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Abstract
Carla (Momordica charantia L.) is a medicinal plant of the Cucurbitaceae family, which has antibacterial, anticancer, anti-

tumor, hypoglycemic, hypertensive, and cholesterol properties. In this study, the effects of zinc oxide nanoparticles (ZnO-

NPs) (20, 60, and 100 ppm), jasmonate (100, 250, and 500 lM), and chitosan (10, 50, and 100 lM) were measured on the

growth and some physiological and biochemical parameters of Carla plant. The results revealed the highest shoot weight of

plants at 250 lM jasmonate and 10 lM chitosan, while ZnO-NPs had no significant effect on shoot weight. ZnO-NPs

(20–60 ppm) and jasmonate (100 and 200 lM) significantly increased chlorophyll a content, but chitosan showed no effect

on chlorophyll a content. Secondary metabolites such as phenols, flavonoids, and carotenoids as well as carbohydrate and

proline content were significantly increased by all elicitors in a dose-dependent manner. Antioxidant enzyme activity

showed varied responses to different concentrations of elicitors. Jasmonate increased catalase (CAT), ascorbate peroxidase

(APX), and guaiacol peroxidases (GPX) activity in a dose-dependent manner. Chitosan at all concentrations significantly

increased CAT and APX enzymes activity, while at 100 lM concentration significantly increased GPX enzyme activity.

ZnO-NPs did not affect GPX and AXP enzymes activity. Our findings confirmed for the first time that non-biological

elicitors at specific levels have a significant growth promotion effect as well as increased production of valuable secondary

metabolites in M. charantia.
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1 Introduction

Prescription of herbal medicine has been prevalent since

ancient times (Sharifi-Rad et al. 2020). Carla (Mo-

mordica charantia L.) is a 1-year-old plant of the

Cucurbitaceae family with long creeping vines (Joseph

and Jini 2013). Several studies have reported the

antidiabetic, anti-inflammatory, antimicrobial, and anti-

cancer properties of M. charantia (Grover et al. 2002;

Jia et al. 2017). Carla is a good source of carbohydrates,

proteins, minerals such as iron, calcium, vitamins,

especially vitamin C, and dietary fibers (Yibchok-Anun

et al. 2006). It also contains various bioactive metabo-

lites such as phenolic compounds, triterpenes, charantin,

momorcharin, saponin, momordin, vicine, oleanolic

acids, alkaloids, triterpene glycosides, and saponins

(Ahmad et al. 2006; Horax et al. 2010). The researchers

reported that the antioxidant activity of this plant is due

to the presence of phenolic compounds (Ghous et al.

2015). Phenolic compounds have been widely reported to

have high antioxidant, antidiabetic, antimicrobial, anti-

cancer, and anti-inflammatory activities (Deshaware et al.

2017). The importance of bioactive compounds for

human health shifts the agricultural practices toward

their sustainable production (Björkman et al. 2011). In

this regard, elicitation could efficiently induce the pro-

duction of phytochemicals. Elicitation with various biotic

and abiotic elicitors is a possible aid to overcome vari-

ous difficulties associated with the large-scale production
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of most commercially important secondary metabolites

from wild and cultivated plants (Esmaeilzadeh Bahabadi

et al. 2012, 2014a). Also, elicitors could induce the

production of primary metabolites and affect physiolog-

ical processes, like growth and yield (Ho et al. 2018). It

has been reported that elicitors can relieve reactive

oxygen species (ROS) accumulation and malondialde-

hyde (MDA) content by induction of antioxidant enzyme

activities (Esmaeilzadeh Bahabadi et al. 2014b). Jas-

monic acid is one of the plant growth regulators that

affects a wide range of plant physiological and devel-

opmental responses (Creelman and Mullet 1995; Kessler

and Baldwin 2002). It is involved in multiple functions

such as seed germination, pollen germination, senes-

cence, seedling growth, and fruit ripening (Wang et al.

2008; Li et al. 2018). Furthermore, several studies

reported that jasmonic acid could stimulate the phenyl-

propanoid biosynthetic pathway and increase the content

of phenolic compounds in crops (Yu et al. 2002; Ku and

Juvik 2013). Furthermore, this phytohormone stimulates

free fatty acids, b-carotene, anthocyanin, and lignans

accumulation (Esmaeilzadeh Bahabadi et al. 2011; Sid-

diqi and Husen 2019). Chitosan is a natural biopolymer

modified from chitins which act as a potential biostim-

ulant and elicitor in agriculture. It enhances the physio-

logical response and mitigates the adverse effect of

abiotic stresses through the stress transduction pathway

via secondary messenger(s) (Hidangmayum et al. 2019).

