrast to Kamyabi and Raisi (2010), the “orthogonality”
condition is replaced by the weaker condition “Riesz
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family” generated by the shifts of a refinable function with
respect to a uniform lattice L in G.

The rest of the paper is organized as follows: In the
second section, first, we review some facts on LCA group
G and then define and investigate the specified Banach
spaces L2 (G), 1 < p < oo, which are notably interesting by
themselves and are also needed in our study of MRA.
Section 3 is devoted to introducing the definition and two
propositions for construction MRA in the next sec-
tion. Finally, Sect. 4 contains construction and study the
multiresolution approximation in L*(G). This construction
is based on the Riesz family generated by the shifts of a
refinable function via a lattice in the second countable LCA
group G. Some examples are provided to clarify our
construction.

2 Preliminaries and Related Background

Let G be an LCA group with the identity 1 and the dual

group G. For a closed subgroup H of G, Ilet

H:={¢ € G; &(H) = {1}}. denote the annihilator of H in

G. A discrete subgroup L of G is called a uniform lattice if
G

it is co-compact (i.e., 7 is compact). From (Folland

1995, Theorem 4.39) it follows that the subgroup L* is also
a uniform lattice in G. Note that it is not decisive that all
groups should have uniform lattices, and the examples
which illustrate the concept are p-adic groups. Now a
fundamental domain for a uniform lattice L in G is a
measurable set S; in G, such that every x € G can be
uniquely written as x = ks, for k € L and s € S;. For a
uniform lattice L, it is known that, there exists a relatively
compact fundamental domain S; which has a positive
measure. Moreover, L?(G/L) = L*(S.), when G is a sec-
ond countable LCA (Kamyabi Gol and Raeisi Tousi 2008;
Kaniuth and Kutyniok 2008). For a uniform lattice L, L-
invariant subspaces are very useful (e.g., see Kamyabi Gol
and Raeisi Tousi 2008; Ron and Shen 1995). We recall that
a closed subspace V C L?(G) is called L-invariant if f € V
implies Tif € V, where Tj is the translation operator on
L*(G) defined by Tif(x) = f(k~'x) forall x € G, k € L. Tt
is well known that any LCA group G possesses Haar
measures and it is unique up to positive constants. Now if o
is a topological automorphism on G, then the Radon
measure A, defined by A,(E) = A(a(E)) (E Borel set, A
Haar measure on G) is also a Haar measure of G. So by the
uniqueness of Haar measure, there exists a positive con-
stant J, (depending on ) such that 1,(E) = 0,4((E)). Now
consider the dilation operator D : L*(G) — L*(G) by

Df(x) = 5§(f(oc(x)), (the fact 0, is a proper positive constant
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depending on o makes the operator D an isometric iso-

morphism), and for j € Z, Dif(x) is defined as 5éf(aj(x)).

Now, we introduce the notion of multiresolution
approximation in LZ(G), following Mallat (1989). A
sequence {Vj}jez of closed subspaces of L*(G) forms a
multiresolution approximation of L*(G) if it satisfies the
following conditions:

® VSV, Vel
(i) feV,= DTD 'feV,foralljecZkelL.
_1
(i) feV,< 06,’Df € Viy1.
(iv)  There is an isomorphism from /2(L) onto Vj, which
commutes with shift operators.

™ eV = {0},

wi) Uer V= 17(G).

From (iv), one may find that there exists a unique function

g € L*(G) such that for any j € Z, {5j§g(k"ocj(-))}keL is a
wavelet orthonormal basis of V; (see also Mallat 1989).

Note that /(L) is the linear space of all funtions on L, and
P(L) (1 < p < 00), is the linear space of all functions on
L, as f=(f(k)), such that for 1< p<oo,
IFIIP = > e f (k)P <oo, and for p = oo, f is bounded.
Also a function ¢ on G is compactly supported if the
closure of the set of all points x € G at which ¢(x) # 0 is
compact.

For a € I(L), the symbol of a is defined by a(¢) :=

Y kera(k)é(k) for & € G. It is worthwhile to note that the
symbol of a, d, is a continuous function on S, if a € I'(L)
and that {/'(L) is a unital commutative involutive Banach
algebra (0 is unit element).

