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Abstract
Carbon nanotubes (CNTs) remain one of the most efficient reinforcing material for enhanced mechanical and electrical

properties. In this study, the effects of multi-walled CNTs (MWCNTs) fillers on mechanical, structural, and electrical

properties of polymethyl methacrylate (PMMA)/MWCNTs composites were studied. The PMMA/MWCNTs composites,

containing varying MWCNTs concentration of 0.1, 0.3, and 0.5 wt%, were prepared by a solution casting method. The

mechanical properties of the composites such as tensile strength, elongation, Young modulus, tear resistance, fracture

energy, impact strength, and hardness were investigated. Results showed that the mechanical properties of the composites

were enhanced significantly. At 0.5 wt% MWCNTs, the tensile strength, elongation, tear strength, hardness, fracture energy

and impact strength increased by 397%, 567%, 89%, 27%, 12%, and 36%, respectively, while the Young modulus

decreased by 26% compared to pure PMMA polymer sample. Both the dc electrical conductivity and the activation energy

increased with increased concentration of MWCNTs. From the electrical conductivity measurements, the percolation

threshold was found to equal * 0.55 wt% MWCNTs. Based on the Fourier-transform infrared spectroscopy analysis,

enhancement of mechanical and electrical properties is attributed to the formation of covalent bonds between polymer

strands and MWCNTs. Moreover, a mechanism was proposed to describe the influence of MWCNTs on electrical and

mechanical properties of PMMA/MWCNTs composites.
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1 Introduction

The application of polymers is on the rise due to their

advantages over conventional materials (e.g., metals).

Polymers are light in weight, corrosion-resistant, and are

easily produced at low cost (Aguilar and San Román 2019;

Khutoryanskiy and Georgiou 2018; Nezakati et al. 2018;

Yuan et al. 2012). While several advancements have been

made in polymer technology, their physical properties can

be further enhanced by the addition of different fillers such

as metal particles, semiconductors, organic and inorganic

particles, carbon, ceramics and fibers among others (Abd-

Elnaiem et al. 2020; Hussein et al. 2018; Prasher et al.

2006). Polymers modified with different fillers have

enhanced structural, optical, thermal, electrical, mechanical

and magnetic properties. This widens the scope of their

applications ranging from structural units in the construc-

tion industry to aerospace and medical applications (Huang

et al. 2003). Polymethyl methacrylate (PMMA), similar to

other polymers, is transparent, compatible with the human

body, has low weight, and possesses excellent optical

clarity and good weathering behavior (Logakis et al. 2011).

However, PMMA is brittle and insulating hence it cannot

be deployed for applications where ductility or conduc-

tivity is an important consideration. Several studies have

been conducted to enhance the mechanical properties of

PMMA (Landry et al. 1992; Ash et al. 2002; Chen et al.

2007; Stipho 1998; Layek et al. 2010; Zhang et al. 2018;

Pahlevanzadeh et al. 2019; Münker et al. 2018). Among
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them are blending and copolymerization (Logakis et al.

2011) which have significantly enhanced the toughness of

the polymer.

Multi-Walled Carbon Nanotubes (MWCNTs) are con-

sidered as one of the most important nano-reinforcing

materials because of their high modulus (* 1 TPa) and

tensile strength (* 63 GPa) emanated from the strong

bonds between the carbon atoms (Meysami et al. 2017; Zhi

et al. 2008; Huang et al. 2011; Deep and Mishra 2018; Mir

et al. 2016; Faraguna et al. 2018; Mittal 2014). They have

been widely deployed for reinforcement of polymer with

enhanced physical and mechanical properties (Faraguna

et al. 2018). The degree of enhancement depends on how

well CNTs disperse in the matrix and the subsequent

interfacial interactions between them. A study showed that

the presence of 1 wt% MWCNTs improved the thermal

stability and thermal conductivity of PMMA/MWCNTs

composites (Deep and Mishra 2018). Blond et al. (2006)

enhanced Young’s modulus and strength of poly(vinyl

alcohol) based composites by 3.7 and 3.9, respectively, by

adding 1 wt% of CNTs. In this case, CNTs provide surfaces

for better stress transfer. In the simulation results of Arash

et al. (2014), the Young’s modulus of PMMA/CNT poly-

mer composite increased from 3.9 to 6.85 GPa when 5 wt%

CNTs was incorporated. Mir et al. reported a higher elec-

trical percolation threshold for PMMA/MWCNTs com-

posites compared to other published data (Mir et al. 2016).

