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Abstract
In this paper, we propose a numerical technique based on the method of fundamental solutions (MFS) for solving a

classical optimal shape design problem. The problem contains a free boundary condition which should be approximated to

find the optimal domain for the solution of Laplace equation. For solving the considered optimization problem, we

introduce a meshless regularization technique based on the combination of the MFS and application of the Tikhonov’s

regularization method and reduce the problem to solve a system of nonlinear equations. A brief sensitivity analysis on

model parameters including the position and the size of the subregion D as well the error with boundary conditions is

discussed. Numerical simulations while solving several test examples are presented to show the applicability of the

proposed method in obtaining satisfactory results.

Keywords Elliptic equation � Nozzle problem � Optimal shape design � Method of fundamental solutions �
Tikhonov regularization
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1 Introduction

Assume that the velocity of an incompressible irrotational

flow at each location ðx; yÞ 2 X � R2 is given by r/
where the stream function /ðx; yÞ satisfies the Laplace

equation (Farahi et al. 2005)

M/ ¼ 0 in X; ð1:1Þ

with the Neumann boundary conditions

o/
on

¼

�1; x 2 C1;

0; x 2 C3 [ C�

a

b
; x 2 C2:

;

8
>><

>>:

ð1:2Þ

such that

oX ¼ C1 [ C2 [ C3 [ C�;

C1 ¼ f0g � ½0; a�;C2 ¼ fLg � ½0; b�;C3 ¼ ½0; L� � f0g;
C� :¼ fðx; sðxÞÞjs 2 C½0; L�; sð0Þ ¼ a; sðLÞ ¼ b;

80\x\L; 0� sðxÞ� bg:
ð1:3Þ

The problem is defined by (Farahi et al. 2005; Mohammadi

and Pironneau 2010):

P : ¼ min
oX;D�X

�Z

D

kr/� /d

�!k2 s:t D/ ¼ 0;

o/
on

¼

�1; x 2 C1;

0; x 2 C3 [ C�

a

b
; x 2 C2:

8
>><

>>:

�

:

ð1:4Þ

Briefly stated, a shape C� as a portion of the entire

boundary oX is to be found that brings the stream function

/ which satisfies the two-dimensional Laplace equation in

X as well / minimizes the objective function
R
kr/�

/d

�!k2 defined over a subdomain D of the domain X
(Mohammadi and Pironneau 2010).

Theorem 1.1 Suppose that
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PLC½a; b�
f is a piecewise linear continuous function defined on ½0; L�g:

Then, the problem given by equations (1.1)-(1.3) has at

least one solution with upper bound in PLC½0; L�.

Proof See Farahi et al. (2005). h

Equations (1.1–1.4) present an optimal shape design

(OSD) problem which has great applications in wind tunnel

or nozzle design for potential flow (Mohammadi and

Pironneau 2010). For this problem, some of the boundary

condition is defined over an unknown curve C� � oX. We

address the question of simultaneous estimation of the

unspecified trajectory function C� as well as the stream

function by applying the given boundary conditions and

using the fact that the velocity of the stream function

passing through the known region D � X reaches a desired

value (Farahi et al. 2005).

1.1 Some Applications of Optimal Shape Design
Problems

Optimal shape design (OSD) is an important field from

both theoretical and industrial aspects. They appear while

studying physical systems described by elliptic, hyperbolic

or parabolic partial differential equations and include a

broad range of inverse problems (Mohammadi and Piron-

neau 2010; Pironneau 1984) for which the issues of exis-

tence and sensitivity analysis of the solution, correct

discretization of the problem and practical implementation

in order to prepare the convergent numerical solution, are

of crucial importance (Mohammadi and Pironneau 2010;

Pironneau 1984; Rad et al. 2017; Rashedi and Sarraf 2018;

Rashedi et al. 2014). Briefly stated ( Fakharzadeh Jahromi

and Alimorad 2019), suppose that the problem of mini-

mizing the objective function with respect to a particular

geometric elements including a curve, a domain, or a point

of the physical system is considered. Then, it is necessary

to modify the shape of the physical system to obtain the

minimum cost function. The process of designing the best

shape of a physical system such that the given objective

function finds the minimum cost is called the OSD

problem.