We recall that for a locally compact group G, a topo-
logical automorphism o : G — G is said to be contractive if
lim,,_,» o"(x) = 1¢ for all x € G.

Also, a related concept with contractivity is expansive-
ness. Following Siebert (1986), a topological automor-
phism o of G is said to be expansive if there exists a

neighborhood U of 1 such that (., «™"(U) = {lg}. If «

1

is contractive then o~ is expansive in view of Lemma 1.

Lemma 1 (Siebert 1986) For a locally compact group G,
let o € Aut(G) be contractive and let U be a closed
neighborhood  of 1¢in  G. For anynecZ,we
put Uy = (Necpiez @ (U). Then we have

(@ Uy CU, and a(U,) = Uy foralln € Z.

) Uer Un = G.

(c) every U, has non-void interior.

(d) for every compact subset C of G there exist
some ng € N such that o"(C) C U for all n = ny.
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Note that the definition of contractivity of « agrees with
part (d) of Lemma 1. For a topological automorphism o on

G, we denote by & the topological automorphism on G
defined by a(&)(x) = &(a(x)), (see Bagget et al. 1999). It
can be shown that o is contractive if and only if & is
contractive.

Now, we introduce the Banach spaces
I?(G), 1 < p < co. For uniform lattice L in G and func-

tion ¢ on G, let

=D lok %),

keL
then @° is a L-periodic function. Write
oly = ol = ([ 13 00 wlax)’
S kel
It is easy to see that |.[, is a norm. Put
L(G) = {p: G — ©

o], <oo} (1 <p <o)

One can check that L2(G) equipped with the norm |- |, is

also a Banach space (see Jia and Micchelli 1991 for the
case LP(R®), s is a positive integer), and obviously
loll, < |, forall 1 < p < oc. Indeed, for 1 < p<oo,

|<0|§=/ O lotk'x)

kel
/Zm)k ) Pdx
SL kel
- / o = [lo].
G
For p = oo,

|Ploe = N0l (s,
= esssup{z lp(k~'x)|, x € S}

keL

= esssup{z lp(k'x)|, x € G}
keL

(since @°is L — periodic)
= esssup{[p(x)|, x € G} = [loll

Note that L!(G) = L'(G). Because for ¢ € L'(G),

9l = ol / |3 ol 0)]d

keL

< / lp()|dx = o], <.

So ¢ € L!(G). Also, if ¢ € I7(G) is compactly supported,
then ¢ € [2(G), for all 1 < p < oo. Indeed by (Moham-
madian et al. 2016, Lemma 3.2),

o, = 10°llsy) = | Z 06 s,
kel
Z ||(p U’ SL
kel
- Z o w(s) S P
kel
Now, for ¢ € [2(G), 1 <p < oo, and a €[*(L), the
semidiscrete  convolution ¢@*'a is defined by
> ier @(k')a(k). We also denote by ¢+’ the mapping

a— g+ aae (L)
Now the following theorem shows that ¢+" maps 17(L)
to L7(G) where 1 < ¢ < p < o0, and I'(L) to L2(G).

Theorem 1 With notations as above for ¢ € [2(G) we
have,
(]) |(/) *l a|p < ‘§D|p||d||1
(i) [lo+ al, < |ol,lall,, (¢<p)
Proof Part (i) is obtained easily for every 1 < p < oo,
since,
(@ +"a)° Z| o+ a)k")|
kel
-1
<D Jo(e) ") fath)]
keL €L
~1
=>_la®]>_ o (k)
IeL kel
= ¢°|lall;.
Now

o ' a|p = [|(¢ = a)o||u’(sL)
< | Mlall;9°
< lall, 1o
= lall\[¢l,-

Lr(SL)

Lr(Se)

Part (ii), for p = oo,

|+ al|, = esssup{| Z @k 'x)a(k)|, x € G}
kel

<esssup{flall, Y lo(k~'x)|, x € G}
= [lallcesssup{D>_ |o(k'x)|, x € S}
(since Z lo(k~'x)| is L — periodic)

keL
< lallcllo® e s,y = llallclloe < ll@lloollally-

s and so
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P / (¢ @) ()P

72 |go>|<a ) () |Pdx
leL
/Z| ¢ * a)(x)|Pdx.
St el

For x € G, as a fixed point, let ¢ be the sequence (¢(x/)),;,
that ¢ € [! (L) Then

Z(pk xl)a

keL

(¢ + a)( k) = axc(l),

where a * ¢ denotes the discrete convolution of a and c. By
Young’s inequality (Folland 1984, Proposition 8.9), it
follows that

Y @+ @)Dl = Jlaxclf,
leL
< llally(o° (x))".