Chitosan treatment stimulates photosynthetic rate, stom-

atal closure, enhances antioxidant enzymes, and induces

production of organic acids, sugars, amino acids, and

secondary metabolites, which are required for the

osmotic adjustment and energy metabolism under stres-

ses (No et al. 2002). Increased shoot and dry root

weight, germination, leaf area index, and chlorophyll

content have also been reported in chitosan-affected

maize and bean plants (Sheikha and Al-Malki 2011).

Chitosan helps the root system of the plant absorb more

nutrients from the soil, thus stimulating the plant growth

(Cho et al. 2005). It has also been reported that the

priming of rice seeds with chitosan increases growth,

proline content, and total carbohydrate content under

salinity stress (Ruan and Xue 2002). Chitosan seems to

be particularly effective to increase the content of a large

spectrum of phenylpropanoids and antioxidants in crops.

All these compounds can be ingested by humans through

daily diet, providing health benefits, such as the increase

in antioxidant capacity of blood and potential prevention

of cancer and cardiovascular diseases (Ferri and Tassoni

2011). Nowadays, nanoparticles (NPs) are gaining

industry attention for their potential applications in

agriculture to enhance crop production (Jasrotia et al.

2018). NPs can be used as a source of plant nutrients

and stimulate the production of bioactive compounds

(Dimkpa and Bindraban 2017). Researchers suggested

that efficacy and the effect of engineered NPs on plant

growth and physiology depend on the composition,

physical, and chemical properties of NPs, concentration,

as well as plant species and vegetative stage (Hossain

et al. 2020). Earlier studies have demonstrated the

potential of zinc oxide nanoparticles (ZnO-NPs) for

stimulation of seed germination and plant growth as well

as secondary metabolites induction (Faizan et al. 2020).

There are very few reports about the effect of elicitors

on physiological properties of M. charantia. Recently, in

a research have reported 5 mg/L AgNPs as the optimum

concentration for maximum accumulation of phenolics

and flavonoids in cell suspension cultures of M. cha-

rantia (Chung et al. 2018). To our knowledge the pos-

sible effects of jasmonate, chitosan, and ZnO-NPs

elicitors on production of phytochemicals and physio-

logical responses in M. charantia plant has not been

investigated. This research aims: (1) to evaluate whether

jasmonate, chitosan and ZnO-NPs elicitors could effec-

tively increase biomass, secondary metabolite (phenolic

compounds and carotenoids) accumulation in M. cha-

rantia and (2) to measure the response of Carla plants to

the application of possible elicitors, through the quan-

tification of enzymatic and non- enzymatic antioxidant

enzymes, malondialdehyde (MDA), and proline.

2 Methods

2.1 Plant Cultivation and Treatments

The experiments were carried out in a plant physiology

research laboratory at the University of Zabol (Zabol, Iran).

Seeds were planted in pots filled with 250 g of 4:2 mixture

of Coco peat and soil.

In each pot, three seeds were sown at 1 cm depth. The

pots were placed in a germination chamber at 28� C, 16 h

light, and 8 h dark. All pots were irrigated with distilled

water until elicitor treatments started. At the 4-leaf stage of

growth, foliar sprays were applied of ZnO-NPs (20, 60, and

100 ppm), jasmonate (100, 250, and 500 lM), and chitosan

(10, 50, and 100 lM). Each treatment included three

replicates, and samples were taken after 15 days from the

date of planting to estimate growth and physiological

activities. The fresh biomasses were subjected to overnight

heat in the oven at 70 �C for 72 h for full dehydration.

Some growth-related parameters, including shoot length

and shoot weight, were evaluated for all of the employed

treatments.
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2.2 Quantification of Chlorophyll, Carotenoid,
and Anthocyanin

To measure the chlorophyll and carotenoid contents, 0.1 g of

fresh leaves from each treatment was immersed in 80% ace-

tone solvent to extract pigments. The extract was centrifuged

at 2500 rpm for 10 min. The supernatants were transferred to

different vials, to quantify the total content of the pigments by

spectrophotometer. The content of chlorophyll a and b was

measured at 663 and 645 nm, respectively, and carotenoid

obtained at 440.5 nm using Eq. 1 (Lichtenthaler 1987).