We recall few instances of the OSD problems that have

been researched by engineers and mathematicians to

extract the shape of a body that achieves specified design

objectives (Ashrafzadeh et al. 2002). It should be noted

that the following applications are related to physical sys-

tems that are described by elliptic partial differential

equations supplemented with a single criterion function

that has to be minimized:

Nozzle optimization In addition to applications in the

supersonic wind tunnel connected with computational fluid

dynamics (Garg 1998) and designing the nozzle for

potential flows, it is seen that the nozzle shape significantly

affects on the performance of the industrial devices. For

example, in jet wiping process related to galvanization

industry (Mehne et al. 2005), the liquid film is dragged on

the surface of a moving strip and is impacted by the effect

of air knives produced by a 2D slot nozzle (Gosset and

Buchlin 2003).

Optimal breakwater It is possible to construct a calm

harbor by building an optimal breakwater, at a little cost,

which protects a harbor from incoming waves (Keuthen

and Kraft 2016; Mohammadi and Pironneau 2010). Indeed,

the incoming waves must have minimum amplitude in a

given harbor D and this goal can be achieved by mini-

mizing the average wave height in the harbor basin with the

shape of the breakwater as the optimization variable

(Keuthen and Kraft 2016).

Wing drag minimization The flow reaction on a wing

(drag) of a plane directly depends on the wing body con-

figuration. Therefore, in aeronautics industry, aerodynamic

optimization of 3D wings and wing body configurations

can significantly reduce the percentage of drag and provide

a valuable saving on commercial airplanes (Mohammadi

and Pironneau 2010). To optimize the shape of the wing, it

is necessary to consider surface stresses coming from fluid

forces acting on the wing and several other constraints such

as aerodynamical and structural factors. Generally, the

stream function of a flow around an airfoil satisfies the

Navier–Stokes equation but in the case of low Mach and

Reynolds numbers, the Navier–Stokes equation is reduced

to an incompressible potential flow equation. If only the

wave drag is considered, the optimal shape of a thin wing

for minimum drag can be determined by solving a modified

Fig. 1 Representation of the physical domain corresponding to the P,
with locations of the boundary conditions (1.2–1.3)
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type of the shape design problem (Farahi et al. 2006;

Mohammadi and Pironneau 2010).

Minimum weight of structures A crucial task for car

industries is the design of the optimal structure of the car

such that the final production carries the minimum weight

with the best aerodynamics, provided that some inequality

constraints for stress distribution of the engine crankshaft

are satisfied. Other important applications can be seen in

the design of light weight beams for strengthening airplane

floors (Mohammadi and Pironneau 2010)

1.2 Literature Review

Various methods have been applied to solve the OSD

problems described by elliptic PDE’s (Ashrafzadeh et al.

2002; Butt 1993; Fakharzadeh Jahromi 1996, 2013;

Fakharzadeh and Rubio 1999a, b, 2001, 2009; Fakharzadeh

and Rafiei 2012; Fakharzadeh Jahromi et al. 2013; Farahi

et al. 2005, 2006; Mehne et al. 2005; keuthen and Kraft

2016; Mohammadi and Pironneau 2010). In these methods,

the OSD problems have often been viewed as a branch of

calculus of variations and optimal control problems. In Butt

(1993), a gradient method was developed for the optimal

shape design of a nozzle problem that is described by

variational inequalities. In Laumen (2000), the author

applied Newton’s method in a particular function space and

obtained an algorithm to solve the discretized form of some

OSD problems. Mohammadi and Pironneau (2010) and

Pironneau (1984) discussed the novel applications of finite

element method, Boundary element method and finite

difference technique for discretizing the elliptic OSD

problems.