Consequently, we have

P < lal / (¢°(x)dx

= llallylel,
< llallglely-
This completes the proof. O

We conclude this section with some definitions.

Recall that the shifts of ¢, via the lattice L in G is called
a Riesz family of I7(G), if there exist constants A,, B, > 0
such that

Apllall, < Nl + all, < Bpllall, (1<p<o0),

for all a € IP(L).

The right-hand side of the above inequality is valid by
Theorem 1, so it is enough to say that the set of shifts of ¢,
via the lattice L in G, forms a Riesz family of L”(G) if there
exists a constant A, > 0 such that,

Apllall, < llo+"all, (1<p <o),

for all a € IP(L).

Let S,(¢) be the image of /(L) of the mapping ¢+'. In
this case, the set of shifts of ¢ via the lattice L in G is a
Riesz basis of S,(G). See also (Christensen
2016, Theorem 3.6.6).

3 Propositions
Throughout this section and afterward, G denotes a second

countable locally compact abelian group with a fixed Haar
measure 4, and « is a topological automorphism on G such
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that A(a(E)) = 6,4(E) for all Borel subsets E of G (J, is a
positive constant depending on «). Furthermore, we assume
that «~! is contractive and L is a uniform lattice in G.

Now for a refinable function ¢ € L?(G), we consider
Vo = S2(¢) and V; = D'V, where D is the dilation oper-
ator defined on L*(G) by Df(x) = 5if(oc(x))

Note that a function ¢ € L2(G) is said to be refinable, if
it satisfies the following refinement equation:

¢ =Y b(k)DTio(-)

keL

=3 Sbk)e(k " a()),

keL

(1)

for some b € I'(L), that is called the mask of the refine-
ment equation.

The following proposition shows that for a refinable
function ¢ € L'(G), @() =0 for all n € LL\{IE}, where
¢ is the Fourier transform of ¢. Although establishing this
condition is closely related to contractivity of a topological
automorphism a! According to this proposition,
> wer @(k7!) is a constant. If in addition, the shifts of ¢
via the lattice L in G forms a Riesz family of L2(G), then
this constant must be nonzero. This fact will be shown in
proposition 2.

Proposition 1 If ¢ € L'(G) is refinable and o : G — G is
a topological automorphism such that &
and 4(L*+) C L*, then ¢(n) = 0 for

all n € LL\{IE}. Moreover,

S okt = (1),

keL

Uis contractive

Proof By taking the Fourier transforms of the refinement
equation (1), we have
=D _b(k)3, & (k)
keL (2)
=0,'b(a (9)d(a " (&),

where b(&) = 3, b(k)&(k), is the symbol of b. Then by
induction, we get

Consider two cases |b~(1cA;)|<5‘“’ and |b~(15)| >0, If

|l;(lg)\ <0y, then by choosing & = 15 in (2), we obtain

(Z)(la) = 0. Moreover, contractivity of @' and the conti-

nuity of b imply that b(a7(¢)) — b(1 ) for any fixed
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e G, and sufficiently large j. Therefore, for any & € G
and sufficiently large j, |3,'b(d77(¢))| <1. By letting k —

00 we obtain

k
[T0.'6(a7 () —o.
j=1
Thus ¢ = 0.

