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Abstract
This paper is concerned with numerical solution of time fractional stochastic advection-diffusion type equation where the

first order derivative is substituted by a Caputo fractional derivative of order a (0\a� 1). This type of equations due to

randomness can rarely be solved, exactly. In this paper, a new approach based on finite difference method and spline

approximation is employed to solve time fractional stochastic advection-diffusion type equation, numerically. After

implementation of proposed method, the under consideration equation is transformed to a system of second order dif-

ferential equations with appropriate boundary conditions. Then, using a suitable numerical method such as the backward

differentiation formula, the resulting system can be solved. In addition, the error analysis is shown in some mild conditions

by ignoring the error terms OðDt2Þ in the system. In order to show the pertinent features of the suggested algorithm such as

accuracy, efficiency and reliability, some test problems are included. Comparison achieved results via proposed scheme in

the case of classical stochastic advection-diffusion equation (a ¼ 1) with obtained results via wavelets Galerkin method

and obtained results for other values of a with the values of exact solution confirm the validity, efficiency and applicability

of the proposed method.

Keywords Fractional stochastic advection-diffusion equation � Stochastic partial differential equations � Caputo fractional

derivative � Finite difference method � Spline approximation � Brownian motion process
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1 Introduction

Since, there exist connection between phenomena in the

real world and partial differential equations (PDEs), so they

have been extensively used to formulate a wide range of

applied problems. In many practical situations such as

advection-diffusion equation which is one of the most

important PDEs and arising in ground water flows, such

ideal information is rarely encountered. For example, our

information about the permeability of the soil, magnitude

of source term, inflow or outflow conditions, etc, are not

accurate. Uncertainties in this problem can be modeled by

stochastic advection-diffusion equation. Over a long period

of time, these random factors were ignored due to lack of

powerful computational tools and problems were modeled

by deterministic advection-diffusion equation. In the last

years, researchers published some papers on the develop-

ment of numerical methods to solve various kinds of

advection-diffusion equations. For example finite differ-

ence method (Sousa 2009; Singh et al. 2019), difference

methods (Liu et al. 2007), explicit and implicit Euler

approximations method (Zhuang et al. 2009), finite ele-

ment method (Zheng et al. 2010; Badr et al. 2018), gen-

eralized finite difference method (Prieto et al. 2011), lattice

Boltzmann method (Servan-Camas and Tsai 2008), impli-

cit MLS meshless method (Zhuang et al. 2011), finite

volume scheme (Ollivier-Gooch and Van Altena 2002),
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Ritz approximation (Firoozjaee et al. 2018), predictor-

corrector method (Babaei et al. 2019), etc. In recent dec-

ade, by increasing the computational power, mathemati-

cians imported some random factors into deterministic

models and studied more accurate functional equation

models to solve more demanding problems. Stochastic

functional equations were created by inserting random

factors into deterministic functional equations. Study of

stochastic functional equations such as stochastic differ-

ential equations (SDEs), stochastic partial differential

equations (SPDEs) and stochastic integral equations (SIEs)

can be very useful in applications, since they arise in many

real situations. Presenting an accurate and efficient

scheme to approximate solution of stochastic functional

equations is a essential requirement, due to the fact that

most stochastic functional equations no have analytical

solution or providing their analytic solution is very hard.

These numerical techniques include wavelet method

(Khodabin et al. 2015), meshless method based on radial

basis functions (Mirzaee and Samadyar 2018; Ahmadi

et al. 2017; Dehghan and Shirzadi 2015), spectral method

(Taheri et al. 2017), operational matrix method (Heydari

et al. 2014; Mirzaee and Samadyar 2017), implicit Euler

approximation (Kamrani and Jamshidi 2017), wavelet

Galerkin method (Heydari et al. 2016), etc.

Fractional calculus plays an important role in many

branches of science, as it can fill the gap left for the correct

discovery of real phenomena. Many control, biophysical,

electromagnetic, biophysical, mechanical, signal and image

processing, blood flow, HIV infection, etc. problems are

modeled through fractional differential equations (Baleanu

et al. 2012; Mirzaee and Samadyar 2018). In many cases,

the exact solution of these equations is unknown and it is

very difficult and even impossible to find the exact solu-

tion. On the other hand, it still remains a lot of improve-

ments in the present numerical approaches due to the non-

local property of the fractional derivative. Therefore, pro-

viding an accurate numerical scheme to solve fractional

differential equations is one of the most important subject

in numerical analysis which has attracted interest of many

researchers. Recently, fractional differential equations and

fractional integral equations have been extensively studied.