A great number of papers dealing with OSD problems

by applying measure theory and embedding approaches

published by Fakharzadeh Jahromi ( 1996, 2013),

Fakharzadeh Jahromi and Alimorad (2019), Fakharzadeh

and Rubio (1999a, b, 2001, 2009), Fakharzadeh and Rafiei

(2012) and Fakharzadeh Jahromi et al. (2013). In Fakhar-

zadeh and Rubio (1999a), the authors proposed a solution

procedure based on employing the Radon measures in the

variational form of elliptic partial differential equation

describing an optimal shape problem defined in polar

coordinates. In Fakharzadeh and Rubio (2009) and

Fakharzadeh and Rafiei (2012), the shape-measure method

was applied to construct optimal domains for elliptic OSD

problems in Cartesian coordinates where the shape was

determined as a generator curve by using measures. In

Fakharzadeh Jahromi (2013), a general free boundary

problem governed by an elliptic equation with boundary

control and functional criterion was studied by shape-

measure method and an algorithmic approach for obtaining

the optimal solution was proposed. In Fakharzadeh Jahromi

et al. (2013), a comparison between the shape-measure

method and the penalty approach was made and the

advantages of these two methods were discussed.

Farahi et. al published several papers on elliptic OSD

problems including shape design of nuzzles and wing drag

minimization by employing measure theory (Farahi et al.

2005, 2006; Mehne et al. 2005). Essentially, the initial

problem is converted to a shape-measure problem con-

sisting of minimizing a linear form over a set of positive

measures. Finally, the converted problem is approximated

by a finite dimensional linear programming approach.

For a comprehensive review of OSD problems and their

solutions, the interested reader is referred (Fakharzadeh

Jahromi and Alimorad 2019; Mohammadi and Pironneau

2010; Pironneau 1984).

It should be noted that applying aforementioned meth-

ods may cause some difficulties and shortcomings.

Regarding the embedding methods, several steps of

approximations are employed to characterize the optimal

shape using a finite linear programming approach

(Fakharzadeh Jahromi and Alimorad 2019). Thus, not only

the yielded piecewise linear trajectory may not satisfy the

final condition (Fakharzadeh Jahromi and Alimorad 2019;

Farahi et al. 2006) because of the approximations, but also

the proposed methods are not easy to program and rela-

tively expensive in computations. The main challenge,

especially concerning the techniques which need to dis-

cretize the domain of the problem (Mohammadi and

Pironneau 2010; Pironneau 1984), is the computation of the

solution which is time-consuming because the method

requires solving numerous boundary value problems. Fur-

thermore, these methods are difficult to use in practice. In

other cases, the proposed techniques may involve iteration

processes and they need to have an initial guess for

solution.

In this work, we propose an MFS solution for an OSD

problem where the dynamic constraints are a system of

homogeneous partial differential equations. The MFS is a

mesh free boundary collocation technique (Karageorghis

et al. 2011; Kita and Kamiyia 1995; Trefftz 1926) to solve

initial/boundary value problems provided that the funda-

mental solution for their corresponding governing equa-

tions is available. Here, the governing equation which

describes the considered OSD problem is a two-dimen-

sional Laplace equation defined over a non-rectangular

domain X. In comparison with other numerical techniques,

the main advantages of the MFS are:

• Despite the other well-known numerical techniques

such as finite-difference methods (FDM), finite element

methods (FEM), boundary element method (BEM), the

MFS is flexible and easy to adjust to irregular domains.

To manipulate the MFS, we only choose a scattered set

of points out of the physical domain and therefore, no

Iran J Sci Technol Trans Sci (2020) 44:1863–1873 1865

123



kind of mesh generation over the domain is needed.

Thus, it is quite easy to understand and implement.

Also, it does not incur a large computational cost to

establish a suitable mesh (Rashedi and Sarraf 2018).

• Our technique produces accurate, stable and cost-

effective results in conjunction with Tikhonov regular-

ization techniques (Johansson et al. 2011; Karageorghis

et al. 2011). Numerical simulations will demonstrate

the small errors with boundary conditions for the stream

function /ðx; yÞ and confirm that the approximation of

trajectory function s(x) exactly satisfies the conditions

sð0Þ ¼ a and sðLÞ ¼ b.

The paper is organized as follows: In Sect. 2, a detailed

description of the proposed algorithm for solving the given

OSD problem based on the MFS is provided. The numer-

ical results are discussed in Sect. 3. In Sect. 4, we give

some concluding remarks.

