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Abstract

In this paper, we discussed a regular summability method called ¢ -statistical convergence. Two new sequence spaces md
and s? are also obtained. A condition for a g-statistically convergent sequences to be g-Cesaro summable is given.
Necessary and sufficient conditions for real sequences and the sequences in m? to be g-statistical convergent are obtained.
Further, we prove that the set of all g-statistical convergent sequences is dense and of first Baire catagory in the Fréchet

metric space and s7(L) is a set of second Borel class in the space md.
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1 Introduction and Preliminaries

Till 19th century, mathematician had little temptation to
use divergent series. According to Abel the divergent series
is the interpretation of the devil and it is shameful to base
on them any demonstration whatsoever. However, in 1890,
Cesaro published a paper about the multiplication of series,
which Hardy demonstrated first time that a theory of
divergent series was formulated explicitly and it was kind
of a start for proper summability theory. Cesaro’s idea
proved to be very fruitful, infact one of the first few
applications was the beautiful Fejer theorem, which was
developed by applying Cesaro’s idea to Fourier series. The
simplest form of Cesaro idea is given in Theorem 1.1
below.
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Theorem 1.1 The limit of sequence (x,) can be defined to
be limy,, where y, is the sequence of Cesdro means of the
n

sequence (x,) given by

1 n
yn:n+];xi-

(1.1)

Different summability methods have been introduced
over the years. But the most efficient one would be those
which are regular, i.e., the limit of a convergent sequence
or sum of a series will not be changed if it exists. Toeplitz
(1911) gives the following conditions for an infinite matrix
to be regular.

Theorem 1.2 A matrix A = (ay,) is regular if and only if
the following holds,

() lim a@m =0, n=0,1,2, ...,

(i) lim (Zamn> -1,
m=00 \ 5=0

o0
(i)  sup > |amm| <oo.
m n=0
Statistical convergence is also a type of regular
summability method that gives statistical limit to some
divergent and all convergent sequences. The idea of sta-
tistical convergence was introduced by Fast (1951) and
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Steinhaus (1951) in 1951 and later developed by Schoen-
berg (1959). See also Fridy (1985) and Connor (1988).

A sequence x = (x) is said to be statistically convergent
to a number L , if for a given € > 0,

lim1|{k§n S — L| > €} =0,
non
where the vertical bar indicates the number of elements in a
set.
Freedman and Sember (1981) showed that each non-
negative regular matrix A can be associated by a density

function

04(K) = liminf(Ayy),. (1.2)
n—oQ

The g-calculus emerged as a very useful tool and a very

fruitful connection between Mathematics and Physics. We

recall here some basic definitions and notations about the

g-calculus Kac and Cheung (2002). We take C as the set of

complex numbers and N the set of positive integers.

Definition 1.1 Let ¢ € C\ {0, 1}. Then, the g-number is
defined by

1— q()

—L (pec\iop
0l,=4q1 (0=0)

r—1

Y =1+q+¢+--+q (0eN).

s=0

(1.3)

Definition 1.2 For number ¢ € C\ {0, 1}, the g -factorial
is defined by

1 (0 =0)

(0 € N). (14)

On replacing A by C; and liminf by an ordinary limit in
(1.2), we obtain the well-known natural density function
and statistical convergence. Aktuglu and Bekar Aktuglu
and Bekar (2011) gives the most suitable g-analog of
Cesaro matrix and also showed that it is regular. Replacing
A by this new g-Cesaro matrix they obtained ¢ -density and
defined g-statistical convergence.

Definition 1.3 Let x = (x;) be a number sequence. It is
said to be Cesaro summable to L, if

1 n
lim— =L

52, €\ Springer

Definition 1.4 The g-analog of Cesaro matrix is given by
Ci(q") = (ci(g")), where
k

q .
, i k<n,
culd) = In+1], (1.5)
0, otherwise.

Definition 1.5 Let K C N. For ¢ > 1, the g-density of K
is given by

04(K) = ocy(K) = lim inf(Cl0),

Definition 1.6 A number sequence x = (x;) is said to be g-
statistically convergent to L, if for every € > 0, ¢,(K) =0,
where K = {k:k<n:|x — L| >¢€}.