For example, operator splitting for fractional reaction-dif-

fusion equations (Baeumer et al. 2008), some numerical

approaches based on piecewise interpolation for fractional

calculus, and some new improved approaches based on the

Simpson method for the fractional differential equations

(Li et al. 2011), discussing on stability and convergence of

the fractional Euler method, the fractional Adams method

and the high order methods based on the convolution for-

mula by using the generalized discrete Gronwall inequality

(Li and Zeng 2013), using spline approximation for the

Caputo derivative in the fractional diffusion and obtaining

an implicit numerical method for solving it (Sousa 2011),

finite difference method to solve the space-fractional con-

vection-diffusion equation and discussion on stability,

consistency and therefore convergence of this method (Su

et al. 2011), numerical solution of a fractional partial dif-

ferential equation with Riesz space fractional derivatives

(Yang et al. 2010), finite element method to solve singu-

larly perturbed fractional advection–dispersion equation

with boundary layer (Roop 2008), using operational matrix

method based on second kind Chebyshev polynomials for

the fourth-order biharmonic equation (Heydari and Avaz-

zadeh 2018), unconditionally stable weighted average finite

difference method for fractional diffusion equation (Sousa

and Li 2015), introducing operational matrix of fractional

order based on Legendre functions and application of them

to solve time fractional convection-diffusion equations

(Abbasbandy et al. 2015).

In this paper, we are concerned with a fractional

stochastic advection-diffusion equation with a time frac-

tional derivative of order a (0\a� 1). The general form of

time fractional stochastic advection-diffusion type equation

is given by

oauðx; tÞ
ota

¼ bþ c
dBðtÞ
dt

� �
o2uðx; tÞ

ox2

þ r
ouðx; tÞ

ox
; ðx; tÞ 2 ½0; 1� � ½0; 1�;

ð1Þ

with the following initial and boundary conditions

uðx; 0Þ ¼ f ðxÞ; x 2 ½0; 1�;
uð0; tÞ ¼ g0ðtÞ; t 2 ½0; 1�
uð1; tÞ ¼ g1ðtÞ; t 2 ½0; 1�;

ð2Þ

where b, c and r are real constant, f(x), g0ðtÞ and g1ðtÞ are
the stochastic processes defined on the probability space

ðX;F ;PÞ, u(x, t) is an unknown stochastic process which

should be approximated.
oauðx;tÞ
ota represents Caputo partial

derivative of order a which is defined as follows (Mirzaee

and Samadyar 2017):

Daf ðtÞ ¼ 1

Cðn� aÞ

Z t

0

f ðnÞðsÞ
ðt � sÞ1�nþa ds; n� 1\a� n; t[ 0:

ð3Þ

Moreover, B(t) denotes one-dimensional Brownian motion

process which satisfies in the following properties (Mirzaee

and Samadyar 2019):

(1) Bð0Þ ¼ 0 (with the probability 1).

(2) For 0� s\t� T the increment BðtÞ � BðsÞ is ran-

dom variable with mean zero and variance t � s.

Consequently, BðtÞ � BðsÞ�
ffiffiffiffiffiffiffiffiffiffi
t � s

p
Nð0; 1Þ where

Nð0; 1Þ denotes normal distribution with zero mean

and unit variance.
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(3) For 0� s\t\u\v� T the increments BðtÞ � BðsÞ
and BðvÞ � BðuÞ are independent.

From Eq. (1), we can obtain the following popular PDEs:

� Deterministic time fractional advection-diffusion

equation is obtained by letting c ¼ 0.

� Time fractional stochastic diffusion type equation

(Heat equation) is obtained by letting r ¼ 0 and c 6¼ 0.

� Deterministic time fractional advection equation is

obtained by letting b ¼ c ¼ 0 and r 6¼ 0.

In the current paper, we employ finite difference method

and spline approximation to provide approximate solution

of time fractional stochastic advection-diffusion type

equation (1) with the initial and boundary conditions (2).

The outline of this article is as follows: Sect. 2 is

devoted to presenting a new method based on finite dif-

ference method and spline approximation to solve time

fractional stochastic advection-diffusion type equation (1)

with the initial and boundary conditions (2), numerically.

Section 3 discussed on error analysis of the suggested

method. Accuracy and efficiency of the proposed method

are checked in Sect. 4 via some test problems. Finally, this

paper end with some concluding remarks in Sect. 5.

2 Numerical Scheme

In this section, we develop an efficient numerical

scheme to estimate the solution of time fractional

stochastic advection-diffusion type equation (1) with initial

and boundary conditions (2).

To present numerical method to solve Eq. (1), we con-

sider an arbitrary positive integer number N and defined

time step-size as Dt ¼ 1
N. Also, we define mesh points as

tj ¼ jDt where j ¼ 0; 1; . . .;N and insert t ¼ tj ðj ¼
1; 2; . . .;NÞ into Eq. (1). So, we have

oauðx; tjÞ
ota

¼ bþ c
dBðtjÞ
dt

� �
o2uðx; tjÞ

ox2
þ r

ouðx; tjÞ
ox

: ð4Þ

Let yjðxÞ ¼ uðx; tjÞ; j ¼ 0; 1; . . .;N. Thus from initial and

boundary conditions (2), we have yjð0Þ ¼ g0ðtjÞ,
yjð1Þ ¼ g1ðtjÞ, and y0ðxÞ ¼ f ðxÞ.