Ca ¼ 0:0127 � D663� 0:00269 � D645
Cb mg g�1fresh leaf

� �
¼ 0:0299 � D645� 0:00468 � D663

Ccar mg g�1fresh leaf
� �

¼ 0:004695 � D440:5
� 0:000268 Ca þ Cbð Þ;

ð1Þ

where Ca and Cb represent the content of chlorophyll a and

b (mg g-1 fresh leaf), respectively. The Ccar (mg g-1 fresh

leaf) corresponds to the total content of carotenoid.

Total anthocyanin contents of blueberry extracts were esti-

mated spectrophotometrically according to Wagner’s method

using a molar absorptivity coefficient of 133,000 mm-1 -

cm-13 and reported as mg per g of FW (Bürkle et al. 2018).

2.3 Measurement of Total Phenol
and Flavonoids Content

Total phenol content was determined using a spectropho-

tometer, following the Folin–Ciocalteu method; the gallic

acid (0–1000 lM) was used as the standard to determine

the results as gallic acid equivalents (mg GAE/g dry weight

(McDonald et al. 2001). The total flavonoid content was

measured based on the protocol adopted from Chang et al.

(2002), in which the flavonoid content was calculated as

mg of quercetin per gram dry weight.

2.4 Determination of Carbohydrate and Proline

Carbohydrate levels were measured by Dubois’s method.

Briefly, 0.5 g of fresh plant crushed in 5 ml of distilled

water, then filtered and 2 ml from plant extract transferred

to a test tube. Then, supernatant mixed with 1 ml of 5%

phenol (v/w) and 5 ml of sulfuric acid. Finally, each tube

was incubated for 1 h at 37 �C. They were left until the

purple color appears and stabilized. After the appearance of

the dye, the absorbance at 490 nm was measured by a

spectrophotometer; glucose would be used as a standard

curve to measure the sugar content (Dubois et al. 1956).

Proline content of leaves was determined according to

Bates’s method. 0.04 gg of leaves was homogenized in

15 mL of aqueous 3% sulfosalicylic acid and the homo-

genate was filtered. The filtrate (2 mL) was mixed with

2 mL of ninhydrin reagent (containing 20 ml of 6 M

phosphoric acid, 30 ml of glacial acetic acid, and 1.25 g of

ninhydrin). The absorbance of the colored solutions was

measured at 520 nm (Bates et al. 1973).

2.5 Determination of Antioxidant Enzymes
Activity

Catalase (CAT) enzyme activity was measured according

to Aebi (1984). The reaction mixture consisted of 2.5 ml of

50 mM phosphate buffer (pH 7) containing 0.2 ml of 1%

H2O2 and 0.3 ml of extract. The CAT activity was calcu-

lated as a reduction in absorbance over 1 min at 240 nm.

The extinction coefficient (0.0436 m-1 cm -1) was used to

measure the activity.

Guaiacol peroxidases (GPX) enzyme activity was mea-

sured according to Upadhyaya’s method. Reaction mixture

consisted of 2.5 ml 50 mM phosphate buffer (pH 7) con-

taining 1 ml of 1% guaiacol, 1 ml of H2O2 1%, and 0.1 ml

of extract. The addition of H2O2 initiated the reaction, and

the increase in absorbance at 420 nm was determined for

1 min. The extinction coefficient (26.6 Mm-1 cm -1) was

used to measure the activity (Upadhyaya et al. 1985).

Ascorbate peroxidase (APX) activity was measured

according to Nakano and Asada, 1981. The reaction mix-

ture consisted of 2.5 ml 50 mM phosphate buffer (pH 7)

containing 0.1 mM EDTA, 0.5 mM ascorbic acid, 0.3 ml

H2O2 1%, and 0.1 ml extract. APX activity was calculated

as a decline in H2O2 uptake over 1 min at 240 nm.

