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Abstract
In this paper, a new ant algorithmic approach is presented for solving n-job, m-machine permutation flow shop scheduling

problem. The main objective is to find a permutation of n given jobs, i.e., r: 1; 2; . . .; nf g ! 1; 2; . . .; nf g. This permutation

minimizes the maximum completion time of the schedule arising from r. An illustration of using the presented heuristic

algorithm for finding a good initial sequence of jobs is given. The proposed method is an ant-based approach to permu-

tation flow shop scheduling problem by the behavior of real ants, but it is different with the pheromone trail concept. The

presented model is compared against the one by NEH which has been considered the best constructive algorithm so far.

Regarding the quality of results, the superiority of the proposed method over NEH is demonstrated by computational

evaluation. The comparison is produced on generated random test problems. This comparison is drawn in domain of

feasible instances. It is easy to implement the produced method as a metaheuristic.
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1 Introduction

A permutation flow shop scheduling problem (PFSP) is

known to determine a sequence of n jobs that are processed

on m independent machines such that the makespan or

Cmax is minimized. Makespan is the distance in time that

elapses from the start of processing to the end.

Although the result of n� m PFSP for m ¼ 2 was

obtained in polynomial time, it was proved that problem is

NP-complete in the strong sense for m� 3 (Garey et al.

1976). Therefore, when m and n are increased, the methods

giving the optimum solutions are impractical. That is why

there is a preference for heuristic algorithm.

Initial sequences of jobs are derived in many heuristic

algorithms; thereafter, the heuristic approach consists of its

performance evaluation. Framinan et al. (2003) proposed

177 different initial orders in NEH-insertion approach. The

execution of Kurz and Askin (2004), Leung et al. (2005),

Allahverdi and Al-Anzi (2006), Alaykýran et al. (2007),

Kalczynski and Kamburowski (2008), Rad et al. (2009),

Ancău (2012), Malik and Dhingra (2013), Xu et al. (2014),

Liu et al. (2016), Brum and Ritt (2018), Nurdiansyah et al.

(2019) and Sauvey and Sauer (2020) heuristics was pro-

posed after obtaining suitable initial sequences.

A PFSP is supposed in conditions below:

1. All jobs are processed on the same machines.

2. Each job is processed at most once on machines

number 1 to m with the same order.

3. All jobs are independent and ready for processing in

zero time.

4. There is one-to-one correspondence between the pro-

cessing of jobs and machines.

5. Buffering storage between every two machines is

infinite.

6. There are not parallel machines.

7. Machines are available continuously.

8. The processing of jobs cannot pass each other.

Since all jobs are processed on the same machines, the

number of results for a n� m problem is reduced from

n!ð Þm to n!. Let aij be the processing time of ith job on jth
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Suppose the matrix of processing times is M ¼ aij
� �

n�m
.

Consider the following weighted directed graph (Fig. 1).

In a PFSP for minimizing the Cmax, a suitable ordering

of jobs is searched. According to the mentioned conditions,

the columns of matrix M or the graph cannot be replaced,

because columns are corresponding machines. The rows

must be permuted such that Cmax becomes minimized. The

weight of the vertex situated in ith row and jth column is

equal to aij, (i ¼ 1; 2; . . .; n) and (j ¼ 1; 2; . . .;m). The

weight of every path in the graph is the total of weights of

its vertices.

For every permutation denoted by p, p jð Þ is the job in

jth row. Then

Ci;p jð Þ ¼ max Ci�1;p jð Þ;Ci;p j�1ð Þ
� �

þ aip jð Þ;

Cmax ¼ Cm;p nð Þ:
In these relations, Cji is the completion time of ith job on

jth machine. It can also be written for every p and

j ¼ 1; 2; . . .;m

C0p jð Þ ¼ 0; C1p jð Þ ¼ a1p 1ð Þ þ � � � þ a1p jð Þ

Ci;p 0ð Þ ¼ 0; Cip 1ð Þ ¼ a1p 1ð Þ þ � � � þ aip 1ð Þ:

2 Bellman, Esogbue, Nabeshima Theorem

In every PFSP with the time matrix M ¼ aij
� �

, makespan is

equal to the weight of the heavy path that is traced between

a11 and anm in corresponding directed graph (Bellman et al.

2014).

According to this theorem, let every vertex aij be the

food with aij weight in the mentioned graph. An ant wants

to go from a11 to anm after collecting the heaviest foods

with knowing all the weight of aijs.

The objective is giving an order of rows in M or graph

such that the collected food be minimized.