The set of all g-statistically convergent sequences is
denoted by S ¢. For g-statistically convergence for double
sequences, see Cinar and Et (2020). Recently, the notion of
g-statistical convergence has been applied in Approxima-
tion Theory Al-Abied et al. (2021), Ayman Mursaleen and
Serra-Capizzano (2022), Cai et al. (2022), Chen et al.
(2022).

In this paper, we discuss g-statistical convergence using
g-Cesaro matrix given by Aktuglu and Bekar in Aktuglu
and Bekar (2011). We have extended some results of sta-
tistical convergence of Salat Saldt (1980) and Schoenberg
Schoenberg (1959). We have given necessary and suffi-
cient condition for a sequence to be g -statistical conver-
gent. We have also shown that the set of all g -statistically
convergent sequences is dense and of first Baire catagory in
the Fréchet metric space. We define and study two new
spaces m? and s? as g-analogs.

2 Main Result

Proposition 2.1 If A and B are two subsets of N such that
A C B, then 5,(A) < 0,4(B).

Proof Since A C B,
qkfl
84(A) = liminf > "< —
n—oQ [n]q
k—1

< liminf YT = 5,(B).
s £ [n],

Proposition 2.2 IfA C N, then 6,(A) + 9,(A°) = 1.

Lemma 2.1 If x = (x) is g-statistically convergent to L
and (xi) is bounded, then x is q-Cesdro summable to L.
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Proof Let x = (x;) be g-statistically convergent to L.
Then, for every ¢ > 0

S,(K) = d,({k : [ —L| > €}) =0, or

Also, since x is bounded, there exists M > 0 such that

| <M, VkeN.

For a given € >0, let N, = [{1 <j<n:|¢ 'x;| > €}| for
fix g. Without loss of generality we may assume L = 0.
Now,

n

Z Clllk (qk)xk =

k=1

n_ k-1

.
2 [l

k=1

X1+ +qis++q

[],
1 2 n—1
< x|+ lgx| + g7 xs |+ +|g" X
[n],
M _ € _
:W Z qk 1+W Z qk 1.
9 k<n:|x|>e qk<n:|xi|<e

(2.1)

when n is very big, the right hand side will be less than 2e.
Hence, x is g-Cesaro summable to L.

Lemma 2.2 [f (x;) is g-statistically convergent to L and
fx) is continuous at x =L for all x € R, then f(x;) is
q-statistically convergent to f(L).

Proof Assume that x = (x;) is g-statistically convergent to
L. Let {K. =k : |xy — L| > €}. Then for every € > 0,
¢!
lim inf —=0.
n—oo ];K [n]q

Since f(x) is continuous at x = L, for a given e > 0,
36 > 0 such that

If(x) —f(L)| <e whenever |x — L| <.
Thus,

() — F(L)] > € implies x — L] > .
In particular,

[f (xx) = f(L)| > € implies |x; — L| > .

Therefore,

{k < |f(xx) = f(L)| =€} C {k: |xx — L| =6}
Using Proposition 2.1, we get

Og({k = If (xe) = f(L)]
>e}) <o,({k: | — L[ = 3})

So, f(xx) is g-statistically convergent to f(L).
Theorem 2.1 The sequence x = (xi) is g-statistical con-
vergence to L if and only if for each r € R

111’1’1 L (eirx| +qeirxz + _|_qn—leirx,,> — eirL.
w i,

(2.2)

Proof of necessity. Indeed ¢ is a continuous function at
a fixed value of r. To prove the necessity, let’s take f(x) =
e™ in Lemma 2.2. Then, we get that f(x;) = €™ is g-
statistically convergent to f(L) = e"".