Backward finite difference formula to approximate
dBðtjÞ
dt

is given by

nj ¼
dBðtjÞ
dt

	 BðtjÞ � Bðtj�1Þ
Dt

;

j ¼ 1; 2; . . .;N:

ð5Þ

By substituting Eq. (5) into Eq. (4) and using notation

yjðxÞ ¼ uðx; tjÞ, we have the following system of N

boundary value problems

oauðx; tjÞ
ota

¼ ðbþ cnjÞy00j ðxÞ þ ry0jðxÞ;

j ¼ 1; 2; . . .;N;

ð6Þ

subject to the following boundary conditions

yjð0Þ ¼ g0ðtjÞ; j ¼ 1; 2; . . .;N;

yjð1Þ ¼ g1ðtjÞ; j ¼ 1; 2; . . .;N:
ð7Þ

Let I j ¼ oauðx;tjÞ
ota ðj ¼ 1; 2; . . .;NÞ and use Eq. (3). So, we get

I j ¼
1

Cð1� aÞ

Z tj

0

ðtj � sÞ�a ouðx; sÞ
os

ds

¼ 1

Cð1� aÞ
Xj�1

k¼0

Z tkþ1

tk

ðtj � sÞ�a ouðx; sÞ
os

ds:

ð8Þ

Spline linear approximation of
ouðx;sÞ
os where tk � s� tkþ1 is

given by

Skðx; sÞ ¼
s� tk
Dt

ouðx; tkþ1Þ
ot

þ tkþ1 � s

Dt
ouðx; tkÞ

ot
þ OðDt2Þ:

ð9Þ

By inserting Skðx; sÞ into Eq. (8) and doing some compu-

tations, we conclude

I j ¼
1

Cð1� aÞ
Xj�1

k¼0

Z tkþ1

tk

ðtj � sÞ�aSkðx; sÞds

¼ Dt1�a

Cð3� aÞ
Xj

k¼0

akj
ouðx; tkÞ

ot
þ

t1�a
j

Cð2� aÞOðDt
2Þ;

ð10Þ

where the coefficients akj are given by

akj

¼
ðj� 1Þ2�a � j1�aðjþ a� 2Þ; k ¼ 0;

ðj� k þ 1Þ2�a � 2ðj� kÞ2�a þ ðj� k � 1Þ2�a; � k� j� 1;

1; k ¼ j:

8><
>:

Remark 1 From definitions of akj, we can easily show that

Xj

k¼0

akj ¼ ð2� aÞj1�a: ð11Þ

At this step, we should estimate
ouðx;tkÞ

ot for

k ¼ 0; 1; . . .;N. For k ¼ 0, we use forward finite difference

formula as follows

d0ðxÞ ¼
ouðx; t0Þ

ot
¼ �uðx; t2Þ þ 4uðx; t1Þ � 3uðx; t0Þ

2Dt

¼ �y2ðxÞ þ 4y1ðxÞ � 3y0ðxÞ
2Dt

:

ð12Þ

The first order derivative
ouðx;tkÞ

ot for k ¼ 1; 2; . . .;N � 1 can

be approximated via central finite difference formula as
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dkðxÞ ¼
ouðx; tkÞ

ot
¼ uðx; tkþ1Þ � uðx; tk�1Þ

2Dt

¼ ykþ1ðxÞ � yk�1ðxÞ
2Dt

; ð13Þ

and for k ¼ N, we apply backward finite difference formula

as

dNðxÞ ¼
ouðx; tNÞ

ot
¼ 3uðx; tNÞ � 4uðx; tN�1Þ þ uðx; tN�2Þ

2Dt

¼ 3yNðxÞ � 4yN�1ðxÞ þ yN�2ðxÞ
2Dt

:

ð14Þ

From Eqs. (12)–(14), we conclude

ouðx; tkÞ
ot

¼ dkðxÞ þ OðDt2Þ; k ¼ 0; 1; . . .;N: ð15Þ

Substituting Eq. (15) into Eq. (10) and using Remark 1,

conclude

I j ¼
Dt1�a

Cð3� aÞ
Xj

k¼0

akj
�
dkðxÞ þ OðDt2Þ

�

þ
t1�a
j

Cð2� aÞOðDt
2Þ

¼ Dt1�a

Cð3� aÞ
Xj

k¼0

akjdkðxÞ þ
OðDt2ÞDt1�a

Cð3� aÞ
Xj

k¼0

akj

þ
t1�a
j

Cð2� aÞOðDt
2Þ

¼ Dt1�a

Cð3� aÞ
Xj

k¼0

akjdkðxÞ þ
2t1�a

j

Cð2� aÞOðDt
2Þ: ð16Þ

Therefore, by using Eq. (16), the system of N boundary

value problem (6) can be written as follows

ðbþ cnjÞy00j ðxÞ þ ry0jðxÞ ¼
Dt1�a

Cð3� aÞ
Xj

k¼0

akjdkðxÞ

þ
2t1�a

j

Cð2� aÞOðDt
2Þ; j ¼ 1; 2; . . .;N; ð17Þ

subject to the boundary conditions (7).

