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Abstract
A new blind signature scheme is proposed which is characterized in that it is based on a hidden discrete logarithm problem

defined in a finite commutative associative algebra. The used algebraic support represents a 4-dimensional commutative

associative algebra defined over the ground finite field GF(p), commutative group of which possesses 4-dimensional

cyclicity. The public key represents a triple of vectors contained in different cyclic subgroup of the multiplicative group.

Correspondingly, three different blinding factors are used to insure the anonymity property of the introduced blind

signature protocol.

Keywords Information security � Post-quantum cryptography � Blind signature � Finite associative algebra �
Commutative algebra � Multi-dimensional cyclicity

1 Introduction

Digital signature (DS) schemes are widely used in infor-

mation technologies for solving different tasks of insuring

information security (Rivest et al. 1978, ElGamal 1985). A

particular type of the signature schemes, called blind sig-

natures (Chaum 1983, Chaum 1988), represent a special

interest for application in electronic cash systems and in

electronic secret-voting systems. Specific requirements to

the blind DS protocols are: (1) the signer has no access to

the document during the procedure of forming the signa-

ture; (2) the signer does not have the ability to find a

correlation of the signed document with the act of signing

(anonymity or untraceability requirement).

A variety of different known DS schemes can be used to

satisfy the first requirement. To do this, it is enough to

accept the agreement that the signature to the document is

formed as a signature to the hash function calculated from

the document. The first requirement is a necessary condi-

tion for the feasibility of the second requirement. To

implement a DS protocol satisfying the second requirement

a specific method is used, that consists in using a blinding

factor (or factors) during the process of the signature

generation.

The participants of a blind DS protocol are the signer

and the requester (client) who has prepared some electronic

document for signing. Protocols of such type are supposed

to be used in information technologies where the signer

performs signing of many documents provided by many

different clients. The intention of the requester is to obtain

a genuine signature of the signer to the document in such a

way that in the future, when the signed document is pre-

sented to the signatory, the latter will not be able to identify

which of the clients is associated with this document.

The first blind signature protocol (Chaum 1983) was

developed on the basis of the RSA signature

scheme (Rivest et al. 1978) that is based on the computa-

tional difficulty of the factoring problem (FP). Subse-

quently, blind DS protocols based on the computational

difficulty of the discrete logarithm problem (DLP) have
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been proposed (Camenisch 1995). In the first case the

anonymity of the requester is ensured by his introducing

one blinding factors into the blind signature. In the second

case the anonymity is ensured by requester’s introducing

two blinding factors into the blind signature. The protocols

are designed so that after receiving a blind signature from

the signer, the requester can possibility to remove the

blinding factors, thereby obtaining a genuine signature.

Like in the case of modern DS standards and other DS

schemes of wide use, which are based on computational

difficulty of FP and DLP, the said blind signature protocols

will be insecure in coming post-quantum era (Yan 2014,

Ding and Steinwandt 2018) when quantum attacks will

become possible in practice. An attack on a cryptographic

scheme is called quantum, if it uses both the ordinary and

quantum computers. A cryptoscheme is called post-quan-

tum, if it performs efficiently on ordinary computers and

resists quantum attacks.

Post-quantum cryptographic algorithms and protocols

should be based on the computationally difficult problems

that are different from the FP and the DLP, since for

solving them there are known polynomial algorithms (Shor

1997, Smolin et al. 2013). Quantum method for solving FP

and DLP exploits (1) extreme efficiency of performing a

discrete Fourier transform of a periodic function taking on

values in an explicitly given finite cyclic group and (2)

reduction of each of the mentioned two problems to

problem of finding a period length of a periodic function

(Jozsa 1988, Ekert and Jozsa 1996).

A response to such a challenge in the field of applied

and theoretical cryptography was the announcement by the

US National Institute of Standards and Technology (NIST)

in December 2016 of a program of adopting post-quantum

cryptographic standards of public-key agreement and dig-

ital signature schemes by 2024 (NIST 2016). A worldwide

competition for the development of post-quantum public-

key cryptoschemes had been started as a core part of that

program (NIST 2020). The NIST program does not provide

for the development of post-quantum blind signature pro-

tocols. However, this task is quite important and

interesting.

The present paper is devoted to development of a

practical post-quantum blind signature scheme based on

computational difficulty of so called hidden discrete loga-

rithm problem (HDLP). Next Sect. 2 describes in brief the

concept of HDLP as a post-quantum cryptographic primi-

tive and finite associative algebras (FAAs) as algebraic

support of the HDLP-based public key cryptoschemes.

Section 3 introduces the initial HDLP-based signature

scheme suitable for transformation into a blind signature

scheme. A novel 4-dimensional FAA with 4-dimensional

cyclicity is used as algebraic support of the developed

signature scheme. Section 4 proposes a practical post-

quantum blind signature protocol using four blinding fac-

tors and a public key representing a triple of 512-bit inte-

gers. Section 5 presents discussion and Sect. 6 concludes

the paper.