Since (™) is a bounded sequence and it is a g-statis-
tically convergent to e’’, using Lemma 2.1, (") is g-
Cesaro summable to e or

lim i (eirxl + qeirxz 4 qnfleirxn) _ eirL.

n—o00 [n q
Proof of sufficiency. To show that for r € R,

1 . . . .
li = (im irx; . n—1 irx, — irL
I G (€7 ) =
implies that g-stat x; = L, it suffices to show that it holds
for L = 0. From Eq. (2.2) we get

lim W (ezr(xl —L) + qezr(xsz) 4ot qnflezr(x,,fL)) —1.
q

We may prove that g-stat(xy — L) = 0. But g-starL = L.
Adding these two we get the desired result.Now, we
assume that

. 1 . . o
lim [n_ (ezrxl +qeer2 4. +qn leuxu) — 1’ (23)
q
and will show that
1
lim inf —— Z qk_lxk =0, (2.4)

" [n}‘l k:lxi| > €

or x is g-statistically convergent to 0. Let us take a con-
tinuous function M(x) Schoenberg (1959), where

52, €\ Springer
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0, if x< —1,
1+x, if —1<x<0,
M(x) = 2.5
() 1—x if0<x<l, 23)
0, if x> 1.

With different approaches, for instance by Cauchy’s cal-

culus of residues, one can show that for
(—oo<x<o0), M(x) allows the following integral
representation,
1 [ [sinr/2\?,
M _ X 2.6
&) 2n/oo( /2 >e ' (26
Let r = €l in Eq. (2.6),
> [sinel/2\*
M) = - / (Sml; 2/ > ldl.
T €
T (2.7)

M/ =5 / h <Sizr€/r2/2)2ei"’dr.

Since Eq. (2.7) is an absolutely convergent integral, i.e., in
the sense of Lebesgue we can write

ot o= [ () i e e

If Eq. (2.2) holds, then for all real r and n

Liqkfleixkr <1
nly =

Using the Bounded Convergence Theorem we obtain

/: (sizre/r2/2)2dr = M(0) = 1.

lim —qu M(x/e) =

n—o0 n]
(2.8)
> d T M(x/e)
k=1
= {M(xi/e) +61M(xz/ ) ~-+q"_1M(xn/€)}
k<n:|xg|>e€ k<n\xk\<s
(2.9)
For  |x|>e, M(x/e)=0 and for |x|<e,

1
M(xp/e) =1— /e < 1. On applying this observation in

Eq. (2.8) we get

S ¢ M) <
k=1

Then,

Z qk—l.

k<n:lx|<e

(2.10)

22, Q) Springer

1 & 1

lim — Y ¢ 'M(x/e) < lim — Z g1

oo [n]q k=1 oo [n]q k<n:lx| <e
(2.11)

From Egs. (2.8) and (2.11),

lim — ¢ 1>1.
e [n]‘ikgn:\xk|<€
So,
liminf —— ¢ '>1. 212

noo [1] D (2.12)

9 k<n:x|<e

Equation (2.12) gives the g¢-density of the set
{k<n:|x;|<e}, so it cannot be greater than 1. Using
Proposition 2.2 we established Eq. (2.4). This completes
the proof of our theorem.

Now we will show some results between the set of g-
statistically convergent sequences and Fréchet metric space
of all real sequences. Let s denote the Fréchet metric space
of all real sequences with the metric d,, where

| \Xk—yk|
dn: Ar1 1.
kZ;Zkl—ka—

W (2.13)

for all x = (x),y = (») € s

Theorem 2.2 The set of all g-statistically convergent
sequences is dense in s.

Proof Let S(C7) be the set of all g-statistically convergent
sequences. Let x = (x;) € S(CY) and y = (yx) be the
sequence of real numbers differ from x only in a finite
number of terms. Obviously y € S(CY). As s is a complete
metric space with respect to the translation-invariant metric
given by Equation (2.13), S(CY) is dense in s. O

Lemma 2.3 (Salar) Saldt (1980) Let g (k=0,1,2,...) be
a complex valued continuous functions on R and ¢y, ¢, be
two distinct complex numbers such that for each suffi-
ciently large k, we have c1, c; € gx(R). Let (ayu) be a
triangular matrix with the following properties:
(P1) For each fixed k, we have lim a, = 0;

n—o0o

P2) i S = 1.

n—oo k=0

Then the set s; of all such x = (&) € s for which there

exists a finite limit hm Z angi(&y) is a set of the first
=00 k=0

Baire category in s.