For j ¼ 1; 2; . . .;N, we let

fj ¼
2t1�a

j

Cð2� aÞ ;

hj ¼ bþ cnj; gj ¼ � 3

2
a0j �

1

2
a1j;

and put

! ¼

f1
f2

..

.

fN

0
BBBB@

1
CCCCA;H ¼

h1 0 . . . 0

0 h2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . hN

0
BBBB@

1
CCCCA;

yðxÞ ¼

y1ðxÞ
y2ðxÞ
..
.

yNðxÞ

0
BBBB@

1
CCCCA; vðxÞ ¼ Dt�a

Cð3� aÞ y0ðxÞ

h1
h2

..

.

hN

0
BBBB@

1
CCCCA:

So, the system of N boundary value problem (17) can be

written in the following matrix form

Hy00ðxÞ þ ry0ðxÞ ¼ vðxÞ þ KyðxÞ þ !OðDt2Þ; ð18Þ

where K ¼ Dt�a

Cð3�aÞ ½AX þ B�, and

A ¼

a11 0 0 . . . 0

a12 a22 0 . . . 0

..

. ..
. ..

. . .
. ..

.

a1N a2N a3N . . . aNN

0
BBBB@

1
CCCCA;

X ¼

0
1

2
�1

2
0

1

2

. .
. . .

. . .
.

�1

2
0

1

2
�1

2
0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

;

B ¼

2a01
�1

2
a01 0 . . . 0 0 0 0

2a02
�1

2
a02 0 . . . 0 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
.

2a0N�1

�1

2
a0N�1 0 . . . 0 0 0 0

2a0N
�1

2
a0N 0 . . . 0

1

2
aNN

�3

2
aNN

3

2
aNN

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

The error term !OðDt2Þ in the system of N boundary value

problems is neglected and the following system is

concluded

H~y00ðxÞ þ r~y0ðxÞ ¼ vðxÞ þ K~yðxÞ: ð19Þ

We solve the system (19) by backward differentiation

formula which has been explained in Salehi et al. (2018).

3 Error Analysis

In this section to investigate the error analysis of the pre-

sent method, we let r ¼ 0. Thus, the obtained exact and

approximate system of N boundary value problem take the

following form:
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Hy00ðxÞ ¼ vðxÞ þ KyðxÞ þ !OðDt2Þ;
yð0Þ ¼ G0; yð1Þ ¼ G1;

ð20Þ

and

H~y00ðxÞ ¼ vðxÞ þ K~yðxÞ;
~yð0Þ ¼ G0; ~yð1Þ ¼ G1;

ð21Þ

where G0 ¼ ½g0ðt1Þ; g0ðt2Þ; . . .; g0ðtNÞ�T and

G1 ¼ ½g1ðt1Þ; g1ðt2Þ; . . .; g01ðtNÞ�T .
In the following, we intend show that how neglecting

the error term can impact on the solution. Let

eðxÞ ¼ yðxÞ � ~yðxÞ, and then by using Eqs (20) and (21),

we get

He00ðxÞ ¼ KeðxÞ þ !OðDt2Þ;
eð0Þ ¼ 0; eð1Þ ¼ 0;

ð22Þ

Assume that H is an invertible matrix. By multiplying

Eq. (22) in H�1, we have the following system of N

boundary value problems

e00ðxÞ ¼ ~KeðxÞ þ ~!OðDt2Þ;
eð0Þ ¼ 0; eð1Þ ¼ 0;

ð23Þ

where ~K ¼ H�1K and ~! ¼ H�1!. Let k1; k2; . . .; kN be the

distinct eigenvalues of the matrix ~K and v1; v2; . . .; vN be

the corresponding eigenvectors of them. It is easily to show

that all eigenvalues k1; k2; . . .; kN are negative. Let
ffiffiffiffi
kj

p
¼

aj þ ibj for j ¼ 1; 2; . . .;N. So, the exact solution of

Eq. (23) is obtained as follows

eðxÞ ¼
XN
j¼1

expðajxÞ
�
c1j cosðbjxÞ þ c2j sinðbjxÞ

�
vj

þ a1
!þ a2

!x;

ð24Þ

where the unknown constant values c1j and c2j for j ¼
1; 2; . . .;N are determined via boundary conditions and a1

!
and a2

! are constant unknown vectors such that

Ka2
!¼ 0; Ka1

!¼ H
�
a2 �H�1!OðDt2Þ

�
: ð25Þ

Suppose that K is a non-singular matrix and use Eq. (6).

Therefore, we conclude

a2
!¼ 0; Ka1

!¼ �K�1!OðDt2Þ: ð26Þ

By inserting the obtained values in Eq. (26) into Eq. (25),

we have the following formula for error function

eðxÞ ¼
XN
j¼1

expðajxÞ
�
c1j cosðbjxÞ þ c2j sinðbjxÞ

�
vj

� K�1!OðDt2Þ:
ð27Þ

Since the eigenvalues of the matrix ~K have negative real

parts, the sigma in vector function eðxÞ exponentially

converges to zero whenever x increases or Dt ! 0.