Now suppose |5(18)| > d,. By replacing ¢ by & (n)
(ne Ll\{la}), in Eq. (3), we have

o ) = (5,67 (3 )) o0
= (5,'5(1)) b(n),

then
68" ()] = 1o (n)]. (4)
Also ¢ € L'(G) implies ¢’ =3, o(k™') € L'($), so

—~

o =¢ 1€ co(($)) = co(L*). Since & is an expansive
automorphism, then ¢(3*(17)) € co(L*) when k — oo in

4. So ¢(n)=0 for al pne Li\{lg}. For
@) =S o(k"), we have ¢ € L'(LY).

Now Poisson summation (Folland 1995, theorem 4.42),
implies that,

Yooy =" @' mn() =Y dlmn() = (1),

keL neLt neLt
and the proof is complete. U]

For example, it is easy to see that for ¢ = o ;, which is

refinable and  belongs to L'(R), we have

> okez @+ —k) =1=¢(0).
Along with Proposition 1, the next proposition plays a
key role in reaching the result (/3(15) # 0. Thus after

normalization we may assume that
> kel p(k™!) = (/3(15) =L

Proposition 2 Let ¢ € L2(G), and the shifts of ¢ via the
lattice L in G forms a Riesz family of L*(G). Then
sup [p(&n)| >0,

neLt
forall ¢ € G.

Proof Suppose that for some ¢ € G, @(&n) =0 for all
n € L. In the sequel, we show that the shifts of ¢ via the
lattice L in G does not form a Riesz family of L2(G).
Consider x — &(x)p(x) (x € G). Without loss of
generality, we may assume that ¢(17) =0 for all n € L*.
Therefore, by Poisson summation formula, we have

Dok )= ¢(nn(x) =0

kel neLt

Let U be a symmetric compact neighborhood of the iden-
tity 1lg.

Set U, =UU...U (m factors). Then every U, is
compact that contains finitely many k € L, by (Moham-
madian et al. 2016, Lemma 3.2). For each n € N, let a,, be
the sequence on L defined by,

1 ke U,
an(k) = 0 ow.

To prove that the shifts of ¢ via the lattice L in G do not
form a Riesz family, it is enough to show that
o+ anll

— 0 whenever
l|an Hz

n— oo

To this end, consider the functions ¢, and / on G defined
as follows,

xeU,

0 0.W.

Without loss of generality we may choose N € N such that
S, CU,,

(¢ —o,)(k'x)
Wy, (x) =

x €S,
keL .

0 0.W.

Set  := ¢, +y, which is compactly supported in U,,
that is,

Y(x) =0 for xecU,. (6)
Construction of i guarantees that

Yol <lo — ol
Hence we have

lo =V, <lo—o, L+ [V,
(7)
<20 — 9, |,

The above relation and Theorem 1 gives the following
estimate,

(@ =)+ ayll, <lo = ¥hlayl,

<
<2p — o, llla,ll,-

Therefore,

o+ aylly _ ¥+ aylls
llall, llay Il

On the other hand, |@ — ¢, |, <2|p|,. As ¢ € L'(G),
Dominated convergence theorem implies that | — ¢ |, —

+2lp — o, |, (8)
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/
0 as N — oo. It remains to estimate Hlp” ”N|2 From (5)
ayllz
and construction of i we have,
DUk =) ok =0 (xe€0), )
keL keL
because
YU k)= (p-9)(k'x) (x€G).
kel keL
By (6) and ©)) we obtain
Y+ a, =3, a,(k)yk'x)=0, for all
X € UN2 U; U U; Uzz. Indeed,
Yo a k) + Y av(kyk )
keUyaNL keU,NL
= > vk
keU, 2ﬂL
S
keUs,
Therefore, v+ a, is supported in
= (U, U n(US U;Z)C. It follows that
a3 < [ Lo @l ) s
keL
0/ \\2
< / (¥°(x)) dx
E
0/ \\2
=> / (V°(x)) dx.
k€ENL v St

We have y(k~'x) # 0 if k- 'x € U, (U, is symmetric), so
keUx.IfxeE, ke UECUU, =U,,, then

2N
I+ ay| < 1 eard{k, k € U, NL},

and ||aN||2 = ZkeUNzﬁLl > card{k, k € U, NL}.
Therefore, we obtain the following estimate

¥+ ayll, _ [Wlocardik € Lk € U, NL} (10)
lla, 1l card{k € U , N L} '

By (),
W1,

ol + o =¥l

<
<ol + 2l — o, |-

Consequently, from (10) and (11),

>|</
M — 0 whenever n — o0,
llanll,
which completes the proof. O
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4 Multiresolution Analysis

In this section, we construct an MRA of Lz(G) by a Riesz
family of shifts of ¢ via the lattice L in G, for a refinable
function ¢ € L?(G). As mentioned priory, we consider
Vo = S2(¢) and V; = D'V, where D is the dilation oper-

ator defined on L*(G) by Df (x) = ééf(oc(x)). We recall o is
a topological automorphism on G and for Haar measure A
on G, J, is a positive constant depending on o, such that
Ma(E)) = 0,A(E) for all Borel subsets E of G.