2 Preliminaries

The HDLP appears to be one of attractive cryptographic

primitives for development of practical post-quantum

public-key cryptoschemes. On the base of the HDLP,

public-key agreement protocols (Kuzmin et al. 2017,

Moldovyan-Dmitriy 2019), commutative encryption algo-

rithms (Modovyan-Dmitriy et al. 2020, Modovyan-Nikolay

and Modovyan-Alexander 2019), and DS schemes (Mod-

ovyan-Nikolay and Abrosimov 2019, Modovyan-Nikolay

and Modovyan-Alexander 2020) had been designed. To

reveal the concept of HDLP, consider the definition of

DLP.

The latter is usually set in a given finite cyclic group of

prime order q as finding the unknown value of the integer

x in the equation Y0 = G0x, where G0 is a generator of the

group. The HDLP is set in a finite algebraic structure

containing a very large number of different cyclic groups

as different subsets of algebraic elements. One of such

groups is selected at random and is secret, for example, the

cyclic group generated by an element G. A random non-

negative integer x\ q is generated and the value Y0 = Gx is

calculated. Then the values Y0 and G are mapped into the

elements Y = a(Y0) and Z = b(G), where a(�) and b(�) are
masking operations possessing property of mutual com-

mutativity with the exponentiation operation. Parameters of

the masking operations are secret. The HDLP consists in

finding the value x when the elements Y and Z are given.

Different forms of the HDLP are introduced for develop-

ment of different public key. In some particular forms of

the HDLP only one of the values Y0 and G is masked

(Kuzmin et al. 2017, Moldovyan-Dmitriy 2010).

Finite associative algebras are used as algebraic supports

of the HDLP-based cryptoschemes. An arbitrary vector A

of some finite m-dimensional vector space defined over a

finite field, for example over a ground field GF(p), can be

written as an ordered set of elements of the field GF(p):

A = (a0, a1, …, am - 1) or as a sum of its component:

A ¼
Pm�1

i¼0 aiei; where ei are basis vectors; ai [ GF(p) are

coordinated of the vector. A vector space in which, in

addition to the operations of addition of vectors and mul-

tiplication of a vector by a scalar, an operation of multi-

plication of two vectors (the vector multiplication) is

defined, which has the property of distributivity with

respect to the operation of addition, is called algebra.
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The vector multiplication operation A ¼
Pm�1

i¼0 aiei and

B ¼
Pm�1

j¼0 bjej is usually determined by the rule of mul-

tiplying each component of the first vector with each

component of the second vector, namely, by the following

formula:

A � B ¼
Xm�1

i¼0

Xm�1

j¼0
aibj ei � ej
� �

; ð1Þ

in which every product of the form ei � ej must be

replaced by a one-component vector kek, selected from the

so-called multiplication table of basis vectors (MTBV),

where k [ GF(p) is called structural constant. In the case

k = 1 only basis vector ek is indicated in the MTBV. Left

multiplier in the product ei � ej specifies the row and the

right one specifies the column, the intersection of which

indicates the cell containing the value kek.
Taking into account the formula (1) one can prove that

the defined vector multiplication operation is associative, if

the used MTBV is such that the following equality holds

true:

ei � ej
� �

� ek ¼ ei � ej � ek
� �

ð2Þ

for all possible triples (ei, ej, ek). Note also that the

defined vector multiplication and scalar multiplication by a

scalar w are mutually commutative:

w(A o B) = (wA) o B = A o (wB).
If the vector multiplication operation, defined by a

MTBV, has the properties of non-commutativity and

associativity, then the case of specifying a non-commuta-

tive FAA is realized. Most of the different known forms of

the HDLP had been proposed for non-commutative alge-

bras used as algebraic support of the developed cryp-

toschemes. The paper (Modovyan-Nikolay and Modovyan-

Alexander 2019) introduced a unified method for setting

non-commutative FAAs of arbitrary even dimensions m

C 2. The paper (Modovyan-Nikolay 2020) introduced

another unified method for setting other type non-com-

mutative FAAs of arbitrary even dimensions m[ 4. For

the case m[ 4, the latter method defines a commutative

FAA possessing multidimensional cyclicity. That 4-di-

mensional FAA was used in the paper (Minh et al. 2020) to

define for the first time the HDLP in commutative algebras.

The concept of multidimensional cyclicity was proposed in

(Modovyan-Nikolay and Modovyanu-Peter 2009) as fol-

lows: a commutative finite group generated by a minimum

generator system containing l C 2 elements of the same

order is called a group possessing l-dimensional cyclicity.

In present paper another form of the HDLP is set in a

commutative FAA for developing a post-quantum signa-

ture scheme that is suitable for developing on its base a

post-quantum blind signature protocol. Like in the case of

the DS scheme from (Minh et al. 2020), the proposed form

of the HDLP exploits the multidimensional structure of the

commutative FAA used as algebraic support. However, the

proposed form implements another criterion of post-quan-

tum security than that implemented in (Minh et al. 2020).

This difference gives possibility to design a signature

scheme that is free from doubling the verification equation.