2.6 Determination of Lipid Peroxidation

The level of lipid peroxidation was measured in terms of

malondialdehyde (MDA) content that was determined by

the Heath and Packer’s method. Fresh leaves (0.15 g) were

homogenized with 2 ml of ice-cold 50 mM phosphate

buffer (pH 7.8) and centrifuged at 6000g for 5 min. Next,

4 ml of 20% trichloroacetic acid containing 0.5% thio-

barbituric acid was added to 1 ml of the supernatant. The

mixture was heated in a water bath shaker at 95 �C for

10 min and quickly cooled in an ice bath. The samples

were centrifuged at 6000g for 10 min. The absorbance was

measured at 532 nm (Heath and Packer 1968).

2.7 Statistical Analysis

To reduce the error, experiments were performed in 3

replications. Statistical analysis was performed according

to the completely randomized block design via SPSS

software using a one-way ANOVA and Duncan test at

p\ 0.05.
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3 Results

3.1 Effect of ZnO-NPs, Chitosan, and Jasmonate
on Growth

The results showed that the shoot length was not affected

by ZnO-NPs (p B 0.05). Shoot length increased signifi-

cantly at 10 lM concentration of chitosan (p B 0.05). At

250 lM and 500 lM of jasmonate, shoot length increased

significantly (p B 0.05) compared to control (Fig. 1a).

The results of this study revealed that ZnO-NPs had no

significant effect on the shoot weight of Carla plant (p

B 0.05). The plant shoot weight at 10 lM chitosan was

significantly elevated (p B 0.05), but no change was

observed in the shoot weight at 50 lM and 100 lM chi-

tosan. A significant increase in shoot length was observed

at 250 and 500 lM of jasmonic acid treatment. The highest

shoot weight of jasmonate-treated plant was found at

100 lM concentration (p B 0.05) (Fig. 1b).

The application of high concentrations of ZnO-NPs in

wheat resulted in biomass reduction (Lin and Xing 2008).

Root growth inhibition can be attributed to the high sus-

ceptibility of root apical meristem to NPs and the effect of

zinc on indole acetic acid oxidase at the root level (Fiskesjo

1997). The studies showed that NPs increased growth

parameters of tomato (Elmer and White 2016) and no

effect on lettuce (Liu et al. 2016). Researchers suggested

that efficacy and the effect of engineered NPs on plant

growth and physiology depend on the composition, phys-

ical and chemical properties of NPs, concentration, as well

as plant species and vegetative stage (Hossain et al. 2020).

Growth and yield of soybean improved by chitosan

(Dzung and Thang 2004). In another study, researchers

found that pretreatment of Ajwain plant with chitosan

significantly enhanced the germination rate, root, and shoot

length, as well as shoot and root weight (Mahdavi and

Rahimi 2013). Foliar application of olive leaf with

jasmonic acid increased the leaf area (El-Sayed et al.

2014). Jasmonate has been shown to accelerate root growth

and increase plant growth parameters such as leaf area and

shoots dry weight (Sairam et al. 2002). The effect of dif-

ferent concentrations of jasmonic acid on the growth,

height, and weight of the marigold plant has been reported.

Plants treated with 150 and 225 lM jasmonic acid caused

the highest plant height and dry weight, respectively (Ataei

et al. 2013). It has been suggested that jasmonic acid at

physiological concentrations plays a crucial role in growth

and metabolism expressed by the changes in the content of

photosynthetic pigments and the soluble protein accumu-

lation, while at higher concentrations promotes typical

senescence symptoms (Czerpak et al. 2006).

3.2 The Effect of ZnO-NPs, Chitosan,
and Jasmonate on Photosynthetic Pigments

ZnO-NPs elicitor significantly increased chlorophyll a

content at the range of concentrations 20–60 ppm.

Chlorophyll b content significantly increases at 20 ppm of

ZnO-NPs. Chlorophyll a and chlorophyll b content

decreased at 100 ppm of ZnO-NPs. Chitosan showed no

effect on chlorophyll a and chlorophyll b content. The

results showed that chlorophyll a content was significantly

elevated at 100 and 200 lM. Jasmonate showed no effect

on chlorophyll b content (Table 1).