2 The Solution Procedure

In this section, we introduce the approximate solution to

the system (1.1–1.3) based on application of the MFS and

the Tikhonov regularization method. The MFS is a pow-

erful, accurate and low cost numerical meshless method

which has been applied for solving a wide class of sta-

tionary and time-dependent partial differential equations

(Rashedi et al. 2015; Karageorghis et al. 2011). Following

the idea of MFS for solving Laplace equation (Kara-

georghis et al. 2011), we first consider N1 number of

source points, namely ðx�j ; y�j Þ; j ¼ 1;N1, settled (Fig. 2)

out of the domain X and express the approximate solution

to Eq. (1.1) by using the linear combination of basis

functions

�

Umðx; yÞ ¼ Uðx� x�m; y� y�mÞ
�N1

m¼1

;

where Uðx; yÞ ¼ logðx2 þ y2Þ is the fundamental solution

to the two-dimensional Laplace equation.

2.1 Solution of P

We place the source points external to the domain X by

using the following scheme:

CP :¼
�

ðx�j ; y�j Þjx�j ¼
L

2
þ ðL

2
þ cÞ cos

�
2pj
N1

�

;

y�j ¼
b

2
þ ðb

2
þ cÞ sin

�
2pj
N1

�

; j ¼ 1;N1

�

;

ð2:1Þ

where c[ 0 and establish the approximate solution of

equation (1.1) as:

/ðx; yÞ ¼
XN1

m¼1

cmUmðx; yÞ: ð2:2Þ

Next, we consider a Ritz type approximation (Rashedi

et al. 2015, 2013; Sarabadan et al. 2018) by employing a

truncated series in terms of the Lagrange polynomials LiðxÞ
(Rad et al. 2017):

sðxÞ ¼
XN1þN2

m¼N1þ1

cmxðx� LÞLiðxÞ þ aþ ðb� aÞx
L

; 0� x� L;

ð2:3Þ

as the approximation for the smooth object s(x), where ci’s

are the unknown coefficients. It is obvious that the condi-

tions sð0Þ ¼ a and sðLÞ ¼ b are satisfied automatically. By

a simple calculation and by taking into account the

orthonormal outer vectors

n1
!¼ ð�1; 0Þ; n2!¼ ð1; 0Þ; n3!¼ ð0;�1Þ; n�! ¼ ð�s0ðxÞ; 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s0ðxÞ2
q ;

corresponding to C1;C2;C3;C
�, we get

/xð0; yÞ ¼ 1; y 2 ½0; a�; /xðL; yÞ ¼
a

b
; y 2 ½0; b�;

ð2:4Þ

/yðx; 0Þ ¼ 0; x 2 ½0; L�;
/yðx; sðxÞÞ � s

0 ðxÞ/xðx; sðxÞÞ ¼ 0; x 2 ½0; L�:
ð2:5Þ

Now, we define

Fig. 2 Representation of a possible placement of source ðFÞ and

collocation points ð	Þ
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H1ðyÞ ¼ /xð0; yÞ � 1; y 2 ½0; a�;

H2ðyÞ ¼ /xðL; yÞ �
a

b
; y 2 ½0; b�;

ð2:6Þ

H3ðxÞ ¼ /yðx; 0Þ; x 2 ½0; L�;
H4ðxÞ ¼ /yðx; sðxÞÞ � s

0 ðxÞ/xðx; sðxÞÞ; x 2 ½0; L�;
ð2:7Þ

and substitute them in the following nonlinear regularized

least squares functional:

FðcÞ :¼
XM1

i¼1

H1ðtiÞ2

þ
XM2

i¼1

H2ðyiÞ2 þ
XM3

i¼1

H3ðxiÞ2 þ
XM3

i¼1

H4ðxiÞ2

þ
Z

D

kr/� /d

�!k2

þ k
XN1þN2

i¼1

c2i ;

ð2:8Þ

where

ti ¼
aði� 1Þ

M1

; i ¼ 1;M1;

yj ¼
bðj� 1Þ

M2

; j ¼ 1;M2; xr ¼
Lðr � 1Þ

M3

;

r ¼1;M3;

are the collocations points and k[ 0 is the Tikhonov’s

regularization parameter. The squared terms in the func-

tional (2.8) include the error between the approximation of

/ðx; yÞ and the boundary data, the objective function and

the regularization term for the unknown constants ci,

respectively. For obtaining unknown parameters

ci; i ¼ 1;N1 þ N2, we insert the approximations

sðxÞ;/ðx; yÞ in the functional (2.8) and minimize the fol-

lowing functional:

J� ¼
XM1

i¼1

�
XN1

m¼1

cm
oUmð0; tiÞ

ox
� 1

�2

þ
XM2

i¼1

�
XN1

m¼1

cm
oUmðL; yiÞ

ox
� a

b

�2

þ
XM3

i¼1

�
XN1

m¼1

cm
oUmðxi; 0Þ

oy

�2

þ k
XN1þN2

i¼1

c2i þ
Z

D

k
XN1

m¼1

rUmðx; yÞ � /d

�!k2

þ
XM3

i¼1

�
XN1

m¼1

cm
oUmðxi; sðxiÞÞ

oy

� dsðxÞ
dx

jxi
oUmðxi; sðxiÞÞ

ox

�2

: ð2:9Þ

For minimizing J�, we can either use the necessary con-

ditions for the extremum as

oJ�

ocj
¼ 0; j ¼ 1;N1 þ N2; ð2:10Þ

and solve a nonlinear system of algebraic equations for the

elements ci directly, or apply the Mathematica toolbox

’’NMinimize’’ which is designed to minimize a sum of

squares of arbitrary differentiable functions. Here, the

regularization parameter k is applied to the functional J� as
a known value. This approach is called the static MFS. It

should be noted that the integration term
R

D k
PN1

m¼1 rUmðx; yÞ � /d

�!k2 in J� will be calculated

numerically using the midpoint rule (Stoer and Bulirsch

1980).

(a) (b)

Fig. 3 Approximate solutions for s(x) and /ðx; yÞ with B/ ¼ 0:00504. All plots for exact data, discussed in Example 3.1
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Remark 2.1 The considered inverse problem is ill-posed

since small errors in the input measured data can produce

large deviations in the desired solution. Therefore, if the

input boundary conditions are contaminated by noise,

regularization needs to be incorporated in the objective

function which is minimized in order to obtain a

stable solution (Johansson et al. 2014; Reeve 2013). This

does not seem to affect the accuracy for exact data, but it

becomes necessary if noise is added in the input data. We

use the Tikhonov regularization technique, presented by

the functional J�, to obtain the stable solution. The regu-

larization parameter k[ 0 is employed in J� as a known

value, to control the quality of the regularized solution by

fairly balancing the perturbation error and the regulariza-

tion error in the regularized solution (Chen et al. 2006;

Kirsch 2011). It can be chosen via several well-known

disciplines like discrepancy principle, composite residual

and smoothing operator method, zero-crossing method and

L-surface method (Hansen 1992; Johansson et al. 2014;

Reeve 2013). In our experiments, we find the parameter k
by trial and error. That is we start with a small value of k
for example k ¼ 10�16, solve the minimization problem

(2.9), find the unknown coefficients ci and then compute

B/ ¼ kH1ðyÞk2 þ kH2ðyÞk2 þ kH3ðxÞk2 þ kH4ðxÞk2:
ð2:11Þ

Then, increase k gradually as k 2
f10�15; 10�14; :::; 10�2; 10�1g and calculate B/ related to

each selection k. In our computation, the best solution is

obtained when its corresponding regularization parameter,

k, gives the minimum value of B/.

Remark 2.2 It must be noted that the numerical solution

obtained by minimizing the functional J� is acceptable as

long as 8x 2 ½0; L�; 0� sðxÞ� b. Otherwise, we propose the

alternative procedure that consists of the following steps:

Step1 Based on approximation via the piece-wise con-

stant basis functions, we consider mn possible

approximations

s0;i1;i2;:::;im�2;m�1ðxÞ : ½0; L�

�! f0; b

m� 1
;

2b

m� 1
; :::; a; :::;

ðm� 2Þb
m� 1

; bg;

ij 2 f0; 1; 2; :::;m� 1g; j ¼ 1;m� 2;

for s(x) and contribute these known functions in the com-

putations. The criterion of s0;i1;i2;:::;im�2;m�1ðxÞ is proposed

by:

(a) (b)

(c) (d)

Fig. 4 Graphs of the absolute errors for the boundary conditions discussed in Example 3.1. All plots for exact data
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s0;i1;i2;:::;im�2;m�1ðxÞ ¼

a; 0� x\
L

nþ 2
;

b

m� 1
i1;

L

nþ 2
� x\

2L

nþ 2
;

b

m� 1
i2;

2L

nþ 2
� x\

3L

nþ 2
;

..