Therefore,

keðxÞk1 � �þ kK�1k1M1OðDt2Þ; ð28Þ

where M1 ¼ k!k1 ¼ 2
Cð2�aÞ. We require provide an upper

bound for kK�1k1 when Dt decreases. The values of

kK�1k1 for different values of a and Dt have been reported

in Table 1. This table indicates that the values of kK�1k1
are independent of the variation of Dt and only dependent

on a. Also, from this table we conclude that the values of

kK�1k1 decrease when a approaches to 2. Suppose thatM2

be an upper bound for kK�1k1. The numerical computa-

tions insure that this value exists and is independent of Dt.
Therefore,

keðxÞk1 � �þM1M2OðDt2Þ; ð29Þ

or

keðxÞk1 � �þMOðDt2Þ; ð30Þ

where M ¼ M1M2.

In fact, we computationally proved the following

theorem.

Theorem 1 Suppose that yðxÞ and ~yðxÞ denote the solution
of system of boundary value problems (20) and (21), re-

spectively. So, we have

kyðxÞ � ~yðxÞk1 � �þ 2M2

Cð2� aÞOðDt
2Þ; x 2 ½0; 1�; ð31Þ

where � exponentially converges to zero as x increase or

Dt ! 0, M2 is an upper bound of kK�1k1 which is inde-

pendent of DðtÞ. Thus, for sufficiently small Dt, we have

kyðxÞ � ~yðxÞk1 ¼ OðDt2Þ; x 2 ½0; 1�: ð32Þ

4 Numerical Example

In this section, numerical results of applying proposed

method on three test problems are reported to verify the

validity of theoretical discussion presented in the Sect. 2.

The accuracy and efficiency of the mentioned method are

checked via absolute error measure which is defined as

follows:

eðxi; tÞ ¼
��uexactðxi; tÞ � uapproxðxi; tÞ

��;
i ¼ 1; 2; . . .;M � 1;

ð33Þ
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for a fixed certain time t 2 ð0; 1� and nodal points xi ¼ iDx
where Dx denotes spatial step size which is calculated as

Dx ¼ 1
M. Furthermore, as we mentioned in the previous

section, Dt denotes time step size which is computed as

Dt ¼ 1
N. Notice that in this section M and N denote the

number of nodal points in x and t directions, respectively. It

is noteworthy that the associated algorithms with the pre-

sent approach have been written in the Matlab software and

have been performed on a Laptop with Intel Core i3 CPU

(2.40 GHz) and 4.00 GB RAM.

Example 1 Consider the following time fractional

stochastic advection-diffusion type equation

oauðx; tÞ
ota

¼
� 1

p2
þ dBðtÞ

dt

	o2uðx; tÞ
ox2

þ ouðx; tÞ
ox

þ f ðx; tÞ; ðx; tÞ 2 ½0; 1� � ½0; 1�;
ð34Þ

together with the following initial and boundary conditions

uðx; 0Þ ¼ 0; 0� x� 1;

uð0; tÞ ¼ 0; 0� t� 1;

uð1; tÞ ¼ 0; 0� t� 1;

ð35Þ

and

f ðx; tÞ ¼ 2t2�a sinðpxÞ
Cð3� aÞ þ

� 1

p2
þ dBðtÞ

dt

	
p2t2 sinðpxÞ

� pt2 cosðpxÞ:

The exact solution of Eq. (34) is uðx; tÞ ¼ t2 sinðpxÞ.
In this paper, finite difference method and spline

approximation are employed to compute approximate

solution of Eq. (34) with the initial and boundary

conditions (35). The values of exact solution and approx-

imate solution at time t ¼ 1 for different values of a ¼
0:25; 0:5; 0:75; 1 for Dx ¼ Dt ¼ 0:01 and Dx ¼ Dt ¼ 0:002

are reported in Tables 2 and 3, respectively. These results

confirm that there exist a good agreement between the

numerical solution and exact solutions. Also, the graphs of

absolute error for Dx ¼ Dt ¼ 0:01 and Dx ¼ Dt ¼ 0:002 at

time t ¼ 1 are plotted in Figs. 1 and 2, respectively. This

figures show that our proposed method is reliable to obtain

an accurate approximate solution.