Theorem 2 With the notation as above let ¢ € L*(G),
Vo = 82(G) and V; = D'V, If ¢ is refinable and shifts
of ¢ via the lattice L in G forms a Riesz family,
then (V;).., forms a approximation

of L*(G).

ez multiresolution

Proof By the definition of Vj, and that ¢ is refinable, in
the definition of multiresolution approximation, (i) is
obtained. (i), (iii) are also followed by the definition of V;.
(iv) is clear by the definition of Vo = S»(¢) and the func-
tion ¢+’ is an isomorphism.

For the property (v), let f€();V;, we have
D7f € Vy. Hence there is an a € ’(L) such that
D7f = ¢ ¥ a. Now by applying the hypothesis that the
shifts of ¢ via the lattice L in G is a Riesz family, there
exists a constant B > 0 such that

lall, < B / Ry

= B*l(/G \5;%f(oc’j(x))|2dx)% (12)
=B7'fll,.
On the other hand,
ID7F(x)] = 185 (a7 (x))|
= (@ ¥ a)(x)]
<Y ok x)a(k)

keL

<llallo D lo (k™))

kel
< llall,¢°(x),
for all x € G. Therefore,
2 N2 o 2
[f()]” < 63llall> (@ (o (x)))"

Now suppose that V is a compact neighborhood of 15. We
get
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/Vlf(X)lde< 5illa\|§/‘/\<p°(aj(X)) “dx

2 o 2
- ||a||2/_ 10°(x) .
oV

This together with relation (12) implies that,
2 - 2 0/ 2
[ rPar < a2 [ o7
o

Now for any ¢ > 0, let U be a neighborhood of 1, such
that 2(U) <e. Note that ¢° is L-periodic and belongs to
L*(G). So the contractivity of o' implies that for suffi-
ciently small j, «7(V) C U. Then

[ rPar < a2 [ 1o oras

Therfore f = 0.

For the property (vi), let us consider the refinable
function ¢ € L2(G) C L'(G) such that the set of shifts of ¢
forms a Riesz family. Propositions 1 and 2 guarantee
q?)(la) #0. After normalization, we may assume
q?)(la) = 1. Let U be a compact neighborhood of 14, and

Uy =U...U,(N factors). For j € Z, we define the oper-

ator 7; as follows,
Tif () = Do+ DI (f|)]() = > fla( oA()),
keL

in which f € C.(G) is supported in Uy, N € N. Then by
using the fact that the set of shifts of ¢ via the lattice L in
G, forms a Riesz family, we have

| S rewne )|, < & BIDT 1) leq,
keL .
< 8% card(Qw I -
(13)

where Qy :={k € L; «/(k) € Uy}. Note that the sets
o (kSL), k € L, are pairwise disjoint. Moreover, contrac-
tivity of o~ ! implies that, ot’j@ C U for sufficiently large
j. Thus

U (kSL) - UN o (SL) - UN U= UN+1 (]4)
k€ON
For each k € Qy, A(o7/(kS.)) = 6,7A(S.) = &,7. This fact
together with (14) reveals that, card(Qy).0,’ < A(Uy+1).
This inequality with (13), show that for sufficiently large j,

17311, < AUn+1)BlIf 1l

Hence 7;f € L*(G). The proof is completed by if it is
shown that 7 ;f converges to q?)(lg)f weakly in L*(G) as

Jj — o0, that is

lim | Tf(x)g(x)ax =

#(12) [ f

j—00

for any g € So(G), the Segal algebra (S,(G) is dense in
L*(G), see Feichtinger 1979, 1977, 1981).

According to Plancherel formula,

/Tj dx/Tf (&)g(&)de

:/ /Zf =l

kel

ST (k) (a7 (£)g(&)de.