The strengthening efficiency of MWCNTs can also be

improved by coating the surfaces with surfactants or

compatibilizers (Mittal 2014). Due to the interesting

properties of the developed PMMA/MWCNTs composites,

they are being deployed for several applications in aero-

space, automobile, sports, bone-bonding ability, hydrogen

gas permeation, electronics sectors among others (Münker

et al. 2018; Nakason et al. 2005; Kumar et al. 2010; Yuen

et al. 2008; Nawar and El-Mahalawy 2019; Su and Wang

2007; Wang et al. 2019).

Currently, limited reports on electrical and mechanical

properties of PMMA/MWCNTs composites are available

in the literature. The present investigation aims to extend

the previous studies by investigating the influence of low

concentrations (0–0.5 wt%) of MWCNTs on the mechan-

ical and electrical properties of PMMA/MWCNTs com-

posites synthesized by a solution casting method. Various

mechanical parameters of the PMMA/MWCNTs compos-

ites such as tensile strength, elongation, tear resistance,

fracture energy, impact strength, and hardness were

investigated. Moreover, the electrical conductivity as a

function of temperature was studied and the value of the

percolation threshold was determined and discussed. In

addition, a mechanism describing the influence of

MWCNTs on electrical and mechanical properties of

PMMA/MWCNTs composites was proposed.

2 Experimental Details

2.1 Materials

The PMMA (Mw * 15,000 by GPC) samples were

obtained from Sigma-Aldrich Company while the

MWCNTs (95%), having an outer diameter of 5–15 nm,

inside diameter of 3–5 nm and length of 50 lm, were

purchased from US Research nanomaterials, INC., Hous-

ton, USA.

2.2 Preparation of PMMA/MWCNTs Composites

The MWCNTs have grain size distribution within the

range of 12–14 nm (Fig. 1). The preparation of the

PMMA/MWCNTs composites followed the procedure

depicted in Fig. 2a. Solution A was made from 2 g of

pure PMMA dissolved in 10 ml of Chloroform (CHCl3)

and then stirred with a magnetic stirrer at 60 �C for 1 h to

obtain a grade solution of PMMA. Similarly, solution B

was prepared from MWCNTs dissolved in 10 ml of

CHCl3 and agitated ultrasonically at 30 �C for 10 min.

Thereafter, solutions A and B were mixed and stirred

vigorously for 1 h at 60 �C. The final mixture was then

thoroughly sonicated until a stable, black-colored solution

of PMMA/MWCNTs composite was formed. The PMMA/

MWCNTs samples were prepared with 0.1, 0.3 and 0.5

wt% MWCNTs. They were then cast on the Petri dish and

kept at 60 �C in an oven for 24 h to ensure the solvent

was completely removed. The optical images of the pre-

pared PMMA/MWCNTs thin sheet samples are presented

in Fig. 2b. The PMMA sample without MWCNTs was

considered as the control.
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Fig. 1 Normal distribution histogram for MWCNTs nanoparticles
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2.3 Characterizations of PMMA/MWCNTs
Composites

The thicknesses of the PMMA and PMMA/MWCNTs

composites were measured with an electronic digital

micrometer (IDM) of ± 0.001 sensitivity. The IDM cycled

up and down automatically at the push of a button,

providing an accurate and repeatable reading at the end of

each cycle. The sheet samples were * 115 lm thick.

The infrared spectra of the sheet samples were recorded

with SHIMADZU FTIR-7600 in the range of

400–4000 cm-1. The Fourier-transform infrared spec-

troscopy (FTIR) spectra gave information about the

chemical structures of pure PMMA and PMMA/MWCNTs

(b)

(a)

PMMA 0.1% MWCNTs 

0.3% MWCNTs 0.5% MWCNTs 

Fig. 2 a A schematic

illustration of the fabrication

procedure, and b optical images

of the PMMA/MWCNTs

composites (sample dimension

is 2 cm 9 2 cm)
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composites. The surface morphology of the composites

was investigated by JEOL JSM-5600LV scanning electron

microscopy (SEM, Tokyo Japan). The SEM images were

analyzed for the grain size and distribution using image

processing software (ImageJ, Version 1.37).