Example 2 Consider the following stochastic advection-

diffusion equation

ouðx; tÞ
ot

¼
�
1þ b

dBðtÞ
dt

	o2uðx; tÞ
ox2

� 3
ouðx; tÞ

ox

þ f ðx; tÞ; ðx; tÞ 2 ½0; 1� � ½0; 1�;
ð36Þ

together with the following initial and boundary conditions

uðx; 0Þ ¼ expð2xÞ; 0� x� 1;

uð0; tÞ ¼ expð�2tÞ; 0� t� 1;

uð1; tÞ ¼ expð2� 2tÞ; 0� t� 1;

ð37Þ

and

f ðx; tÞ ¼ �2 expð2x� 2tÞ
h
1þ 2

�
1þ b

dBðtÞ
dt

	
�3

i
:

The exact solution of Eq. (36) is uðx; tÞ ¼ expð2x� 2tÞ.
In this paper, finite difference method and spline

approximation are employed to compute approximate

solution of Eq. (36) with b ¼ 1 and the initial and

boundary conditions (37). The values of exact solution

and approximate solution at time t ¼ 1 for different values

of a ¼ 0:25; 0:5; 0:75; 1 for Dx ¼ Dt ¼ 0:01 and Dx ¼
Dt ¼ 0:002 are reported in Tables 4 and 5, respectively.

These results confirm that there exist a good agreement

between the numerical solution and exact solutions. Also,

the graphs of absolute error for Dx ¼ Dt ¼ 0:01 and Dx ¼
Dt ¼ 0:002 at time t ¼ 1 are plotted in Figs. 3 and 4,

respectively. This figures show that our proposed method is

reliable to obtain an accurate approximate solution. Also,

we consider wavelet Galerkin method (Heydari et al. 2016)

to compare this method with the previous method for

solving stochastic advection-diffusion equation. Wavelet

Galerkin method has been used to solve stochastic

advection-diffusion equation (36) with b ¼ 0, numerically.

Table 1 Values of kK�1k1 for

different choice of Dt and a
Dt a ¼ 1:1 a ¼ 1:2 a ¼ 1:3 a ¼ 1:4 a ¼ 1:5 a ¼ 1:6 a ¼ 1:7 a ¼ 1:8 a ¼ 1:9

1
10

1.4350 0.9241 0.6631 0.4984 0.3854 0.3045 0.2452 0.2012 0.1683

1
20

1.3877 0.8597 0.5868 0.4167 0.3033 0.2249 0.1698 0.1304 0.1020

1
40

1.3098 0.7711 0.4961 0.3308 0.2255 0.1564 0.1104 0.0792 0.0578

1
80

1.2222 0.6796 0.4106 0.2563 0.1633 0.1059 0.0697 0.0467 0.0318

1
160

1.1345 0.5940 0.3363 0.1963 0.1169 0.0707 0.0435 0.0272 0.0173

1
320

1.0510 0.5173 0.2741 0.1495 0.0831 0.0469 0.0269 0.0157 0.0093
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Table 2 Numerical results of

Example 1 with Dt ¼ Dx ¼
0:01 at time t ¼ 1

ðxi; tiÞ Exact solution Approximate

a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1

(0.0, 0.0) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

(0.1, 0.1) 0.3090169 0.3091028 0.3090852 0.3090711 0.3090600

(0.2, 0.2) 0.5877852 0.5879527 0.5879183 0.5878909 0.5878692

(0.3, 0.3) 0.8090169 0.8090563 0.8090482 0.8090418 0.8090367

(0.4, 0.4) 0.9510565 0.9509554 0.9509762 0.9509927 0.9510058

(0.5, 0.5) 1.0000000 0.9999257 0.9999409 0.9999531 0.9999627

(0.6, 0.6) 0.9510565 0.9510849 0.9510790 0.9510744 0.9510707

(0.7, 0.7) 0.8090169 0.8091694 0.8091381 0.8091132 0.8090934

(0.8, 0.8) 0.5877852 0.5880230 0.5879741 0.5879353 0.5879044

(0.9, 0.9) 0.3090169 0.3090595 0.3090507 0.3090438 0.3090383

(1.0, 1.0) 0.0000000 0.0002173 0.0001726 0.0001371 0.0001089

Table 3 Numerical results of

Example 1 with Dt ¼ Dx ¼
0:002 at time t ¼ 1

ðxi; tiÞ Exact solution Approximate

a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1

(0.0, 0.0) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

(0.1, 0.1) 0.3090169 0.3090283 0.3090259 0.3090241 0.3090226

(0.2, 0.2) 0.5877852 0.5877968 0.5877944 0.5877925 0.5877910

(0.3, 0.3) 0.8090169 0.8090254 0.8090237 0.8090223 0.8090212

(0.4, 0.4) 0.9510565 0.9510735 0.9510700 0.9510672 0.9510650

(0.5, 0.5) 1.0000000 1.0000187 1.0000148 1.0000118 1.0000093

(0.6, 0.6) 0.9510565 0.9510789 0.9510743 0.9510706 0.9510677

(0.7, 0.7) 0.8090169 0.8090415 0.8090364 0.8090324 0.8090292

(0.8, 0.8) 0.5877852 0.5878060 0.5878017 0.5877983 0.5877956

(0.9, 0.9) 0.3090169 0.3090313 0.3090283 0.3090260 0.3090241

(1.0, 1.0) 0.0000000 0.0000110 0.0000087 0.0000069 0.0000055
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Fig. 1 Absolute errors of presented scheme for Example 1 with Dt ¼
Dx ¼ 0:01 at time t ¼ 1
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Fig. 2 Absolute errors of presented scheme for Example 1 with Dt ¼
Dx ¼ 0:002 at time t ¼ 1
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Table 4 Numerical results of