The results showed that the amount of carotenoid sig-

nificantly increased in all concentrations of ZnO-NPs and

chitosan compared to control. Jasmonate at concentrations

of 250 and 500 lM significantly enhanced the carotenoid

content compared to control (Table 1). Exposure of plants

to high concentrations of heavy metals reduces the

biosynthesis of chlorophyll. It has been reported that sub-

stitution of Pb2?, Cu 2?, Cd 2?, Ni 2?, Zn 2? in chlorophyll

instead of Mg?2, which is the main functional mechanism

of heavy metal toxicity results in reduced chlorophyll and

Fig. 1 Effect of different concentrations of ZnO-NPs, chitosan, and

jasmonate on shoot length (a) and shoot weight (b) of Carla

plant; The values shown are the mean of 3 replicates and ± SD

(standard deviation). The meanings that have common words in each

treatment were not statistically significant (p B 0.05)
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photosynthetic breakdown (Sengar et al. 2008). Inhibition

of critical reactions in the chlorophyll biosynthesis path-

way (5-aminolevulinic acid biosynthesis, aminolevulinic

acid dehydrase, and radionuclide reductase) reduces

chlorophyll storage in leaves (Vara Prasad and de Oliveira

Freitas 2003).

Chitosan has been shown to increase chlorophyll content

in soybeans and peanuts (Dzung and Thang 2004). Chi-

tosan increased the amount of chlorophyll and carotenoids

in coffee (Dzung et al. 2011). Methyl jasmonate also pre-

vents the degradation of photosynthetic pigments by

increasing the activity of antioxidant enzymes such as

superoxide dismutase in chloroplasts and the removal of

free radicals (Mckersie and Ya’acov 1994; Popova et al.

1997). Methyl jasmonate also induced the expression of

key enzymes genes involved in chlorophyll biosynthesis by

stimulating the formation of 5-aminolevulinic acid (Ueda

and Saniewski 2006).

3.3 Effect of ZnO-NPs, Chitosan, and Jasmonate
on Anthocyanin Content

The results showed that the anthocyanin content signifi-

cantly increased under all concentrations of jasmonate

(Table 1). Chitosan and ZnO-NPs showed no effect on

anthocyanin content. Stressful environmental factors

(salinity, drought, cold, UV radiation, and air pollution)

cause accumulation of anthocyanin pigments in the leaves.

The significant roles of anthocyanins can be attributed to

the antioxidant and protective function of the photosyn-

thetic system against photosynthesis, which plays a pro-

tective role in stressed plants (He et al. 2010).

Anthocyanins are secondary metabolites of plants that are

synthesized by the propanoid phenyl pathway with the

ability to absorb free radicals when strained. Chitosan has

been reported to increase anthocyanin in plants through the

effect of crucial enzyme activity pathway on the production

of phenylpropanoid derivatives (Chakraborty et al. 2009).

The results of this study are consistent with findings of

other researchers which observed jasmonate and salicylic

acid increased anthocyanin content in alfalfa (López-

Moreno et al. 2010), Arabidopsis (Jung 2004), licorice

(Shabani et al. 2009), carrots (Sudha and Ravishankar

2003), sunflower (Parra-Lobato et al. 2009).

3.4 Effect of ZnO-NPs, Chitosan, and Jasmonate
on Secondary Metabolites

This research showed that flavonoid and phenol content

significantly increased by all elicitors used in this study in a

dose-dependent manner (Table 1). Similarly, in potato

plants, the amount of phenol affected by silver nanoparti-

cles in a dose-dependent manner (Homaee and Ehsanpour

2015). Titanium dioxide increased phenol and flavonoid

content in Salvia officinalis (Ghorbanpour and Hadian

2015). It is reported that CuO-NPs and ZnO-NPs have a

positive effect on phenolic compounds accumulation

(Oloumi et al. 2015). Phenolic compounds are potent

inhibitors of oxidative stress, which cooperated with per-

oxidases in the removal of hydrogen peroxide (Kovácik

et al. 2009). free hydroxyl groups in phenols are respon-

sible for free radical removal activity (Kowalska et al.

2014). Other studies also reported increased production of

phenols (Dı́az et al. 2001) and flavonoids (Bota and Deliu

2011) following the application of non-biological elicitors.

Chitosan treatment enhanced the phenolic compounds and

activity of antioxidant enzymes in tomatoes (Liu et al.

2007).

Studies have shown that the use of naturally occurring

compounds, such as methyl jasmonate, can increase sec-

ondary metabolites. The treatment of mulberry jasmine

with methyl jasmonate significantly increased flavonoid

content in these plants (Wang et al. 2008).

3.5 Effect of ZnO-NPs, Chitosan, and Jasmonate
on Antioxidant Enzyme Activity

The results showed that the catalase enzyme activity was

significantly elevated by 60 and 100 ppm of ZnO-NPs.

