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Abstract
Heusler shape memory alloys are important for many applications due to their typical magnetic and shape memory

behaviors. In this study, a Ni50Mn36Sn12Co2 (at.%) alloy was manufactured by arc-melting technique, then the ingot cooled

to ambient temperature in the natural atmosphere. Three different temperatures, including 500 �C (773 K), 700 �C
(973 K), and 900 �C (1173 K), was selected for aging the samples cut from the main ingot. The impact of aging on the

crystalline; microstructure; caloric; and magnetic properties of the alloys were investigated through x-ray diffraction

(XRD); scanning electron microscope; differential scanning calorimetric (DSC), differential thermal analysis, and thermal

gravimetric (TG); and physical property measuring system was investigated, respectively. The aging in different tem-

peratures led to the shift DSC curve, such that the martensitic phase transformation temperatures of the sample aged at

773 K increased, however, the transformation at 973 and 1173 K decreased compared to the as-casted alloy. The different

phase transformation behavior showed that the alloy aged at 773 K has the maximum elastic energy, enthalpy and entropy

change compared to the reset of samples, on the other hand, its crystallite sized obtained from XRD analysis comparably

diminished. Besides, the TG analysis revealed that the mass gain almost occurs at a temperature above 773 K, therefore the

magnetization of the alloys aged at 973 and 1173 K decreased due to a thin oxide layer formed on the surface of the alloys.
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1 Introduction

Magnetic shape memory alloys (MSMAs) are smart

materials that show shape change not only thermally, but

also by the applied magnetic field (Fukushima et al. 2009;

Liu et al. 2017). The MSMAs are the best well-known

Heusler alloys, which historically began in 1903 with the

discovery of Cu-Al-Mn alloys by Fritz Heusler (Bachaga

et al. 2019). The crystal structure of MSMAs can switch

between the austenite and martensite phases due to the

response to an external magnetic field (Yang et al. 2016).

In recent years, this unique alloy capability has been in

demand in various applications. They are especially used in

actuator and sensor applications. The MSMAs are divided

into two types according to their operating mechanism.

These alloys exhibit a magnetic shape memory effect

resulting from the rearrangement of martensitic variants,

which the magnetic shape memory effect (MSME) can

reach up to 10%, however, the blocking stress is quite low
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(Cong et al. 2010). High output stress levels and relatively

large MSME make these alloys extremely attractive (Cas-

tillo-Villa et al. 2013; Kamila 2013; Qu et al. 2018).

The MSMAs were more widely investigated after the

discovery of the magnetic field effect martensitic trans-

formation in NiMn- (In, Sn, Sb) alloys by Sutou et al. in

2004 (Sutou et al. 2004). Kaunima et al. determined that

the NiCoMnIn and NiCoMnSn polycrystalline alloys

exhibit strain recovery through martensitic phase transfor-

mation (Kainuma et al. 2006a, b; Kainuma et al. 2006a, b).

Among these MSMAs, NiCoMnIn alloys have been studied

most extensively, however, NiCoMnSn alloys are also

highly promising for practical applications because they

contain no expensive elements (Ito et al. 2007; Khovaylo

et al. 2010; Mañosa et al. 2008). For example, it is reported

that raising the cobalt content of nitinol increases the

number of martensite planes and, as a result, the value of

transformation temperatures (N. El-Bagoury 2014). El-

Bagoury et al. improved corrosion resistance of Ni52Ti48-

xCox (wt%) SMAs (Nader El-Bagoury et al. 2013).

Besides, Alqarni et al. obtained the same results by adding

Co into a NiTi (Alqarni et al. 2018).

Ito et al. studied Ni-Mn-In, Ni-Co-Mn-In, and Ni-Co-

Mn-Sn Heusler alloy systems and found that these SMAs

had two different magnetic behaviors, whereby at the

higher temperature they have ferromagnetic parent phase,

while at lower temperatures, they have paramagnetic

martensite phase. They confirmed that the magnetic field

induced inverse martensitic transformation (Ito et al. 2007).

The NiMnCoSn alloy system has many advantages, such as

non-toxic elements, inexpensive elements, and easy

manufacturing.

Along with these, MSMAs have a high magnetocaloric

effect and magneto-resistance (GschneidnerJr et al. 2005;

Huang et al. 2015; Zimm et al. 1998). By applying a

magnetic field, the magnetic entropy value of the materials

decreases, thus, the heat spreads isothermally from the

magnetic cooling system to the environment. When the

external magnetic field is removed, an opposite phe-

nomenon can be observed, such that the magnetic entropy

increases, and therefore, the material absorbs heat energy

from the environment. This effect is called the magne-

tocaloric effect. The magnetocaloric effect is defined as the

intrinsic property of a magnetic material (Shen et al. 2009;

Zimm et al. 1998). There are many MSMAs, however, the

Ni–Mn–Ga is one of the most studied alloys. The Substi-

tution of Ga with Sn is an economic alternative for Ni–Mn–

Ga alloys. For this, many studies have been carried out

recently on the development of NiMnSn and NiMnSn-

based alloys (Khalil-Allafi et al. 2002; Medika Kök et al.