. ..
.

b

m� 1
im�2;

nL

nþ 2
� x\

ðnþ 1ÞL
nþ 2

;

b;
ðnþ 1ÞL
nþ 2

� x� L:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð2:12Þ

It is obvious that s0;i1;i2;:::;im�2;m�1ð0Þ ¼ a;

s0;i1;i2;:::;im�2;m�1ðLÞ ¼ b. Step2 For each s0;i1;i2;:::;im�2;m�1ðxÞ,
follow the procedure given by equations (2.1)-(2.2) and

compute

J�i1;i2;:::;im�2
¼
XM1

i¼1

�
XN1

r¼1

cr
oUrð0; tiÞ

ox
� 1

�2

þ
XM2

i¼1

�
XN1

r¼1

cr
oUrðL; yiÞ

ox
� a

b

�2

þ
XM3

i¼1

�
XN1

r¼1

cr
oUrðxi; 0Þ

oy

�2

þ k
XN1

i¼1

c2i

þ
Z

D

k
XN1

m¼1

rUrðx; yÞ � /d

�!k2

þ
XM3

i¼1

�
XN1

r¼1

cr
oUrðxi; s0;i1;i2;:::;im�2;m�1ðxiÞÞ

oy

� s0;i1;i2;:::;im�2;m�1ðxi þ hÞ � s0;i1;i2;:::;im�2;m�1ðxi � hÞ
2h

� oUrðxi; s0;i1;i2;:::;im�2;m�1ðxiÞÞ
ox

�2

;

ð2:13Þ

where h is a small positive value. Step3 Calculate J�opt ¼
minfJ�i1;i2;:::;im�2

g and select the optimal shape soptðxÞ so that

for which the value of functional (2.13) is minimized.

3 Numerical Experiments

To test the applicability of the proposed technique, we

solve two benchmark test examples. The numerical

implementation is carried out in MATHEMATICA 11.

Table 1 A comparison between the numerical results derived by Farahi et al. (2005) and the present method, including the optimal objective

values, CPU times and the errors of boundary conditions for approximations of unknown functions s(x) and /ðx; yÞ, discussed in Example 3.1

Method Cost functional Bs B/ CPU time (s)

Present 0.02257 0 0.00504 27.34

Ref Farahi et al. (2005) 0.034 0.1054 0.1812 0.7627

Fig. 5 Representation of the optimal shapes related to the different

positions of D, i.e., � � � corresponding to D0, 
 
 
 corresponding to

D1, NNN corresponding to D2, Line corresponding to D3, hhh

corresponding to D4

Table 2 Numerical results for the optimal objective values and the

errors of boundary conditions for approximations of unknown func-

tion /ðx; yÞ, corresponding to different positions of D, discussed in

Example 3.1

Position D0 D1 D2 D3 D4

Cost functional 0.0604 0.01932 0.01831 0.02257 0.03275

B/ 0.0107 0.00438 0.003689 0.00504 0.007827
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3.1 Example 1

As the first example, consider P with the following

properties:

L ¼ b ¼ 3; a ¼ 1;D ¼ ½1:5; 2:5� � ½0; 1�; /d

�! ¼ ð0:6; 0Þt:
ð3:1Þ

We applied the numerical scheme presented by equations

(2.1–2.9) with

N1 ¼ 26;N2 ¼ 2;M1 ¼ M2 ¼ M3 ¼ 90; c ¼ 0:2 ð3:2Þ

and obtained the results demonstrated by Figs. 3a–4d. Also,

we obtained the optimal value of the cost functional as

0.02257. In Farahi et al. (2005), the authors reported the

minimum value of the cost functional (1.4) with condition

(3.1) as 0.034. Table 1 represents the comparison between

our findings and the results derived by Farahi et al. (2005),

including the optimal objective values, CPU times and the

errors of boundary conditions for approximations of

unknown functions /ðx; yÞ given by B/ and s(x) defined by

Bs ¼ jsð0Þ � aj þ jsðLÞ � bj. It should be noted that in

Farahi et al. (2005), the boundary error B/ was not

reported. Nevertheless, we used the approximate solution

of s(x) obtained in Farahi et al. (2005) and solved the direct

problem:

D/ ¼ 0; in X; ð3:3Þ

with the boundary conditions (2.4–2.5) via the MFS with

the parameters (3.2).