The tensile test was conducted at room temperature

(* 30 �C) using Instron 4467 tensile tester following the

ASTMD-882 standard (D882-18 2018). Sheet samples of

dimensions 10 mm 9 80 mm 9 0.115 mm were tested at

an extension rate of 5 mm/min while the Young modulus

and tensile strength were obtained from the stress–strain

curves. Tear resistance (tear strength) is another mechani-

cal property associated with material failure and is nor-

mally quoted in terms of tear force per unit thickness

N/mm (Kaufman 2001). Tear strengths of the samples were

determined using Universal Electronic Dynamometer

according to ASTM D-1922 standard. The sample

(100 mm long by 60 mm wide) has 50 mm cut at the

center. The experiments were conducted at 180 mm/min

extension rate. A pendulum impact tester was used to

measure the force required to propagate slit at a fixed

distance to the edge of the test sample. Shore D hardness

was conducted to measure the hardness of 170 mm 9 10

mm 9 4 mm sheet samples. Most of the numerical values

of the mechanical properties were estimated by taking

averages of three readings.

The Charpy impact test is a standardized high strain-rate

test for measuring the amount of energy absorbed by a

material during fracture. The test was conducted following

ASTM D256 standard on bar-shaped specimens of

dimension 170 mm 9 10 mm 9 4 mm). The Impact

Strength (I.S.) was evaluated from Eq. (1):

I:S: ¼ F:E:� 0:09J

a� b
ð1Þ

where F.E. is the fracture energy, a and b are the length and

width of the tested sample, respectively.

The electrical resistivity (q) of the samples was mea-

sured within a temperature range of 303–393 K with the

electrical measurement setup shown in Fig. 3 using Eq. (2):

q ¼ RA

L
ð2Þ

where R is the sample resistance (X), A is the cross-sec-

tional area (mm2) and L is the thickness of the specimen

(mm). The PMMA/MWCNTs samples were 0.11 mm thick

circular sheet of radius 0.55 cm. The dc electrical con-

ductivity rdcð Þ was determined as the reciprocal of the

resistivity using the following equation:

rdc ¼
1

q
ð3Þ

In addition, the activation energies for the conduction

(Ea) were estimated from the plot of ln(r) versus l000/T

according to the Arrhenius equation:

rdc ¼ A0e
�Ea
kBT ð4Þ

where kB is the Boltzmann’s constant (1.38 9 10-23 J/K)

and A0 is the pre-exponential factor.

3 Results and Discussions

The FTIR spectra of the pure PMMA sample, Fig. 4 curve

(a), has absorption peaks around 2992 cm-1 and

2949 cm-1 corresponding to C–H asymmetric stretching in

CH3 and CH2, respectively. The vibrational band at

2847 cm-1 is due to the C–H symmetric stretching in CH3.

The characteristic band for the pure PMMA is observed at

1721 cm-1 which corresponds to the C=O stretching band.

The vibrations due to deformation modes of CH3 groups

appear at 1489 cm-1, 1434 cm-1 and 1385 cm-1. Medium

bands at 1268 cm-1 and 1238 cm-1 indicate the presence

of C–O stretching modes. The band at 1189 cm-1 is

assigned to CH3 wagging mode while the two bands at

1141 cm-1 and 1062 cm-1 are due to the CH3 twisting.

Figure 4 curve (b) shows the FTIR spectrum of PMMA/

0.5 wt% MWCNTs composite. The observed vibration

modes due to C–C stretching appear at 985 cm-1 and

969 cm-1. The peaks at 912 cm-1 and 840 cm-1 are

assigned to CH2 rocking while the peaks at 809 and 749 are

due to the C=O in the plane and out-of-plane bending,

respectively. The C–H stretching vibration, which might be

associated with the carbon of ethylene, is between 2850

and 3000 cm-1. The peak at 1728 cm-1 is assigned to the

COO. The relative intensity of the hydrogen-bonded car-

bonyl group at 1815 cm-1 increased with the MWCNTs

content. The number of hydrogen atoms in the O–CH3

groups of the composite film remained constant. The

intensity of the carbonyl molecular group peaks increased

when MWCNTs were added to PMMA. The covalent

interaction and hydrogen bonds between PMMA and

MWCNTs are desired to inhibit phase separation.