Due to the last one has possibility to develop a HDLP-

based blind signature protocol, in addition the signature has

a smaller size. Besides, a new 4-dimensional commutative

FAA is used as algebraic support of the introduced HDLP

and developed signature schemes.

3 Initial Signature Scheme

3.1 The Used Algebraic Support

The 4-dimensional commutative FAA used as algebraic

support is defined over the ground field GF(p) by MTBV

shown as Table 1.

Proposition 1 The vector multiplication operation defined

by Table 1 is associative.

Proof Note that the Table 1 is described by the following

formula:

ei � ej ¼
eiþj�2mod4; if imod 2 ¼ 0;
ei�jþ2mod4; if imod 2 ¼ 1:

�

ð3Þ

Consider the product of arbitrary three vectors A, B and

C ¼
Pm�1

k¼0 ckek; which is performed in correspondence

with Table 1:

A � Bð Þ � C ¼
X3

i¼0

X3

j¼0

aibjei � ej

 !

�
X3

k¼0

ckek

¼
X3

i¼0

X3

j¼0

X3

k¼0

aibjck ei � ej
� �

� ek;
ð4:1Þ

A � B � Cð Þ ¼
X3

i¼0

aiei

 !

�
X3

j¼0

X3

k¼0

bjckei � ej

 !

¼
X3

i¼0

X3

j¼0

X3

k¼0

aibjckei � ej � ek
� �

:

ð4:2Þ

Table 1 Setting a 4-dimensional

FAA possessing multidimen-

sional cyclicity (k = 4)

� e0 e1 e2 e3

e0 ke2 e3 e0 ke1
e1 e3 e2 e1 e0

e2 e0 e1 e2 e3

e3 ke1 e0 e3 ke2
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The right parts in formulas (4.1) and (4.2) are equal, if

equality (2) holds true for all possible triples of indices

(i, j, k). Since the value of k does not influence on selection

of one of two formulas in the right part of the expression

(3), one should consider only the following four cases:

Case 1 i and j are even numbers.

ei � ej
� �

� ek ¼ eiþj�2 � ek ¼ eiþj�2þk�2 ¼ eiþjþk

ei � ej � ek
� �

¼ ei � ejþk�2 ¼ eiþjþk�2�2 ¼ eiþjþk

( )

)

) ei � ej
� �

� ek ¼ ei � ej � ek
� �

:

Case 2 i is odd; j is even.

ei � ej
� �

� ek ¼ ei�jþ2 � ek ¼ ei�jþ2�kþ2 ¼ ei�j�k

ei � ej � ek
� �

¼ ei � ejþk�2 ¼ ei�j�kþ2þ2 ¼ ei�j�k

( )

)

) ei � ej
� �

� ek ¼ ei � ej � ek
� �

:

Case 3 i is even; j is odd.

ei �ej
� �

�ek ¼ eiþj�2 �ek ¼ eiþj�2�kþ2 ¼ eiþj�k

ei � ej �ek
� �

¼ ei �ej�kþ2 ¼ eiþj�kþ2�2 ¼ eiþj�k

( )

)

) ei �ej
� �

�ek ¼ ei � ej � ek
� �

:

Case 4: i and j are odd numbers.

ei � ej
� �

� ek ¼ ei�jþ2 � ek ¼ ei�jþ2þk�2 ¼ ei�jþk

ei � ej � ek
� �

¼ ei � ej�kþ2 ¼ ei�jþk�2þ2 ¼ ei�jþk

( )

)

) ei � ej
� �

� ek ¼ ei � ej � ek
� �

:

Thus, for all possible triples (ei, ej, ek) the formula (2)

holds true, i. e., the vector multiplication operation defined

by Table 1 possesses the property of associativity. Propo-

sition 1 is proven.

Proposition 2 The 4-dimensional finite algebra set by

Table 1 is commutative.

Proof Note ei o ej = ej o ei, therefore, due to formula (1)

we have A o B = B o A. Proposition 2 is proven.

Proposition 3 The 4-dimensional FAA set by Table 1

contains a two-sided unit that is the vector E = (0, 0, 1, 0).

Proof Using formula (1) we have A � E ¼
P3

i¼0 ai ei � e3ð Þ ¼
P3

i¼0 aiei ¼ A and E � A ¼
P3

j¼0 aj e3 � ej
� �

¼
P3

j¼0 ajej ¼ A: Proposition 3 is proven.

A vector A for which the vector equation A o X = E has

a unique solution is called invertible vector. For a fixed

invertible vector A the solution is denoted as A-1 and is

called inverses of A. Evidently, A o A-1 = A-1 o A = E. To

obtain invertibility condition one can consider the vector

equation A o X = E can be reduced to the following system

of four equations with the unknown coordinates of the

vector X = (x0, x1, x2, x3):

a2x0 þ a3x1 þ a0x2 þ a1x3 ¼ 1;
ka3x0 þ a2x1 þ a1x2 þ ka0x3 ¼ 0;
ka0x0 þ a1x1 þ a2x2 þ ka3x3 ¼ 0;
a1x0 þ a0x1 þ a3x2 þ a2x3 ¼ 0:

8
>><

>>:
ð5Þ

The main determinant of the system (5) is

D ¼

a2 a3 a0 a1
ka3 a2 a1 ka0
ka0 a1 a2 ka3
a1 a0 a3 a2

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

¼ a2

a2 a1 ka0
a1 a2 ka3
a0 a3 a2

�
�
�
�
�
�

�
�
�
�
�
�
� a3

ka3 a1 ka0
ka0 a2 ka3
a1 a3 a2

�
�
�
�
�
�

�
�
�
�
�
�

þa0

ka3 a2 ka0
ka0 a1 ka3
a1 a0 a2

�
�
�
�
�
�

�
�
�
�
�
�
� a1

ka3 a2 a1
ka0 a1 a2
a1 a0 a3

�
�
�
�
�
�

�
�
�
�
�
�

¼ a2 a2 a22 � ka23
� �

� a1 a1a2 � ka0a3ð Þ þ ka0 a1a3 � a0a2ð Þ
� �

�a3 ka3 a22 � ka23
� �

� a1 ka0a2 � ka1a3ð Þ þ ka0 ka0a3 � a1a2ð Þ
� �

þa0 ka3 a1a2 � ka0a3ð Þ � a2 ka0a2 � ka1a3ð Þ þ ka0 ka20 � a21
� �� �

�a1 ka3 a1a3 � a0a2ð Þ � a2 ka0a3 � a1a2ð Þ þ a1 ka20 � a21
� �� �

¼ : : :

¼ k2 a20 þ a23
� �2�4ka20a

2
3 þ a21 þ a22

� �2�4ka20a
2
3

�2k a20 þ a23
� �

a21 þ a22
� �

þ 8ka0a1a2a3 ¼ : : :

¼ ka20 � a21 � a22 þ ka23
� �2�4 ka0a3 � a1a2ð Þ2:

The system (5) has unique solution, if D = 0, and has

no solution, if D = 0. Therefore, we have the following

invertibility condition:

ka20 � a21 � a22 þ ka23
� �2�4 ka0a3 � a1a2ð Þ2 6¼ 0 ð6Þ

and the non-invertibility condition

ka20 � a21 � a22 þ ka23
� �2¼ 4 ka0a3 � a1a2ð Þ2: ð7Þ

The set of all invertible vectors compose a finite com-

mutative group called multiplicative group of the algebra.

Proposition 4 If the structural constant k is a quadratic

non-residue, then the number of non-invertible vectors in

the 4-dimensional FAA set by Table 1 is equal to

g = 2p2 - 1 and the order of the multiplicative group of

the algebra is equal to X = (p2 - 1)2.

Proof Formula (7) sets the following two cases

ka20 � a21 � a22 þ ka23 ¼ 2ka0a3 � 2a1a2 ) k a0 � a3ð Þ2

¼ a1 � a2ð Þ2;

ka20 � a21 � a22 þ ka23 ¼ �2ka0a3 þ 2a1a2 ) k a0 þ a3ð Þ2

¼ a1 þ a2ð Þ2:

Since the structural constant k is a quadratic non-resi-

due, in the first case the equality holds true only if

a0 � a3ð Þ2¼ a1 � a2ð Þ2¼ 0: This gives p2 different sets of

coordinates a0, a1, a2, and a3, including (0, 0, 0, 0). In the

second case the equality holds true only if a0 þ a3ð Þ2¼
a1 þ a2ð Þ2¼ 0: This gives other p2 different sets of coor-

dinates a0, a1, a2, and a3, including (0, 0, 0, 0). Therefore,
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we have g = 2p2 - 1 and X = p4 - g = (p2 - 1)2.

Proposition 4 is proven.

Proposition 5 If the structural constant k is a quadratic

residue in GF(p), then the number of non-invertible vectors

in the 4-dimensional FAA set by Table 1 is equal to

g = 4p3 - 6p2 ? 4p2 - 1 and the order of the multi-

plicative group of the algebra is equal to X = (p - 1)4.

Proof Since the structural constant k is a quadratic resi-

due, formula (7) defines the following two cases

a0
ffiffiffi
k

p
� a3

ffiffiffi
k

p� �2
¼ a1 � a2ð Þ2) a0

ffiffiffi
k

p
� a3

ffiffiffi
k

p

¼ � a1 � a2ð Þ;

a0
ffiffiffi
k

p
þ a3

ffiffiffi
k

p� �2
¼ a1 þ a2ð Þ2) a0

ffiffiffi
k

p
þ a3

ffiffiffi
k

p

¼ � a1 þ a2ð Þ:
Sets of coordinates (a0, a1, a2, a3) satisfying four con-

ditions defined by the said two cases represent non-in-

vertible vectors. The following Table 2 shows the number

of vectors coordinates of which satisfy every of the

conditions.

Total number of non-invertible vectors equals to g ¼
p2 þ p2 þ 2p p� 1ð Þ2þ2p p� 1ð Þ2¼ 4p3 � 6p2 þ 4p� 1:

The order of the multiplicative group of the algebra is

equal to X = p4 - g = (p - 1)4. Proposition 5 is proven.