2019a, b, c).

This study aims to improve the properties of NiMnCoSn

high temperature shape memory alloy by heat treatment.

For this purpose, three high temperatures were used for

aging the quaternary NiMnCoSn alloy to investigate calo-

ric feature, crystal structure, and magnetic behavior.

Additionally, some theoretical calculations were performed

to investigate the impact of aging on the different charac-

teristics of the alloy.

2 Experimental Procedure

A quaternary Ni50Mn36Sn12Co2 (at.%) magnetic shape

memory alloy was produced using an arc-melter in a

controlled atmosphere. The alloy was aged at 773, 973, and

1173 K for 1 h; the corresponding alloys were labeled as

NMCS1, NMCS2, and NMCS3, respectively, also the as-

received alloy was labeled as NMCS0. The TG/DTA

measurements were made at room temperature up to

1273 K for as-received Ni50Mn36Sn12Co2 (at.%) magnetic

shape memory. The results were used for determining the

high-temperature behavior of the alloy and to choose the

ideal heat treatment temperatures.

Figure 1 shows that there is no change in the DTA and

TG curves of the sample up to 530 �C, which is indicated

as the ‘‘change point’’, while after 530 �C there is a flat

peak in the heat flux curve and a rapid mass increase in the

TG curve. Based on this curve, the mass removal and the

temperature of 500 �C (before a new phase transformation)

and the temperature at which this transformation started

(700 and 900 �C) were chosen as the heat treatment tem-

peratures. After the aging process, the crystal structure

analysis of heat-treated NiMnSnCo alloys was performed

at room temperature with a Rigaku brand x-ray diffrac-

tometer with a scan rate of 6�/min. The microstructures and

elemental chemical analysis of the same alloys were

determined by SEM–EDX (scanning electron microscope –

energy dispersive x-ray analysis). The martensitic phase

transformation temperatures of non-heat-treated and heat-

treated alloys were measured with the heating–cooling rate

of 10 �C/min using a Perkin Elmer differential scanning

calorimeter (DSC) in nitrogen gas atmosphere. Finally, to

investigate the effect of heat treatment on the magnetic

properties of NiMnSnCo alloy, room temperature magne-

tization measurement was made using Quantum PPMS

(physical property measuring system) device in the mag-

netic field range of - 5 T to 5 T.

3 Results and Discussions

Figure 2 displays complete heating and cooling DSC

curves of the main and heat-treated samples taken between

223 and 423 K. Besides, the value of As (austenite start), Ap

(austenite peak), Af (austenite finish), Ms (martensite start),
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Mp (martensite peak), Mf (martensite finish), and the

enthalpy changes (DHheating and DHcooling) are given in

Table 1. In the temperature-varying heat flux curve of

NMCS0, a multiple phase change was observed during the

austenite transformation (indicated by an arrow in Fig. 2).

During both austenite and martensite transformation, it is

noticed that the transformation energies are low and the

peaks were broad. Similarly, it was observed the multi-

phase during austenite transformation and the single-phase

during martensite transformation in the NMCS1. It was

observed that the multiple phases disappeared at the alloy

heat-treated at 973 K and 1173 K. When the transforma-

tion temperatures in Table 1 are examined, a serious

decrease has been observed in the martensitic transforma-

tion temperatures with the increase of the heat treatment

temperature.

Figure 3 and 4 show the XRD patterns and the SEM micro-

images of the as-casted and aged NiMnCoSn alloy, more-

over the composition of the entire surface of the as-re-

ceived alloy is given Fig. 4e. There is no sign of pour or

micro-cracks on the surface of the alloys. The XRD mea-

surements were performed to determine the crystal struc-

ture and to specify matrix and second phases. On the other

hand, SEM images show a larger view of the microstruc-

tures. The main difference between these two measure-

ments was the sample preparation. Although both

measurements were carried out at room temperature, the

surface of the samples was grinded, smoothed, and finally

etched for accomplishing the SEM technique, while after

the aging process, no further modification was done on the

surface of the alloys for the XRD measurements. There-

fore, the SEM images give information about microstruc-

tures, such as twinned martensite (the inset of Fig. 4e),

whereas the XRD patterns reveal the formation of second

phases on the surface during aging in high temperatures.

The XRD peaks were indexed by the literature (Chen

et al. 2014; Elwindari et al. 2017; Mishra et al. 2015). In

this study, XRD diffractograms show the characteristic

peaks corresponding to the parent, martensite, and second

phases of the NiMnCoSn Magnetic shape memory alloy.