Figure 5a, b, c show the SEM micrographs of the

composites with 0.1, 0.3, and 0.5 wt% MWCNTs loading,

respectively. Accordingly, the grains have a hemispherical

shape with an average size between 6.5 and 13.5 lm. The

MWCNTs (the bright spots) were present as small clusters

whose distribution was fairly uniform. As the MWCNTs

ratio increased, dispersion worsened and large agglomer-

ates were observed at 0.5 wt% MWCNTs loading.

According to Table 1 and Fig. 6, pure PMMA is very

brittle with a tensile strength of 8.16 MPa and elongation

of * 1%. However, addition of 0.1 wt% MWCNTs raised
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the tensile strength, elongation, Young modulus, tear

strength, and hardness by 269%, 88%, 96%, 20%, and

10%, respectively. At 0.5 wt% MWCNTs, the tensile

strength, elongation, tear strength, and hardness increased

by 397%, 567%, 89%, and 27%, respectively, whereas

Young modulus decreased by 26% compared to the PMMA

sample. The results obtained for 0.1 wt% MWCNTs

composite clearly illustrate the importance of good

MWCNTs dispersion at low volume fractions. It also

shows that effective reinforcement is limited by the max-

imum achievable volume fraction where good dispersion

can be maintained. Mechanical properties have shown an

increase in all the parameters investigated for a low content

of carbon nanotubes. The calculated F.E. and I.S. for the

composites are given in Table 1. The I.S. increased from

5.96 to 8.12 kg/m2 while the F.E. fluctuates between 0.16

and 0.19 J as the concentration of the filler increased from

0 to 0.5 wt%, respectively. The maximum and minimum

fracture energy were obtained at 0.5 wt% and 0.3 wt%

MWCNTs, respectively.

It has been established that surface modification

improves MWCNTs dispersion and filler/matrix interfacial

bonding. Hydrogen bonds provide important interfacial

forces in the composite system. This bond can be

intramolecular and intermolecular (such as OH–OH and

OH–COOH). Carbonyl groups, available in polymer

macromolecules, strongly accept hydrogen to form

hydrogen bonds which consequently enhanced the Young

modulus of the composites. The increase in tear strength

with increased MWCNTs content (Table 1) can be attrib-

uted to high tensile strength and Young’s modulus of the

filler. The strength of the C–C in-plane bonds along the

cylinder axis provides strong resistance to any failure

including large out-of-plane distortion.

Furthermore, the hardness of the composites increased

with MWCNTs (Table 1) which is associated with the

uniform dispersion of the fillers within the PMMA matrix.

The MWCNTs have a high aspect ratio, high modulus, and

high strength, and the loading force can be transferred to

the nanotubes. The load transfer also depends on the

mechanism of interfacial shear stress between the fiber and

the matrix, which can be micromechanical interlocking,

chemical bonding, and Van Der Waals force (Du et al.

2007). In addition, MWCNTs raised the Young Modulus of

the composites from 7.85 to 16.35 MPa at 0.3 wt %

loading. Usually, a higher concentration of MWCNTs leads

to a higher Young modulus, for example, * 1 GPa

reported by Makireddi et al. (2015) at 10 wt% MWCNT

and 4 GPa reported by Jindal et al. (2015) at 5 wt%

MWCNTs. The large difference in the moduli could be

Fig. 3 Schematic diagram of the electrical circuit (left-hand side) used for the dc resistivity measurement. The sample holder and electrodes are

depicted on the right-hand side
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attributed to MWCNTs concentration as well as the

diameter of the fillers which lied in the range of 5–15 nm

for the present study and 40–60 nm used elsewhere

(Makireddi et al. 2015).

The highest tensile strength of 40.52 MPa was obtained

at 0.5 wt% MWCNTs compared to 8.16 MPa observed for

the control. This is close to 55.6 MPa for the same com-

position reported elsewhere (Deep and Mishra 2018) as

well as the result of Jia et al. (1999). However, the Young

modulus in the present study is lower than 100 MPa

obtained for PMMA functionalized graphene/polyvinyli-

dene fluoride nanocomposites (Layek et al. 2010). This

high value buttresses the point that functionalized surfaces

enhance mechanical properties. The effects of

concentration of MWCNTs below 0.1 wt%, aspect ratio,

and interfaces miscibility on the mechanical properties of

PMMA/MWCNTs composites have been reported else-

where (Kim and Jo 2008; Mu et al. 2018; Mammeri et al.