In the first case the equality holds true only if

a0 � a3ð Þ2¼ a1 � a2ð Þ2¼ 0: This gives p2 different sets of

coordinates a0, a1, a2, and a3, including (0, 0, 0, 0). In the

second case the equality holds true only if a0 þ a3ð Þ2¼
a1 þ a2ð Þ2¼ 0: This gives other p2 different sets of coor-

dinates a0, a1, a2, and a3, including (0, 0, 0, 0). Therefore,

we have g = 2p2 - 1 and X = p4 - g = (p2 - 1)2.

Like in the case of the commutative FAA introduced in

(Minh et al. 2020), the said group has a 4-dimensional (2-

dimensional) cyclicity, if the structural constant k is equal

to the quadratic residue (non-residue) in the field GF(p). In

the case of forming a group with 2-dimensional cyclicity,

its basis includes two vectors, each of which has order

equal to p2 - 1, and order of the group is equal to

(p2 - 1)2. Tables 3 and 4 present some examples of vec-

tors V having the maximum possible order for the

said two cases of the value of structural constant k, when
p = 14,377,379 (q = 7,188,689).

When developing the HDLP-based DS scheme in this

section, we will consider the case of 4-dimensional

cyclicity, when the basis of the multiplicative group C
includes four vectors, each of which has order equal to

p - 1, and order of the group is equal to (p - 1)4. It is also

assumed that k = 4 and the characteristic p of the field

GF(p) is equal to a prime number having the structure

p = 2q ? 1, where q is a 512-bit prime. The generation of

the required primes p is done by generating many different

512-bit primes q and testing the values p = 2q ? 1 for

primarily. Table 5 presents some examples of prime values

of q of different size for which the value 2q ? 1 is prime.

Table 2 Number of subsets of

non-invertible vectors for the

case when k is a quadratic

residue

Condition # of different combinations of coordinates (a0, a1, a2, a3)

a0
ffiffiffi
k

p
� a3

ffiffiffi
k

p
¼ a1 � a2 ¼ 0 p2 including (0, 0, 0, 0)

a0
ffiffiffi
k

p
þ a3

ffiffiffi
k

p
¼ a1 þ a2 ¼ 0 p2 including (0, 0, 0, 0)

a0
ffiffiffi
k

p
� a3

ffiffiffi
k

p
¼ � a1 � a2ð Þ 6¼ 0 2p(p - 1)2

a0
ffiffiffi
k

p
þ a3

ffiffiffi
k

p
¼ � a1 þ a2ð Þ 6¼ 0 2p(p - 1)2)

Table 3 Vectors V having maximum order equal to p - 1 (k is a

quadratic residue)

k V

4 (10,372,179; 12,177,379; 13,377,372; 11,379,279)

9 (10,012,378; 7,869,534; 11,375,847; 10,957,689)

25 (12,939,641; 7,188,689; 7,188,689; 1,437,738)

3 (12,546,341; 7,321,689; 7,172,509; 1,070,538)

5 (12,546,341; 7,321,689; 7,172,509; 1,070,538)

Table 4 Vectors V having maximum order p2 - 1 (k is a quadratic

non-residue)

k V

2 (9,070,865; 7,301,638; 7,130,538; 3,946,004)

7 (10,172,835; 9,301,504; 7,781,209; 3,559,757)

8 (10,182,970; 9,305,010; 1,155,039; 3,595,514)

11 (10,172,835; 9,303,505; 7,751,209; 3,555,757)

17 (13,132,970; 7,235,015; 1,355,089; 2,791,514)
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3.2 Signature scheme

To develop a HDLP-base DS scheme we use the primary

group of the order q4 contained in the multiplicative group

of the algebra. For generating a minimum generator sys-

tem\G1, G2, G3, G4[ , the probabilistic method

described in (Minh et al. 2020) can be used. That method

involves the generation of random four vectors of order q,

which with probability about 1 - q-1 form a minimum

generator system of the mentioned primary group. Suppose

that the four vectors G1, G2, G3, and G4 have been

produced.

Procedure for generating a public key in the developed

signature scheme includes the following steps:

1. Generate at random three non-negative integers x\ q,

w\ q, and l\ p, where l is a primitive element

modulo p.

2. Calculate the vector Y = G1
x � G2

w.

3. Calculate the vector Z = lG1 � G3
1/x.

4. Calculate the vector U = G2 � G3
-1/w.

The produced public key represents the triple

(Y, Z, U) of 4-dimensional vectors contained in three dif-

ferent cyclic subgroups of the primary group.

The signature generation algorithm is as follows:

1. Generate at random non-negative integers k\ q, and

q\ p.

2. Compute the integer t = kwx-1 mod q.

3. Compute the fixator R ¼ qGk
1 � Gt

2.

4. Compute the first signature element e = fh(M, R),

where fh is a pre-agreed 512-bit collision-resistant

hash function; M is a document to be signed.

5. Compute the second signature element

s = k - ex mod q.

6. Compute the third signature element

d = t - ew mod q.

7. Compute the fourth signature element

w = ql-s mod p.