Next, we study the effect of model parameters on the

optimal shape and the optimal value of the cost functional.

Thus, we consider small changes in the position and the

size of D and solve the problem by employing the pre-

sented method.

• Sensitivity of the optimal shape with respect to changes

in the position of D: Let change the place of D along the

nozzle length. We choose five different cases

Fig. 6 Representation of the optimal shapes related to the transversal

changes of the size of D, i.e., 
 
 
 corresponding to D#
1 , NNN

corresponding to D#
2 , Line corresponding to D3, hhh corresponding

to D#
4 , � � � corresponding to D#

5

Fig. 7 Representation of the optimal shapes related to the longitudinal

changes of the size of D, i.e., 
 
 
 corresponding to D�
1, NNN

corresponding to D�
2, Line corresponding to D3, hhh corresponding

to D�
4

Table 3 Numerical results for the optimal objective values and the errors of boundary conditions for approximations of unknown function

/ðx; yÞ, corresponding to the transversal changes of the size of D, discussed in Example 3.1

Region D#
1 D#

2
D3 D#

4 D#
5

Cost functional 0.003776 0.01035 0.02257 0.04090 0.1059

B/ 0.003738 0.004374 0.00504 0.007519 0.0149

Table 4 Numerical results for the optimal objective values and the

errors of boundary conditions for approximations of unknown func-

tion /ðx; yÞ, corresponding to the longitudinal changes of the size of

D, discussed in Example 3.1

Region D�
1 D�

2 D3 D�
4

Cost functional 0.00621 0.0126 0.02257 0.0376

B/ 0.00155 0.00294 0.00504 0.00787
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D0 ¼ ½0:2; 1:2� � ½0; 1�;D1 ¼ ½0:9; 1:9� � ½0; 1�;
D2 ¼ ½1:2; 2:2� � ½0; 1�;
D3 ¼ ½1:5; 2:5� � ½0; 1�;D4 ¼ ½1:8; 2:8� � ½0; 1�;

and solve the problem with properties (3.2). The out-

comes are demonstrated by Fig. 5 and Table 2. Evi-

dently, in all cases we should anticipate the increasing

curves as the optimal shape. Besides, when the position

of D is closer to inlet, the graph of resulting optimal

shape is higher than other cases.

• Sensitivity of the optimal shape with respect to changes

in the size of D: We make small changes in the size of

D along the nozzle length (longitudinal changes) as

well in the direction perpendicular to the stream flow

/ðx; yÞ (transversal changes). Hence, we consider

different regions for D as:

(a) (b)

Fig. 8 Approximate solutions for s(x) and /ðx; yÞ. All plots for exact data, discussed in Example 3.1.1

(a) (b)

(c) (d)

Fig. 9 Graphs of the absolute errors for the boundary conditions discussed in Example 3.1.1 with B/ ¼ 0:02725. All plots for exact data
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D�
1 ¼ ½1:5; 1:9� � ½0; 1�; D�

2 ¼ ½1:5; 2:2� � ½0; 1�;
D3 ¼ ½1:5; 2:5� � ½0; 1�; D�

4 ¼ ½1:5; 2:8� � ½0; 1�;

corresponding to the longitudinal altering and take

D#
1 ¼ ½1:5; 2:5� � ½0; 0:4�; D#

2 ¼ ½1:5; 2:5� � ½0; 0:7�;
D3 ¼ ½1:5; 2:5� � ½0; 1�;
D#

4 ¼ ½1:5; 2:5� � ½0; 1:3�; D#
5 ¼ ½1:5; 2:5� � ½0; 2�;

as the samples of transversal changes. By solving the

problem using the MFS with the properties (3.2), we

obtain the results depicted in Figs. 6–7 and Tables 3–4.

It is seen that the longitudinal changes in the size of

D do not have significant impact on the shape but the

large transversal altering can give rise to considerable

variations in the optimal shape.