(15)

As ¢ € L'(G), so |||, < |l¢ll,- Hence the integrand (15)

is bounded by

AUns)llll 1l 18(E)]-

Since f € C.(G) and g € L'(G), by Dominated conver-
gence theorem, the integrand (15) converges pointwise to
f(é)(f)(la\)g(f) as j — oo. Then by applying Proposition 1
and Proposition 2, we may assume g?)(la) =1, and the

desired result is obtained. O

Example 1 Consider Haar wavelet ¢ = y ). It satisfies
the refinement equation (1) and the set of shifts of ¢, via
the lattice Z in R forms a Riesz family of L?(R), therefore
by Theorem 2, shifts of ¢ construct an MRA. Moreover, it
can be checked that by (Kamyabi and Raisi 2010, Corol-

lary 3.5, Proposition 4.5), U, V;=L*(R) and
ez V; = {0}
Example 2 Consider,

G={x=(%)pez, €2 ={0,1}, IN€ Z s.1.Yn>N, x, =0},

with the operation given by

(x' +x%), =x} +x2 mod 2,

then G is an LCA group. We identify G with [0,00) as a
measure space by x — |x| where |x| = Ejezszj~ This
induces the Haar measure of [0,00) on G. We will be
interested in the following subgroups,

L={x€ G,x; =0 for j<0},

g—{XGij—OfOI’j > 0}.

The subgroup % is known as the Cantor group. We have
that L is countable, closed, discrete and that % is compact
(see Lang 1996 for more details). Consider the Hilbert
space H = L*(G, /). The dilation D : H — H and trans-
lation 7': H — H are defined respectively by (Df(x)); =
f(xj—1) and Tif (x) = f(x — k) for f € H,x € G,k € L. The

52, €\ Springer
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dual group of G, G, is isomorphic to G, and that characters
are given by
<x,&> =[[(=n=,

jez

forxe€ G, ¢ € G.

Let the scaling function be ¢(x) = xq(x), the character-
istic function of £. We have (D™ ¢)(x) = ¢(x) + @(x + 1),
S0 ¥g is satisfied the refinable equation and shifts of ¢ via
the lattice L in G, are an orthonormal basis of H. suppose
Vo = S2(e) and V; = D'Vy, then by Theorem 2, {V;}; 5,

construct a multiresolution approximation of H.

Example 3 Let

1,  ifo<x<l
1

o(x) = X ifl<x<2.
0, 0.W.

Then it can be checked that the set of integer translates of
¢, {o(- — ®)},cz, forms a Riesz family, and ¢ satisfies the
refinement equation ¢ = 7,.; b(j)®(2 - —j), where the

mask b is given by b(z) = (z+ 1)(z> +2)/(z +2). Thus
the integer shifts of ¢ construct an MRA.

Funding The authors have not disclosed any funding.

Declarations

Competing interests The authors have not disclosed any competing
interests.

References

Arefijamaal A, Ghaani Farashahi A (2013) Zak transform for
semidirect product of locally compact groups. Anal Math Phys
3(3):263-276

Arefijamaal A, Kamyabi-Gol RA (2009) On the square integrability
of quasi regular representation on semidirect product groups.
J Geom Anal 19(3):541-552

Baggett LW (2000) An abstract interpretation of the wavelet
dimension function using group representations. J Funct Anal
173:1-20

Bagget LW, Medina HA, Merrill KD (1999) Generalized multi-
resolution analyses and a construction procedure for all wavelet
sets in R". J Fourier Anal Appl 5(6):563-573

Bownik M, Garrigos G (2004) Biorthogonal wavelets, MRA’s and
shift invariant spaces. Studia Math 160:231-248

Chibani Y, Houacine A (1998) Multiscale versus multiresolution
analysis for multisensor image fusion. In: The European
Association for Signal Processing (EURASIP)

Christensen O (2016) An introduction to frames and Riesz bases, 2nd
edn. Applied and numerical harmonic analysis. Birkhéuser,
Basel

@ Springer

Dahlke S (1994) Multiresolution analysis and wavelets on locally
compact abelian groups, wavelets, images, and surface fittings,
pp 141-156

Daubechies 1 (1992) Ten lectures on wavelets. CBMS-NSF regional
conference series in applied mathematics, vol 61. Society of
Industial and Applied Mathematics, Philadelphia