Based on this intuition, the heavy entries must be out of

access. Indeed, whenever ant obtains food in a vertex, other

heavy foods get out of reach. Hence, if ant reaches aij, it

does not attain the vertex with less column and row num-

bers. In fact, there will be no loop. Therefore, as the fol-

lowing figure is shown, if the line that connects two

vertices has positive slope, ant does not receive both of

them (Fig. 2).

With due attention to this idea, the heavy entries are

considered and rows are permuted such that the line that

connects these vertices has positive slope. This is certainly

impossible for all vertices. In this situation, the best per-

mutation of rows is resulted from the amount of make-

spans. These are the motivation of the presented algorithm.

3 The Proposed Algorithm

All of the prior concepts lead to the following steps. These

steps will result in a good initial order of jobs.

1. The greatest entry in M is chosen, and the correspond-

ing row and column of it are deleted.

2. The above step is repeated on the rest of entries, and

the greatest chosen entries in total make a finite

sequence of m members.

3. All of m elected members in the last step are deleted in

M.

4. The loop is continued n times.

For each sequence of entries, m corresponding rows are

arranged. Suppose the sequence ai1j1 ; . . .; aimjm is the

resulted one in the above process. Since m� n and

j1; . . .; jm are distinct, j1; j2; . . .; jm is a permutation of

1; 2; . . .;m. The indices j1; j2; . . .; jm are distinct plus they

are not all of the 1; 2; . . .; n.

The rows ri1 ; . . .; rim are arranged such that the slope of

lines connecting each elected two entries is positive.

The furthest row is rih with jih ¼ m. The next row is rih�1

with jih�1
¼ m� 1, and it will be repeated in this manner

for the next rows until the last one being ri1 with ji1 ¼ 1.

Since the column numbers of elected entries in a group are

all of the numbers 1; 2; . . .;m, these entries can be

numerated in the from ai11; . . .; aimm. Hence, smaller row

means the row that is under the greater one.

A distinguished ordering among the rows of elected

entries has been constructed. But for every such ordering, a

value can be allocated. For determining the value of

ordering ril\rih , the profit of this ordering must be

checked. Based on Bellman’s theorem (2014), only the

bigger one in the aill, aihh is chosen. In the inverse ordering,
Fig. 1 The weighted directed graph of processing times
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both of entries can be chosen. Thus, the profit of this

ordering can be defined min aihh; aillf g. This means that the

inverse ordering, i.e., rih\ril has a disadvantage that is

equal to min aill; aihhf g. The negative of this number is

proposed as the profit of ril\rih ordering. Now for each

group that has been obtained, there are m rows with dis-

tinguishing ordering. Then, for every two rows in it, the

obtained profit is constructed from the order of them. In the

inverse ordering of these two rows, the profit becomes

negative. Therefore, the square matrix P ¼ pij
� �

is defined.

Every pij denotes the sum of ri\rj ordering profits P̂ij

� �

and rj\ri ordering disadvantages ^̂Pij

� 	
. Indeed, for every

two indices i and j, it is possible that ri and rj arise in the

some of the mentioned corresponding sequences. Clearly

pij ¼ �pji, Pij ¼ P̂ij þ ^̂Pij.

For every arrangement of rows in M that is obtained

from a permutation r: 1; 2; . . .; nf g ! 1; 2; . . .; nf g, matrix

P denotes the amount of correctness for place and order of

each row. For example, suppose there is rr ið Þ of M in ith

row. Then, the amount of correctness for place of rr ið Þ in ith

row is

pij ¼ pr nð Þr ið Þ þ � � � þ pr iþ1ð Þr ið Þ þ pr ið Þr i�1ð Þ þ � � �
þ pr ið Þr 1ð Þ; i ¼ 1; 2; . . .; nð Þ; j ¼ 1; 2; . . .; nð Þ:

Obviously pij ¼ 0 when i ¼ j.

4 Example for Constructing Matrix P

Let the processing times of four jobs on three machines be

as the following:
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Consider the lines connecting two entries of (59, 80, 44)

and other resulted sequences. The slopes of these must be

positive, therefore;

A ) r1\r3\r2 ) P̂13 ¼ min 50; 44f g ¼ 44;

P̂12 ¼ min 50; 89f g ¼ 50;

P̂32 ¼ min 44; 89f g ¼ 44 ) ^̂P31 ¼ �44; ^̂P21 ¼ �50;

^̂P23 ¼ �44

B ) r4\r2\r1 ) P̂42 ¼ min 36; 84f g ¼ 36;

P̂41 ¼ min 36; 62f g ¼ 36;

P̂21 ¼ min 84; 62f g ¼ 62 ) ^̂P24 ¼ �36;