The NMCS3 aged at 900 �C (1173 K) has denser and

sharper peaks compared to the other samples, which indi-

cated new phases, such as oxides and other compounds

formed at the higher temperature. Normally, the probability

of forming an oxide layer and producing compounds from

the constituents is increased with increasing temperature at

elevated temperatures. Also, in high temperatures, nor-

mally some compounds get enough activation energy to

form. In the current study, the alloy starts to mass gain at

temperatures higher than 500 �C (773 K), thus the second

phases increased by increasing aging temperature. The

existing second phase, especially the oxidation film on the

surface, can influence alloy characterizations, such as

magnetic property (Kök et al. 2013).

To explore caloric properties of the alloys, thermody-

namics parameters, such as enthalpy change, entropy
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Fig. 1 The DTA and TG of the as-received and aged NiMnCoSn alloys
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change, and elastic energy was calculated by using ana-

lyzing the DSC results. The temperature hysteresis was

calculated by subtracting Ap and Mp (Dagdelen et al. 2020;

Qader et al. 2020a, b, c):

Temperature hysteresis ¼ Ap �Mp ð1Þ

Also, to find the thermally induced entropy change (DS)
during martensite (M) to austenite (A) phase transforma-

tion, the following equation was utilized (Dagdelen et al.

2019; Qader et al. 2020a, b, c; Tatar and Yildirim 2017):

DSM!A ¼
ZAf

As

dQM!A

To
¼ DHM!A

To
ð2Þ

Here To is the temperature where the Gibbs free energy

for forward and reverse phase transformation is equal to

zero, thus it is called equilibrium temperature and its value

can be found by the average value of martensite start and

austenite finish temperatures (Ercan et al. 2020; Moham-

med et al. 2020):

To ¼ ðMs þ Af Þ=2 ð3Þ
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Fig. 2 The DSC curves of the as-received and aged NiMnCoSn

alloys, where NMCS0 is as-received alloy; NMCS1, NMCS2, and

NMCS3 are codes for the aged alloys at 773, 973, and 1173 K for 1 h,

respectively

Table 1 The phase

transformation temperatures and

enthalpy changes of the phase

transformation of the as-

received and aged NiMnCoSn

alloys

Sample’s code As Ap Af Ms Mp Mf DHheating DHcooling DHaverage

(K) (K) (K) (K) (K) (K) (J/g) (J/g) (J/g)

NMCS0 337.1 353.1 380.1 325 309.5 296 0.91 2.77 1.84

NMCS1 328.2 343.3 362.2 332.6 315 298 4.72 4.54 4.63

NMCS2 321.9 335 353.6 306.9 293.1 278.8 4.83 3.14 3.99

NMCS3 303 322.4 352.1 308.6 286.8 270.5 5.47 1.60 3.53

Fig. 3 X-ray diffraction pattern of the alloys obtained at room

temperature
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Fig. 4 The SEM images taken at room temperature for the a as-received and aged NiMnCoSn alloys at b 773 K, c 973 K, and d 1173 K; The

EDS of the entire surface of the as-received alloy
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In Eq. (1), DH is the enthalpy change of the austenite

phase transformation. Its value normally can be obtained

using software, such as Origin program, through finding the

area under austenite phase transformation from As to Af

(Mediha Kök et al. 2019a, b, c; Qader et al. 2020a, b, c):

DHM!A ¼
ZAf

As

dq

dt

dT

dt

� ��1

dT ð4Þ

The Gibbs free energy (DG), as a thermodynamics

parameter, was found using subtracting equilibrium tem-

perature from martensite start and the value of DSM!A

obtained from Eq. (2) (Mediha Kök et al. 2019a, b, c):

DGA!M Msð Þ ¼ � To �Msð ÞDSM!A ð5Þ

Elastic energy (DEe) is the energy stored in martensite

variants (Balci et al. 2021; Tatar and Yildirim 2017). The

DEe primarily consists of elastic strain energy that is either

stored or lost as a result of lattice distortion when forming

or transforming martensite variants. Since some energy is

consumed due to frictional resistance during the shear

motion of the boundary, it causes various structural defects,

and a small part of it is lost when the sound wave propa-

gates, so this process is not reversible (Otsuka and Way-

man 1999). The elastic energy for reverse phase

transformation was calculated by (Acar et al. 2020; Kök

et al. 2020; Qader et al. 2019):

DEe ¼ Ms �Mf

� �
DSM!A ð6Þ

Other information extracted from the XRD pattern is the

crystal size (D) of the alloys obtained using the Scherrer

equation (Tatar et al. 2020) that depends on some param-

eters, including, wideness at half maximum (FWHM),

Bragg’s angle (h), the wavelength of the x-ray source (k).
The Scherrer equation is as follows (Mediha Kök et al.