3.1.1 Example 2

Consider P with the following properties:

L ¼ b ¼ 3; a ¼ 1;

D ¼ fðx; yÞjðx� 1:5Þ2

þ y2 � 1; y� 0g; /d

�! ¼ ð0:5; 0:75Þt: ð3:4Þ

By employing the relations (2.1–2.9) with

N1 ¼ 26;N2 ¼ 2;M1 ¼ M2 ¼ M3 ¼ 90; c ¼ 0:2; ð3:5Þ

we found the value 0.7045 as the minimum of the cost

functional
R

D kr/� ð0:5; 0:75Þk2. The illustration of the

obtained results including the approximate solutions for

s(x) and /ðx; yÞ along with the residual of the boundary

conditions are given by Figs. 8a–9d, confirming that the

boundary conditions are satisfied accurately. Next, to study

the numerical stability with respect to the boundary con-

ditions, the contaminated input boundary data generated

by:

wxð0; ylÞ ¼ 1þ d%RandomReal½f�1; 1g�;
yl 2 ð0; 1Þ; l ¼ 1;M1;

wxð3; ylÞ ¼
1

3
þ d%RandomReal½f�1; 1g�;

yl 2 ð0; 3Þ; l ¼ 1;M2;

wðxl; 0Þ ¼ d%RandomReal½f�1; 1g�;
xl 2 ð0; 3Þ; l ¼ 1;M3;

/yðxl; sðxlÞÞ ¼ s
0 ðxlÞ/xðxl; sðxlÞÞ þ d%RandomReal½f�1; 1g�;

xl 2 ð0; 3Þ; l ¼ 1;M3;

are considered, where RandomReal½f�1; 1g� gives a ran-

dom real digit that belongs to the interval ½�1; 1� and d% ¼
d� 10�2 is called the level of noises. We take into account

remark 2.1 and find the results depicted in Table 5,

showing that the performance of the method is good in the

presence of small additional errors, but it degrades when

the errors increase.

4 Concluding Remarks

This article has outlined a numerical technique for design a

wind tunnel with required flow properties in a region of

space. As an extra specification, we take advantage of this

fact that the velocity of the stream function passing through

the known region D � X reaches a desired value. We

studied the numerical solution of the OSD problem by

means of the MFS. Also, two numerical examples have

been considered and we showed that by using the features

of the MFS along with employing the appropriate regu-

larization techniques lead to obtaining satisfactory results.

In summary, the numerical achievements that should be

highlighted here are as follows,

First, in contrast to other well-known numerical tech-

niques such as finite-difference methods (FDM), finite

element methods (FEM) and boundary element method

(BEM), the MFS is flexible and easy to adjust to irregular

domains. The MFS only needs to choose a scattered set of

points out of the physical domain and therefore, no kind of

mesh generation over the domain is needed. Thus, it is

quite easy to understand and implement. Also, it does not

incur a large computational cost to establish a suit-

able mesh (Rashedi and Sarraf 2018).

Second, the presented technique produces accurate,

stable and cost-effective results. Numerical simulations

demonstrate the small errors with boundary conditions for

the stream function /ðx; yÞ given by B/ and confirm that

the approximation of trajectory function s(x) exactly sat-

isfies the conditions sð0Þ ¼ a and sðLÞ ¼ b. These are the

Table 5 The obtained values for the cost functional
R

D kr/�
ð0:5; 0:75Þk2 and B/ in the presence of the different noise levels d
with N1 ¼ 26;N2 ¼ 2;M1 ¼ M2 ¼ M3 ¼ 90; c ¼ 0:2, discussed in

Example 3.1.1 for exact and contaminated data

d% 0% 2% 4% 6%

B/ 0.0272 0.11249 0.1989 0.3141

k 0 10�12 10�8 10�5

Cost functional 0.7045 0.6644 0.6264 0.5832
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advantages of the proposed method in comparison with the

approach of Farahi et al. (2005).

The issue of numerical stability and sensitivity analysis

of the solution with respect to input data including, the

position of D, the size of D and the Neumann boundary

conditions is discussed. Following the numerical illustra-

tions, we observe that stability is maintained for solution of

the problems where their input data are contaminated with

relatively small errors as well if the longitudinal changes

are made in the size of D. In the future, we will consider

developing the MFS for solving the wing drag minimiza-

tion problem.
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