^̂P14 ¼ �36; ^̂P12 ¼ �62

C ) r2\r4\r3

) P̂24 ¼ min 5; 14f g ¼ 5; P̂23 ¼ min 5; 22f g ¼ 5;

P̂43 ¼ min 14; 22f g ¼ 14 ) ^̂P42 ¼ �5;

^̂P32 ¼ �5; ^̂P34 ¼ �14

D ) r3\r1\r4 ) ^̂P31 ¼ min 1; 13f g ¼ 1;

^̂P34 ¼ min 1; 19f g ¼ 1;

P̂14 ¼ min 13; 19f g ¼ 13 ) ^̂P13 ¼ �1;

^̂P43 ¼ �1; ^̂P41 ¼ �13 :

Pij ¼ P̂ij þ ^̂Pij; 1� i� 4; 1� j� 4

P ¼ pij
� �

¼
0 50� 62 44� 1 �36þ 13

62� 50 0 �44þ 5 �36þ 5

�44þ 1 44� 5 0 �14þ 1

36� 13 �5þ 36 14� 1 0

2

6664

3

7775

P ¼

0 �12 43 �26

12 0 �39 �31

�43 39 0 �13

26 31 13 0

2

6664

3

7775
:

It is possible that pij [ 0 or pij\0. The best place for a

row is where the corresponding pij has the greatest amount,

and thus, the row with the least amount of pij is in the worst

place.

After constructing the matrix P ¼ pij
� �

, the row with

the worst place is determined, and the best place for it is

obtained with a local search. Then, the penultimate row

can be chosen, and the mentioned operations are

repeated.

These operations are continued till the last row. At the

end, a well ordering is found in which every replacement of

its rows does not provide a better solution. A situation

improves when a better makespan is found.

A suitable initial sequence for processing n jobs on m

machines can be obtained from P ¼ pij
� �

. The Bellman
Fig. 2 The path of the ant
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Table 1 The frequency of the superior results in 100 random problems

NEH

New Heuristic
m=10 m=20 m=30 m=40 m=50

n=10
29

71

33

67

24

76

30

70

28

72

n=20
27

73

25

75

15

85

21

79

26

74

n=30
27

73

13

87

17

83

20

80

15

85

n=40
23

77

15

85

8

92

17

83

22

78

n=50
25

75

17

83

7

93

11

89

17

83

n=60
27

73

16

84

8

92

7

93

11

89

n=70
29

71

15

85

9

91

13

87

10

90

n=80
40

60

17

83

8

92

15

85

10

90

n=90
36

64

16

84

16

84

8

92

11

89

n=100
35

65

19

81

10

90

8

92

7

93

Fig. 3 Three-dimensional histogram of NEH superior results
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et al. theorem (Bellman et al. 2014) is used to determine

makespans.

5 Computational Evaluation

The heuristic algorithm was implemented in Visual Basic

and carried on a Pentium IV PC/AT computer running at

3.2 GHz with 2 GB RAM memory. The proposed algo-

rithm was tested on 100 generated random problems with

the sizes n ¼ 10; 20; 30; 40; 50; 60; 70; 80; 90; 100 and m ¼
10; 20; 30; 40; 50 in the feasible domain. The results of

these tests are shown in Table 1 and were compared with

the results of NEH [the best heuristic algorithm in classic

methods (Nawaz et al. 1983)] on the same random prob-

lems. There are two numbers in each table cell. These

numbers represent how many times corresponding algo-

rithm has better results than the other.

The main conclusion to be drawn from this table is that

in 82% of times, the heuristic algorithm has better results

than NEH. Also in large-scale problems, this improvement

is increased.

The results are compared in the following fig-

ures (Figs. 3, 4).

In Table 2, the running times of the problems are in

second.

The approximate relation THeu ffi 0=15� mTNEH is

resulted on the basis of the data in Table 2. Notations THeu
and TNEH are, respectively, referred to the running times of

heuristic algorithm and NEH in each allocation of the table.

6 Time Complexity

The complexity of sorting mn entries of the matrix M is

O m2n2ð Þ. There is less running time for dividing these

entries into m groups and counting the number of opera-

tions. The calculation of pij s has less computational used

time in the construction of matrix P ¼ pij
� �

. Therefore, the

complexity of the presented heuristic algorithm is O m2n2ð Þ.

7 Conclusions

In this paper, a reasonably good initial sequence was

obtained for solving PFSP with minimizing makespan

criterion. After running the heuristic algorithm on 100

random problems, the results in 82% of times were better

than NEH. For future researching lines, the presented

algorithm with due attention to its mathematical properties

could be used as a metaheuristic.

Fig. 4 Three-dimensional histogram of heuristic algorithm’s superior results
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