Example 2 with Dt ¼ Dx ¼
0:01 at time t ¼ 1

ðxi; tiÞ Exact solution Approximate

a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1

(0.0, 0.0) 0.1353352 0.1353352 0.1353352 0.1353352 0.1353352

(0.1, 0.1) 0.1652988 0.1653218 0.1653171 0.1653133 0.1653104

(0.2, 0.2) 0.2018965 0.2019077 0.2019054 0.2019035 0.2019021

(0.3, 0.3) 0.2465969 0.2465778 0.2465817 0.2465848 0.2465873

(0.4, 0.4) 0.3011942 0.3011467 0.3011564 0.3011642 0.3011704

(0.5, 0.5) 0.3678794 0.3678435 0.3678509 0.3678567 0.3678614

(0.6, 0.6) 0.4493289 0.4492904 0.4492983 0.4493046 0.4493096

(0.7, 0.7) 0.5488116 0.5487677 0.5487767 0.5487839 0.5487896

(0.8, 0.8) 0.6703200 0.6702411 0.6702573 0.6702702 0.6702804

(0.9, 0.9) 0.8187307 0.8187069 0.8187118 0.8187157 0.8187188

(1.0, 1.0) 1.0000000 0.9999352 0.9999485 0.9999591 0.9999675

Table 5 Numerical results of

Example 2 with Dt ¼ Dx ¼
0:002 at time t ¼ 1

ðxi; tiÞ Exact solution Approximate

a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1

(0.0, 0.0) 0.1353352 0.1353352 0.1353352 0.1353352 0.1353352

(0.1, 0.1) 0.1652988 0.1653004 0.1653000 0.1652998 0.1652996

(0.2, 0.2) 0.2018965 0.2018995 0.2018989 0.2018984 0.2018980

(0.3, 0.3) 0.2465969 0.2465995 0.2465990 0.2465986 0.2465982

(0.4, 0.4) 0.3011942 0.3011959 0.3011956 0.3011953 0.3011950

(0.5, 0.5) 0.3678794 0.3678841 0.3678831 0.3678824 0.3678817

(0.6, 0.6) 0.4493289 0.4493338 0.4493328 0.4493320 0.4493314

(0.7, 0.7) 0.5488116 0.5488178 0.5488165 0.5488155 0.5488147

(0.8, 0.8) 0.6703200 0.6703247 0.6703237 0.6703230 0.6703224

(0.9, 0.9) 0.8187307 0.8187363 0.8187351 0.8187342 0.8187335

(1.0, 1.0) 1.0000000 1.0000041 1.0000033 1.0000026 1.0000020
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Fig. 3 Absolute errors of presented scheme for Example 2 with Dt ¼
Dx ¼ 0:01 at time t ¼ 1
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Fig. 4 Absolute errors of presented scheme for Example 2 with Dt ¼
Dx ¼ 0:002 at time t ¼ 1
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Notic that, by considering b ¼ 0, Eq. (36) is transformed

into the following ordinary advection-diffusion equation

ouðx; tÞ
ot

¼ o2uðx; tÞ
ox2

� 3
ouðx; tÞ

ox
; ðx; tÞ 2 ½0; 1� � ½0; 1�:

ð38Þ

It is necessary to mention that solving Eq. (36) due to

randomness is more difficult than Eq. (38). However, the

values of absolute error obtained via presented method for

Dx ¼ Dt ¼ 0:002 are compared with the values of absolute

error achieved by wavelet Galerkin method in Table 6.

From this table, we conclude that our method is more

accurate than wavelet Galerkin method.

Example 3 Consider the following time fractional

stochastic advection-diffusion type equation

oauðx; tÞ
ota

¼
�
1þ dBðtÞ

dt

	o2uðx; tÞ
ox2

þ r
ouðx; tÞ

ox
þ f ðx; tÞ;

ðx; tÞ 2 ½0; 1� � ½0; 1�;
ð39Þ

together with the following initial and boundary conditions

uðx; 0Þ ¼ 0; 0� x� 1;

uð0; tÞ ¼
Z t

0

BðsÞds; 0� t� 1;

uð1; tÞ ¼ t2 þ
Z t

0

BðsÞds; 0� t� 1;

ð40Þ

and

f ðx; tÞ ¼ 2xt2�a

Cð3� aÞ þ
1

Cð1� aÞ

Z t

0

ðt � sÞ�aBðsÞds

� rt2 � r
Z t

0

BðsÞds:

The exact solution of Eq. (39) is uðx; tÞ ¼ xt2 þ
R t

0
BðsÞds.

In this paper, finite difference method and spline

approximation are employed to compute approximate

solution of Eq. (39) with r ¼ 1 and the initial and

boundary conditions (40). The values of exact solution

and approximate solution at time t ¼ 1 for different values

of a ¼ 0:25; 0:5; 0:75; 1 for Dx ¼ Dt ¼ 0:01 and Dx ¼
Dt ¼ 0:002 are reported in Tables 7 and 8, respectively.