This algorithm outputs the 2049-bit signature in the

form of three 512-bit integers e, s, d and one 513-bit

integer w.
The procedure for verifying the authenticity of the sig-

nature (e, s, d, w) to the document M is performed using

the public key (Y, Z, U) as follows.

The signature verification algorithm:

1. Compute the vector R� ¼ wYe � ZS � Ud.

2. Compute the hash value e* = fh(M, R*).

3. If e* = e, then the signature is accepted as genuine one.

Otherwise the signature is rejected as a false one.

Consider a signature (e, s, d, w) to a document M,

which have been correctly computed in full correspon-

dence with the signature generation algorithm. To prove

correctness of the developed DS scheme we show that the

said signature passes the verification procedure as a gen-

uine signature:

R� ¼ wYe � Zs � Ud

¼ ql�sGex
1 � Gew

2 � lsGs
1 � G

s=x
3 � Gd

2 � G
�d=w
3

¼ qGex
1 � Gew

2 � Gk�ex
1 � Gðk�exÞ=x

3 �
�Gt�ew

2 � G�ðt�ewÞ=w
3

¼ qGex
1 � Gew

2 � Gk�ex
1 � Gk=x�e

3 �
�Gt�ew

2 � G�t=wþe
3

¼ qGex
1 � Gew

2 � Gk�ex
1 � Gk=x�e

3 �
�Gt�ew

2 � G�k=xþe
3 ¼ qGk

1 � Gt
2 ¼ R

) fh M;R�ð Þ ¼ fh M;Rð Þ ) e� ¼ e

One should note that the owner of the public key

(Y, Z, U) has possibility to use an alternative method for

computing the signature, which is the same as the descri-

bed signature generation algorithm, except the steps 3 and

Table 5 Specially selected prime values of q

q (bit length of q) p

1,156,112,201 (32) 2,312,224,403

6,785,973,453,813,842,891 (64) 13,571,946,907,627,685,783

15,777,278,116,070,701 3,851,236,586,330,907,166,231 (128) 31,554,556,232,141,402,770 2,473,172,661,814,332,463

294,376,761,264,963,048,730,708,277,251

2,639,408,627,270,785,989,333 5,935,514,953,423,851,321,991,519

(256)

5,887,535,225,299,260,974,614,165,545

0,252,788,172,545,415,719,786,671

871,029,906,847,702,643,983,039

35,687,538,543,572,407,882,858,303,216,507

61,155,407,334,331,566,376,142,966,145,846

64,045,696,352,628,128,923,744,450,422,769

90,309,175,242,333,397,008,877,768,843,061

17,702,415,790,074,075,810,133,363 (512)

71,375,077,087,144,815,765,716,606,433,015

2,231,081,466,866,313,275,228,593,229

169,328,091,392,705,256,257,847,488,900

84,553,980,618,350,484,666,794,017,755,537

68,612,235,404,831,580,148,151,620,266,727
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7. The latter in the alternative signature generation algo-

rithm are as follows:

3. Compute the vector R ¼ qZk � Ut

7. Compute the fourth signature element

w ¼ qlk�s mod p:

Since Zk � Ut ¼ lkGk
1 � Gt

2, the alternative algorithm for

computing a signature performs correctly and allows one to

use only two 512-bit integers x and w and 513-bit integer l
as a 1537-bit private key instead of using five private

values x, w, l, G1, and G2 as 5641-bit private key.

Security of the described signature scheme is based on

the particular form of the HDLP that is supposedly hard

and can be defined as follows: for the given triple of vectors

(Y, Z, U) find the triple of integers (x, w, l) such that

Y ¼ l�xZx � Uw.

Security of the proposed signature algorithm Security

definition of the proposed signature scheme we formulate

as follows: to forge a signature is computationally

infeasible.

Like in the case of the Schnorr signature scheme (Sch-

norr 1991) the first signature element e is the hash-function

value computed from the document M to which the fixator

value R is concatenated and the right part of the verification

equation (indicated in item 1 of the signature verification

algorithm) is equal to R, if the signature is valid (genuine).

We suppose the hash function used in the proposed sig-

nature scheme is secure and possesses no weaknesses that

can be used to forge a signature. Therefore, a forging

algorithm is an algorithm that computes a valid signature

after computing the fixator value R and the hash value

e. The fixator value R is defined by the randomization

integers k\ q and q\ p.

Proposition 6 Existence of a polynomial algorithm for

forging a signature means existence of a polynomial

algorithm for solving the underlying HDLP.