Theorem 2.3 The set of all g-statistically convergent
sequences is a set of first Baire category in the space s.
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Proof Let s be the set of all x = (x;) in s such that the 1 & 1 &

.. A4 r/ r - k—1 lrxk k—1 zrxk 221
limit () ], 4 q n] Z q (2.21)

lim — (eixl + qeixz R qnfleixn) (214)
R,
is finite. In Lemma 2.3, let’s put g,(r) = ¢” (n=1,2,...)
and

¢!

71 lf k< n,
(@m) = C = [”]q (2.15)

0, otherwise.

It is clear that g-Cesaro matrix CY satisfies properties P,
and P,. Also,

n qkfl
lim -
fm >

1 . . .
e = lim — (™ 4 ge™ 4 ... + ¢"e™)
Sy

(2.16)
is finite. Hence s is a set of first Baire category in s. But
Theorem 2.1 tells us that the set of all g-statistically con-
vergent sequence is a subset of the space s, which con-
cludes that the set of all g-statistically convergent

sequences is a set of first Baire category in the space s,
which completes the proof. O

Let us denote a subspace md of the space s by
1

ml = {(xk) ar »:

Also for L € R, let us denote the set s7(L) by

qu x| is bounded} (2.17)

SI(L) = {(x) € s : (x) is g-statistically convergent to L}.

(2.18)

In our next result, we will show that s4(L) is a set of second
Borel class in the space m{.

Lemma 2.4 The sequence x = (x;) € m? is g-statistically
convergent to L if and only if for each r € Q

lim — irx| + elrx» N nfleirx,l _ eirL.
el [n]q ( q q )

(2.19)

Proof Let r € Q. Being a rational number, r is also a real
number and hence the necessary part of theorem holds
according to Theorem 2.1.

For the sufficient part, let Equation (2.19) hold for each
r € Q. We shall prove that for each ' € R
lim L eir’xl + eir’xz + + n—1 irx,\ __ irL
Jim [n q ..t+q e =e . (2.2())

q

From this, x = (x;) will be g-statistically convergent to L
according to Theorem 2.1. For ¢ € R, let

After squaring and then taking square root of both sides of
Equation (2.21) we get

|A2(r,r) qu 1\/ ((cos xi — cos rx) + (sinr'xy — sinrxy)”)

41k0

Z = 1\/4§1n

‘IkO

On applying Mean Value Theorem we get
ARG )| < TIV—rIZq" e

Since (x;) is a sequence in m?, there exists a K > 0 such
that

1 n

q 'l <K. (2.22)
[, =
Hence,
lA9(F )| < V2K|r — 7| (2.23)
RN k—1 ir'xy IS k—1 irx; q(
R q e = — q e —|—An(r,r). (224)
[, = I, =
L - qkfleir'xk _ eir’L
[n], =
1 n ) ) ] )
<|— qkfletrxk _ + el — elr’L + AZ(F’,F) ]
nl, =
(2.25)

For a given € > 0, from Eq. (2.19) there exists an np € N
such that

1 &
E qkflezrxk _ euL
nl, =5

for each n>ny. Also from Equation (2.232.242.25) and
using the continuity of exponential functions we can
choose a rational number r such that

€
S,

5 (2.26)

s < (2.27)
and
irL ir' L €
—e <-. (2.28)
4
Hence
1 - k—1 ir'x; ir'L
— q ¥ <e (2.29)
nl, =

52, €\ Springer
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for each n > ng.
Since ¥’ was an arbitrary real number, we directly get
our desired result using Theorem 2.1. O

Theorem 2.4 The set s9(L) is a set of second Borel class in
the space md.

Proof Let r € Q. Then from Lemma 2.4, we can write

[o.ele oRe ]

s =NNU U M@, (2.30)
re@i=1j=1n=j+1
where
. 1 - irxg irL 1
M(n,i) = qx=(x) e ml: —Ze F—e™ <=
[, = L
(2.31)

But for each n, i in N, M(n, i) is closed in mZ. Hence, we
directly get our result from Equations (2.30) and (2.31). O
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