2019a, b, c):

D ¼ Kk= B cos hð Þ ð7Þ

where B is the FWHM obtained by X-Pert High Score Plus,

the shape factor is chosen as (K = 0.9), and kKa Cuð Þ with a

wavelength of 1.5406 Å was used in the XRD

measurements.

The enthalpy change of austenite and martensite phase

transformations are listed in Table 1. Also, the temperature

hysteresis, entropy change of martensite phase transfor-

mation, equilibrium temperature, Gibbs free energy for the

forward phase transformation, and elastic energy was cal-

culated by using Eqs. (1), (2), (3), (5), and (6), respec-

tively. Table 2 lists the aforementioned parameters.

Figure 5 displays the calculated parameters to compare

them for the investigated samples. The NMCS0 sample has

the maximum value of the average DH for a complete

thermal cycle, entropy change, and elastic energy com-

pared to the other alloys. On the other hand, NMCS0 has

the lowest crystallite size that calculated using XRD

measured at room temperature.

Almost all parameters supported the magnetic behavior

of the Huesler alloys. Magnetic properties of a shape

Table 2 The calculated

parameters of the as-received

and aged NiMnCoSn alloys

Sample’s code Ap-Mp (K) To (K) DSA-M (J/kg.K) GE (J/kg) DGA-M (J/kg)

NMCS0 43.6 352.6 7.9 227.9 71.1

NMCS1 28.3 347.4 13.1 452.2 201.1

NMCS2 41.9 330.3 9.5 267.2 341.5

NMCS3 35.6 330.4 4.8 184.5 360.1

Fig. 5 Calculated parameters; a average enthalpy and b entropy

change of martensite phase transformation; c elastic energy; d crys-

tallite size
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memory alloy strongly depend on the matrix phase (Bruno

et al. 2018; Lázpita et al. 2016). Figure 6 shows the mag-

netization curves of the NiMnSnCo alloy at room tem-

perature before and after heat treatment. In these curves,

the applied external magnetic field and the change in the

magnetic field within the alloys can be observed. The

magnetic property of the NiMnSnCo alloy shows different

characteristics after heat treatment at 773 K. Similar

effects can be observed in the thermal analysis of the as-

casted and aged Heusler alloys. Normally, the grain size

increases with the aging, therefore, the resistance of the

domain walls to the magnetic dipole motions decreases

with the increase of the grain size, so it is expected that the

magnetization will increase (Dong and Gao 2016; Li et al.

2018; Öztürk et al. 2020). On the other hand, although the

magnetization value of the alloy increased at 773 K, it

diminished with increasing aging temperatures. While the

temperature increased the magnetic saturation point at

773 K, however a thin oxide layer formed after aging the

alloy at a temperature greater than 773 K, since the TG

result in Fig. 1 showed that the mass gain (i.e., oxidation)

starts at a temperature above 773 K. As a result, after aging

at 973 K and 1173 K, an oxide layer formed on the surface

of the NiMnCoSn alloy, thus, due to oxide formation, the

amount of magnetic saturation value diminished, which is

also supported by the reported articles. Regarding the

oxidation process on a ternary NiMnGa alloy, Kök et al.

stated that the magnetic saturation decreased as a result of

oxidation at high-temperature, whereby the reason was the

increase in the amount of oxide on the alloy (Kök et al.

2013).

4 Conclusion

This study aimed to investigate caloric, crystal structure,

and magnetic behavior of a quaternary NiMnCoSn mag-

netic shape memory alloy. Three different temperatures

were selected based on DTA/TG results. The aging at

773 K enhanced the magnetization of the alloy while

increasing the aging temperature to 973 and 1173 K

diminished the magnetic behavior of the Heusler alloy.

Additionally, the crystallite size calculated by the Scherrer

equation decreased from 23.4 nm to 30.5 nm by aging the

NiMnCoSn alloy, while it increased with increasing aging

temperature. On the other hand, the heat treatment affected

the caloric properties of the alloy, whereby the DSC curves

show different phase transformation temperatures. Addi-

tionally, the entropy change, enthalpy change, and specific

elastic energy of the NMCS1 aged at 773 K recorded the

maximum values compared to the as-received alloy,

NMCS2, and NMCS3 alloys. Consequently, by using a

prior DTA/TG measurement, an optimum aging tempera-

ture was found for aging the Ni50Mn36Sn12Co2 alloy.
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analysis. Kumruya AYDOĞDU, Sait KANCA, and Meltem
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Kök M, Pirge G, Aydoğdu Y (2013) Isothermal oxidation study on

NiMnGa ferromagnetic shape memory alloy at 600–1000� C.

Appl Surf Sci 268:136–140
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