Argumentation. The supposed forging algorithm uses no

weakness of the hash function, therefore, it works equally

well for different hash functions and different values of the

fixator R. Suppose the forging algorithm computes two

signatures (e1, s1, d1, w1) and (e2, s2, d2, w2) for two dif-

ferent hash functions, but the same value of the fixator R,

i. e., we have two different verification equations with the

same value of the left part. Therefore, one can write

R� ¼ w1Y
e1 � Zs1 � Ud1 ¼ w2Y

e2 � Zs2 � Ud2

) w1

w2

Ye1�e2 � Zs1�s2 � Ud1�d2 ¼ E

) w1

w2

G
x e1�e2ð Þ
1 � Gw e1�e2ð Þ

2 � ls1�s2Gs1�s2
1 �

�G s1�s2ð Þ=x
3 � Gd1�d2

2 � G� d1�d2ð Þ=w
3 ¼ E

) w1

w2

ls1�s2G
x e1�e2ð Þþs1�s2
1 � Gw e1�e2ð Þþd1�d2

2 �

�G s1�s2ð Þx�1� d1�d2ð Þw�1

3 ¼ E

)

w1

w2

ls1�s2 � 1 mod p

x e1 � e2ð Þ þ s1 � s2 � 0 mod q

w e1 � e2ð Þ þ d1 � d2 � 0 mod q

s1 � s2ð Þx�1 � d1 � d2ð Þw�1 � 0 mod q

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

:

If the value s2 - s1 is even, then repeat the forging

signature procedure for another fixator value (generate new

random values k and q and compute a new value of R),

until the odd value s2 - s1 is obtained. Then one can easily

get the following:

x ¼ ðs2 � s1Þðe1 � e2Þ�1
mod q;

w ¼ ðd2 � d1Þðe1 � e2Þ�1
mod q; and

l ¼ ðy�1
1 y2Þðs2 � s1Þ�1

mod p� 1 mod p

Thus, taking into account that operation of finding odd-

degree roots in GF(p), where p = 2q ? 1, has polynomial

computational complexity, one can conclude that a poly-

nomial algorithm for forging a signature is reducible to a

polynomial algorithm of solving the HDLP underlying the

introduced signature scheme.

One can note that the described security proof is based

on the ideas of the reductionist security proof (Pointcheval

and Stern 2000, Koblitz and Menezes 2007) that was

applied to the Schnorr signature algorithm (Schnorr 1991).

4 Blind signature protocol

Like in the known DLP-base signature schemes, in the

developed HDLP-based signature the main contribution to

the security is introduced by the exponentiation operations

performed during the procedures for generating the public

key, computing the signature, and verifying the signature.

However, the fundamental difference of the latter is the

following two points: i) when calculating the public key,

the exponentiation operations are performed in two dif-

ferent finite cyclic groups, and 2) these two groups are

hidden due to masking multiplications by the vectors G3
1/x
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and G3
-1/w belonging to the third cyclic group and masking

scalar multiplication by integer w. Due to the marked dif-

ferences of the developed DS scheme, the elements of the

public key (Y, Z, U) belong to three different cyclic groups.

The proposed signature verification equation R� ¼
wYe � ZS � Ud includes factors of four types, therefore in

the blind signature protocol based on the developed HDLP-

based signature scheme one should use blinding factors of

four different types: b, Ye, Zr, and Us. Thus, like in the case

of known DLP-based blind DS protocols (Camenisch et al.

1995, Pointcheval and Stern 2000), a requester participat-

ing in process of generating a blind signature is to execute

generation of four uniformly random integers b\ p, e\ q,

r\ q, and s\ q, followed by computing the said four

blinding factors.

The proposed HDLP-based blind digital signature pro-

tocol includes the following steps:

1. The signer generates two random non-negative integers

k\ q and q\ p and computes the integer t = kwx-1 -

mod q. Then he calculates the vector R = qZ k � U t.

Then he sends the value of R to the requester who wish

to obtain a genuine signer’s signature to the document

M (that is unknown to the signer).

2. The requester generates four uniformly random natural

numbers b\ p, e\ q, r\ q, and s\ q, calculates the

vector R ¼ bR � Y e � Zr � Us and the first element e of

genuine signature: e = fh(M,R).

3. The requester then calculates the first element of the

blind signature e = e - e mod q and sends it to the

signer.

4. Using his private key (x, w, l), the signer calculates

the second s, the third d, and the fourth w elements of

blind signature: S ¼ k � e x mod q, d ¼ t � e

w mod q, and w = q l�se mod p. He then sends the

values s, d, and w to the requester.

5. Using the value s, d, and w,the requester calculates the
second s, third d and fourth w elements of genuine

signer’s signature to the document M: s = s ?

r mod q, d = d ? s mod q, and w = w b.

Procedure for verifying a signature (e, s, d, w) to the

document M is executed using the public key (Y, Z, U) and

the signature verification algorithm of the initial HDLP-

based signature scheme (see Sect. 3).

The correctness of the described blind signature protocol

can be proved by substituting the signature for the input of

the specified verification procedure and demonstrating that

it passes verification as a genuine signature.

The proof of correctness of the blind digital signature

protocol based on computational difficulty of the HDLP:

R� ¼ wYe � Zs � Ud

¼ wbYeþe � Zsþr � Udþs

¼ bwYe � Zs � Ud � Ye � Zr � Us

¼ bR � Y e � Zr � Us

) fh M;R�ð Þ ¼ fh M;Rð Þ ) e� ¼ e

To demonstrate that that anonymity is provided, con-

sider a blind signature ðe, s, w) computed correctly and an

arbitrary genuine signature (e, s, d, w).