These results confirm that there exist a good agreement

between the numerical solution and exact solutions. Also,

the graphs of absolute error for Dx ¼ Dt ¼ 0:01 and Dx ¼
Dt ¼ 0:002 at time t ¼ 1 are plotted in Figs. 5 and 6,

respectively. This figures show that our proposed method is

reliable to obtain an accurate approximate solution. Also,

we consider wavelet Galerkin method (Heydari et al. 2016)

to compare this method with the previous method for

solving stochastic advection-diffusion equation. Wavelet

Galerkin method has been used to solve stochastic

Table 6 Comparison of absolute

errors of Example 2 obtained by

two different methods

Methods (0.2, 0.2) (0.4, 0.4) (0.6, 0.6) (0.8, 0.8)

Wavelet Galerkin method (Heydari et al. 2016) 1.5377E-5 3.7708E-4 4.4558E-4 3.0031E-4

Present method 1.5182E-6 8.7889E-7 2.4369E-6 2.3604E-6

Table 7 Numerical results of

Example 3 with Dt ¼ Dx ¼
0:01 at time t ¼ 1

ðxi; tiÞ Exact solution Approximate

a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1

(0.0, 0.0) 0.2852239 0.2852239 0.2852239 0.2852239 0.2852239

(0.1, 0.1) 0.3852239 0.3852460 0.3852415 0.3852379 0.3852350

(0.2, 0.2) 0.4852239 0.4858311 0.4857062 0.4856070 0.4855282

(0.3, 0.3) 0.5852239 0.5856964 0.5855992 0.5855220 0.5854607

(0.4, 0.4) 0.6852239 0.6857832 0.6856682 0.6855768 0.6855042

(0.5, 0.5) 0.7852239 0.7857075 0.7856081 0.7855291 0.7854663

(0.6, 0.6) 0.8852239 0.8852768 0.8852659 0.8852573 0.8852504

(0.7, 0.7) 0.9852239 0.9851309 0.9851500 0.9851652 0.9851773

(0.8, 0.8) 1.0852239 1.0851845 1.0851926 1.0851990 1.0852042

(0.9, 0.9) 1.1852239 1.1855784 1.1855055 1.1854476 1.1854016

(1.0, 1.0) 1.2852239 1.2861574 1.2859654 1.2858129 1.2856918
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advection-diffusion equation (39) with r ¼ 0, numerically.

Notic that, by considering r ¼ 0, Eq. (39) is transformed to

stochastic heat equation. By comparing absolute error

graphs in this paper with absolute error graph in the paper

(Heydari et al. 2016), we conclude that our method is more

accurate than wavelet Galerkin method.

5 Conclusion

In this paper, a new efficient technique is developed for

solving time fractional stochastic advection-diffusion type

equation. In this method, first we discrete the time direction

and substitute nodal points tj in the consideration equation.

Moreover, the existent first derivative in the definition of

Caputo time fractional derivative is approximated via lin-

ear spline approximation. After some computations, the

solution of time fractional stochastic advection-diffusion

type equation is transformed into the system of boundary

value problems. Also, we prove that neglecting error terms

in the system of boundary value problems will give a

truncation error OðDt2Þ. Finally, we have applied present

method to solve three test problems and obtained numerical

results have been reported in tables. Numerical results

demonstrate that the present scheme is accurate, efficient,

very fast and can produce acceptable results.
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Table 8 Numerical results of

Example 3 with Dt ¼ Dx ¼
0:002 at time t ¼ 1

ðxi; tiÞ Exact solution Approximate

a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1

(0.0, 0.0) 0.4717762 0.4717762 0.4717762 0.4717762 0.4717762

(0.1, 0.1) 0.5717762 0.5718648 0.5718466 0.5718321 0.5718206

(0.2, 0.2) 0.6717762 0.6717301 0.6717396 0.6717471 0.6717531

(0.3, 0.3) 0.7717762 0.7717851 0.7717833 0.7717818 0.7717807

(0.4, 0.4) 0.8717762 0.8718545 0.8718384 0.8718256 0.8718155

(0.5, 0.5) 0.9717762 0.9718688 0.9718498 0.9718346 0.9718226

(0.6, 0.6) 1.0717762 1.0718380 1.0718253 1.0718152 1.0718072

(0.7, 0.7) 1.1717762 1.1718807 1.1718592 1.1718421 1.1718286

(0.8, 0.8) 1.2717762 1.2719208 1.2718911 1.2718674 1.2718487

(0.9, 0.9) 1.3717762 1.3719493 1.3719137 1.3718854 1.3718630

(1.0, 1.0) 1.4717762 1.4719602 1.4719224 1.4718923 1.4718684
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