2012).

The behavior of rdc for PMMA/MWCNTs composites

as a function of MWCNTs concentrations and temperature

is presented in Fig. 7. The increase in rdc with temperature

is similar to the behavior of semiconductors. At room

temperature, the rdc has a value of 2.45 9 10-10 S cm-1

reveals the insulating behavior of the PMMA polymer.

However, rdc rose to 2.1 9 10-8, 7.54 9 10-5 and

1.33 9 10-4 S cm-1 for 0.1, 0.3 and 0.5 wt% MWCNTs

loading, respectively. The magnitude of rdc at 0.5 wt%

Fig. 5 Top-view SEM

micrographs of PMMA/

MWCNTs composites at a 0.1

wt% b 0.3 wt% and c 0.5 wt%

MWCNTs

Table 1 Mechanical properties of PMMA and PMMA/MWCNTs composites

MWCNTs

Content (wt%)

Tensile Strength

(MPa)

Elongation

(%)

Young Modulus

(MPa)

Tear Strength

(mN/mm)

Hardness

(Shore D)

Fracture

Energy (J)

Impact strength

(kg/m2)

0 8.16 1.04 7.85 10.5 49 ± 5 0.17 5.964

0.1 30.11 1.96 15.36 12.6 54 ± 3 0.18 6.666

0.3 30.99 4.72 6.57 15.3 56 ± 2 0.16 7.24

0.5 40.52 6.94 5.84 19.8 62 ± 4 0.19 8.12
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loading was 6 orders higher than the control. The observed

increase in rdc is due to the increased carrier concentration

occasioned by the addition of MWCNTs (Avilés et al.

2019; Mir et al. 2016; Chayad et al. 2015). The presence of

MWCNTs as fillers in the PMMA matrix creates extensive

conductive networks that facilitate electrons transport in

the composite causing current to flow even in the absence

of direct contacts between the nanotubes. This mechanism

termed the quantum mechanical tunneling effect, allows

electrons to move through an insulator between conductive

elements (MWCNTs). The MWCNTs network showed a

classical percolating network behavior with a low perco-

lation threshold.

The numerical value of Ea was estimated from the slope

of the straight lines fitted into the Arrhenius equation

(Fig. 7). These values were estimated to be 0.19, 0.37, 1.07

and 1.32 eV for samples containing 0, 0.1, 0.3 and 0.5 wt%

MWCNTs, respectively. The increase in the activation

energy is in good agreement with published work (Das

et al. 2011) and is most likely due to the stress relaxation of

polymer chains (Hsu et al. 2017). This behavior can also be

due to the reduction in impurity density occasioned by the

agglomeration of MWCNTs in the localized states near the

valence and conduction bands.

Figure 8 describes the mechanism of mechanical

strengthening and electrical conductivity enhancement in

the composites. The MWCNTs fillers dispersed randomly

within the PMMA matrix which increased in density with

the concentration of the fillers (Fig. 8a). The concentration

reaches a critical ratio beyond which MWCNTs agglom-

erated. The significant increase in elongation (Table 1) is

due to the strong interfacial interaction between the PMMA

matrix and MWCNTs. This facilitates the formation of

bridge cracking and prevents premature failure of the

composites. The toughening mechanism of the composites

can be described in three stages. In the first stage, a tensile

load is applied to the composite beyond the elastic limit of

the matrix leading to cracking of the matrix. Further

propagation of the crack causes crack initiation in the

MWCNTs bundles and subsequent bridging (Fig. 8b). In

the second stage, the MWCNTs start aligning in the

direction of stress thereby enabling the maximum load to

be suspended without failure of the fillers. In the third

stage, as the tensile load extends beyond the tensile limit of

MWCNTs, the crack propagates rapidly within the fillers.

Ultimately, most of the MWCNTs are disrupted and failure

of the polymer occurs (Fig. 8c).

Furthermore, applying the electrical field at an elevated

temperature over the composites leads to alignment of

MWCNTs in the direction of the electric field (Fig. 8d–e).