R ¼ wYe � Zs � Ud

R ¼ wYe � Zs � Ud

� 	

) R ¼ w

w
R � Ye�e � Zs�s � Ud�d:

Thus, the signatures e; s; d;w
� �

and (e, s, d, w) are

connected via some random values e ¼ e� e; r ¼ s� s

and s ¼ d � d; b ¼ ww
�1
, therefore, having a given gen-

uine signature, the signer is unable to distinguish the blind

signature associated with the given authentic signature.

5 Discussion

For the first time, the implementation of a HDLP-based

signature schemes on commutative FAAs was proposed in

the paper (Minh et al. 2020). The main common features of

the DS schemes presented in Sect. 3 and in (Minh et al.

2020) are:

(1) A commutative FAA multiplicative group of which

has 4-dimensional cyclicity is used as algebraic

support of the signature scheme;

(2) Computational difficulty of the HDLP is used to

provide resistance to quantum attacks.

These two DS schemes have a number of significant

differences, which are due to the use of different criteria for

ensuring post-quantum resistance. The signature

scheme from (Minh et al. 2020) satisfies the general cri-

terion of post-quantum resistance introduced in (Moldov-

yan-Dmitriy et al. 2020), which can be formulated as

follows: the signature scheme should be constructed so that

setting periodic functions based on public parameters of

the scheme, which contain a period with the length

depending on the value of discrete logarithm, is a com-

putationally difficult problem.

To satisfy the said design criterion, which is oriented to

ensuring resistance to the both known and possible future

quantum algorithm for finding a period length of periodic

functions, the signature scheme (Minh et al. 2020) uses the

method of doubling the verification equation, like that

described in (Moldovyan-Dmitriy et al. 2020). In that

method one of the signature elements represents an element

of the algebra. Because of the latter, the public key size and

signature size in (Minh et al. 2020) are quite large. Besides,
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it is not evident how to develop a blind signature protocol

on the base of the DS scheme from (Minh et al. 2020).

In the proposed signature scheme, we use a particular

design criterion of post-quantum resistance that is oriented

to ensuring security to the known quantum attacks (Shor

1997, Ekert and Jozsa 1996), that was used in (Moldovyan-

Nikolay and Moldovyan-Alexander 2019, Moldovyan-

Nikolay and Abrosimov 2019) for developing HDLP-based

signature schemes on non-commutative FAAs. One can

propose the following formulation of the used particular

criterion: a periodic function f set on the base of public

parameters of the signature scheme and containing a

period with the length depending on the discrete logarithm

value should take on values in different finite cyclic groups

contained in the algebraic support of the signature

scheme and no cyclic group can be pointed out as a

preferable cyclic group for the values of the function f.

You can specify a periodic function from three integer

variables i, j, and k with contains periods with the lengths

(hx-1, h, hxw-1) depending on the values of x and of

w : Fði; j; kÞ ¼ Yi � Z j � Uk. However, the values of the

function F(i,j,k) lie in many different cyclic groups con-

tained in the primary subgroup of order q3, which is gen-

erated by the minimum generator system\G1, G2, G3[ .

At the same time, it is impossible to distinguish any fixed

cyclic group, which with a significant probability includes

the values of the function F(i, j, k). This circumstance does

not allow one to apply the quantum Shor algorithm (Shor

1997) to find the length of a period of the function F(i, j, k)

and then to find the values of x and of w.

The signature schemes described in Sect. 3 is charac-

terized in the following features:

1. the signature scheme is set in a hidden commutative

group with 2-dimensional cyclicity, therefore the

discrete logarithm represents a pair of integers x and

w (the hidden group is set by secret vectors G1 and G2);

2. the public key elements Z and U represent the masked

forms of the vectors G1 and G2 representing a

minimum generator system of the hidden group (the

masking is performed as scalar multiplication by the

integer w and multiplications by the vectors G3
1/x and

G3
-1/w contained in the cyclic group generated the

vector G3 that together with the vectors G1 and G2

composes a minimum generator system of a primary

group of order q3 which has 3-dimensional cyclicity);

3. the powers of the masking factors G3
1/x and G3

-1/w are

chosen so that their contribution to the left part of the

verification equation is reduced to the multiplication by

the unit element of the algebra (this is also due to

specific generation of the signature randomization

integers k and t; note also that due to the used scalar

multiplication by the integer w the vectors Y, Z, and

U compose a generator system of some group

containing a primary subgroup possessing 3-dimen-

sional cyclicity and order q3).

The developed HDLP-based signature scheme and blind

signature protocol are candidates for practical post-quan-

tum public-key cryptoschemes due to sufficiently small

size of public key and signature (see Table 6).

The developed DS scheme and protocol use a novel

4-dimensional commutative FAA, however they can be

implemented using the 4-dimensional commutative FAA

described in (Minh et al. 2020).

6 Conclusion

A novel HDLP-based signature scheme on a commutative

FAA is proposed and used to develop a practical post-

quantum blind signature protocol. The advantages of the

introduced scheme and protocol are comparatively small

size of public key and signature.
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