Feichtinger HG (1979) Banach convolution algebras of functions II.
Monatsh Math 87(3):181-207

Feichtinger HG (1977) On a class of convolution algebras of
functions. Ann Inst Fourier (Grenoble) 27(3):135-162

Feichtinger HG (1981) On a new segal algebra. Monatsh Math
92:269-289

Folland GB (1995) A course in abstract harmonic analysis. CRC
Press, Boca Raton

Folland GB (1984) Real analysis. Modern techniques and their
aplications. Wiley, New York

Galindo F, Sanz J (2001) Multiresolution analysis and radon measures
on a locally compact Abelian group. Czech Math J 51:859-871

Ghaani Farashahi A (2017) Abstract harmonic analysis of wave
packet transforms over locally compact Abelian groups. Banach
J Math Anal 11(1):50-71

Ghaani Farashahi A (2017) Multivariate wave-packet transforms.
Zeitschrift fiir Analysis und ihre Anwendungen (J Anal Appl)
36(4):481-500

Hernandez E, Weiss G (1996) A first course on wavelets. CRC Press,
Boca Raton, FL

Jeng Y, Lin CH, Li Y W, Chen CS, Huang H H (2009) Application of
multiresolution analysis in removing groundpenetrating radar
noise. Frontiers + Innovation - CSPG CSEG CWLS Convention

Jia RQ, Micchelli CA (1991) Using the refinement equation for the
construction of prewavelets II: powers of two. In: Laurent PJ, Le
Meéhauté A, Schumaker LL (eds) Curves, surfaces. Academic
Press, New York, pp 209-246

Jia RQ, Micchelli CA (1992) Using the refinement equation for the
construction of pre-wavelets V: Extensibility of trigonometric
polynomial. Computing 48:61-72

Kamyabi Gol RA, Raisi Tousi R (2010) Some equivalent multires-
olution conditions on locally compact Abelian groups. Proc
Indian Acad Sci (Math Sci) 120(3):317-331

Kamyabi Gol RA, Raeisi Tousi R (2008) The structure of shift
invariant spaces on a locally compact Abelian group. J Math
Anal Appl 340:219-225

Kaniuth E, Kutyniok G (2008) Zeros of the Zak transform on locally
compact Abelian groups. Proc Am Math Soc 126:3561-3569

Lang WC (1996) Orthogonal wavelets on the Cantor dyadic group.
SIAM J Math Anal 271:305-312

Madych WR (1992) Some elementary properties of multiresolution
analyses of L?(R"). In: Chui CK (ed) Wavelets: a tutorial in
theory and applications. Academic Press, New York, pp 259-294

Mallat SG (1989) Multiresolution approximations and wavelet
orthonormal bases of L*(R). Trans Am Math Soc 315:69-87

Meyer Y (1990) Ondelettes et Opérateurs I: Ondelettes. Hermann,
Paris

Mohammadian N (2017) Using a refinable function for the construc-
tion of multiresolution analysis in Lz(G). In: 5th Seminar on
harmonic analysis and applications, 18-19 Jan, Ferdowsi
University of Mashhad, Iran, pp 112-115

Mohammadian N, Kamyabi RA, Raisi Tousi R (2016) A character-
ization of Riesz family of shifts of functions on LCA-groups.
Ann Funct Anal 7(2):314-325

Papadakis M, Gogoshin G, Kakadiaris IA, Kouri DJ, Hoffman DK
(2003) Non-separable radial frame multiresolution analysis in
multidimensions and isotropic fast wavelet algorithms. SPIE Int
Soc Opt Eng 5207:631



Iran J Sci Technol Trans Sci (2022) 46:945-953 953

Ron A, Shen Z (1995) Frames and stable bases for shift invariant Zhou DX (1996) Stability of refinable functions, multiresolution
subspaces of L?(R). Can J Math 47:1051-1094 analysis, and Haar bases. SIAM J Math Anal 27:891-904
Siebert E (1986) Contractive automorphisms on locally compact
groups. Math Z 191:73-90

o — @ Springer



	Multiresolution Analysis from a Riesz Family of Shifts of a Refinable Function in L2(G)
	Abstract
	Introduction
	Preliminaries and Related Background
	Propositions
	Multiresolution Analysis
	Funding
	References