The polarization formed a symmetrical and close macro

network (Fig. 8f). The fillers gradually congregated into

bundles forming conductive networks in the PMMA matrix

leading to the observed increase in electric conductivity. At

a higher concentration of MWCNTs, the higher connection

is expected to increase electric conductivity. Accordingly,

addition of MWCNTs converted PMMA from an insulator

to a conductive plastic.

Notably, rdc can be increased sharply for the case of

electrical percolation when the concentration of filler

exceeds a critical value called the percolation threshold

(Pc). The presence of MWCNTs in the insulating PMMA

matrix utilized to a continuous network of electrical con-

nections in the insulator matrix. The discontinuity in

the electrical property could be explained in terms of the

metal filler concentrations via the percolation theory. As a

sufficient ratio of conductive filler is loaded into a polymer

matrix, the composite transforms from an insulator to a

conductor due to the continuous linkages of filler particles.
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Accordingly, no significant change in rdc occurs until the

Pc of filler loading is reached. For a concentration of

conductive filler greater than Pc, the value of rdc signifi-

cantly increases due to the formation of a network of chains

of conductive particles that span the composite (Sancaktar

and Bai 2011). In addition, reducing filler size leads to a

decrease in Pc, because inter-particle contacts increase

with a rise in the amount of conductive filler (Pothukuchi

et al. 2004). Other parameters that can affect the value of

Pc are chemical nature of the composite components,

preparation method, the crystal structure, thermal and

electrical conductivity, dimension, geometry, and distri-

bution of the fillers in the composite (Tee et al. 2007).

Although a very large amount of filler is required for

conduction, the polymer material’s strength and elasticity

may be degraded. It is therefore important to use the

minimum quantity of conductive filler to achieve the

required degree of electrical performance (Li et al. 1993).

It can be observed from Fig. 7, the value of rdc at room

temperature at various concentrations of MWCNTs is

between 1.4 9 10-12 and 2.1 9 10-10 S/cm. This small

change in conductivity reveals that the concentration of

conductive filler in the prepared PMMA/MWCNTs com-

posites less than Pc. Therefore, based on the classic theory

of percolation, Pc can be obtained by the power-law rela-

tionship in polymeric materials by the following equation

(Snarskii et al. 2020):

rdc ¼ r0 PC�Pð Þ�q
for PC [P ð5Þ

where r0 is the conductivity at q = 0, P is the concentration

of the conductive phase, and q is the critical exponent. The

exponent q is the critical exponent and is related to network

dimensional aspects. According to Eq. 5, the best linear

fitting of log(rdc) versus log(Pc - P) gives a value of Pc,

q and r0 at room temperature for PMMA/MWCNTs

composites around 0.55 wt%, 2.06, and 4.5 9 10-13 S/cm,

respectively. The estimated value of PC means the con-

centrations of all prepared samples are less than Pc. In the

present study, the value of q is closed to 2 which is nor-

mally associated with three-dimensional networks (Snars-

kii et al. 2020).

4 Conclusion

PMMA/MWCNTs composites were prepared by direct

mixing technique while their mechanical and electrical

properties were examined at 0.1, 0.3, and 0.5 wt%

MWCNTs. The mechanical and electrical properties of the

synthesized PMMA/MWCNTs composites were signifi-

cantly enhanced. For instance, addition of 0.5 wt%

MWCNTs enhanced the tensile strength, elongation, tear

strength, hardness, fracture energy, and impact strength by

397%, 567%, 89%, 27%, 12%, and 36%, respectively,

whereas Young modulus decreased by 26% compared to

the control sample. Both the dc electrical conductivity and

activation energy were significantly improved. The esti-

mated percolation threshold was found to be * 0.55 wt%

Fig. 8 Schematic illustration of

mechanical strengthening (a, b,

and c) and enhancement of

electrical properties (d, e, and

f) in PMMA/MWCNTs

composites
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MWCNTs. According to FTIR analysis, the carboxyl acid

which bonded to the surfaces of MWCNTs strongly influ-

enced dispersion performance. This study demonstrated the

huge opportunity embedded in MWCNTs as fillers in

composite materials. Moreover, we have proposed a

mechanism to simulate the effects of MWCNTs on the

electrical and mechanical properties of PMMA/MWCNTs

composites.
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