Chitosan at all concentrations significantly increased the

catalase enzyme activity.

Jasmonate significantly increased in the catalase enzyme

activity in a dose-dependent manner (Table 1). ZnO-NPs

did not affect GPX enzyme activity. Chitosan at 100 lM
concentration significantly increased GPX enzyme activity.

Jasmonate significantly increased the GPX enzyme activity

in a dose-dependent manner (Table 1). The activity of AXP

in ZnO-NPs-treated plants was not significantly different at

all concentrations from that of control. Chitosan induced a

significant rise in AXP activity at 10, 50, and 100 lM
concentrations. AXP enzyme activity was significantly

increased at all concentrations of jasmonate (Table 1).

Catalase catalyzes the conversion of H2O2 to water and

oxygen and regulates H2O2 concentration in tissues. This is

essential because H2O2 is a relatively long-lived ROS that

has the ability to diffuse widely from the site of its gen-

eration and penetrate certain biological membranes (Shar-

ifan et al. 2019). ZnO-NPs increased the activity of the

catalase enzyme in Fagopyrum esculentum (Pandey et al.

2012). With increasing Zn content, antioxidant enzymes

such as catalase increases (Hosseini and Poorakbar 2013).

Chitosan increased the activity of antioxidant enzymes

such as catalase and polyphenol oxidase in the root of

eggplant (Mandal 2010). Chitosan treatment has been

shown to increase the activity of antioxidant enzymes and

phenolic compounds in tomatoes (Liu et al. 2007).
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Furthermore, chitosan increased the activity of peroxidase

and catalase enzymes in two maize species and safflower

seedlings (Guan et al. 2009). Chitosan also enhanced the

activity of CAT and AXP enzymes in basil (Naderi et al.

2014), which is consistent with our results which chitosan

upregulated the activity of CAT and AXP at all concen-

tration and GPX (at 100 lM) as well. Co-activation of

antioxidant enzymes also reported in chitosan-treated

Trachyspermum ammi (Naderi et al. 2016). Overall, the

increase in enzyme activities could be one of the major

protection mechanisms against ROS generation. Applica-

tion of methyl jasmonate in peanut seedlings increased

protein content and enhanced the activity of superoxide

dismutase, catalase, and peroxidase enzymes (Kumari et al.

2011).

3.6 Effect of ZnO-NPs, Chitosan, and Jasmonate
on Carbohydrate

The results showed that the carbohydrate content under

different concentrations of ZnO-NPs, chitosan and jas-

monate was significantly higher than the control (Fig. 2).

Increased content of soluble carbohydrates may be due

to the osmotic adjustment mechanism in the plant. Car-

bohydrate accumulation is effective in maintaining cell

membrane and osmotic regulation (Mckersie and Ya’acov

1994). Some research have shown that by increasing the

concentration of heavy metals, the intracellular water bal-

ance is impaired, causing ultrastructural changes in cellular

organelles and metabolism of sugars. Also, by increasing

the concentration of heavy metals, the amount of invertase

activity decreases. The increase in sugars content may be a

kind of adaptive mechanism to maintain the osmotic

potential under the stress of ZnO-NPs. In this study, an

increase in the content of soluble sugars treated with chi-

tosan was observed, possibly due to the hydrolysis of starch

(Kovácik et al. 2009). The plant’s defense mechanism

against stress requires some osmotic adjustment. This

osmotic adaptation can be achieved through synthesizing

intracellular soluble compounds (Serrano and Rodriguez-

Navarro 2001). A study found that the amount of soluble

sugars increased by chitosan treatment in safflower seed-

lings that is similar to the results of this experiment

(Mahdavi et al. 2011).

Researchers found that foliar application of rice with

chitosan increased stress soluble carbohydrates under stress

conditions (Boonlertnirun and Sarobol 2005), which is in

line with the results of this study. Chitosan seems to have

an indirect role in the biosynthesis and degradation of

sugars under stress conditions. Therefore, chitosan may be

useful in reducing the detrimental effects of dehydration on

plants by increasing the soluble carbohydrates in plants and

response to osmotic regulation and preserving the cells’

water potential. It has been reported that that carbohydrate

content increased with the elevation of the chitosan con-

centration (Khajeh and Naderi 2014). As the concentration

of chitosan increases, trans-structural changes occur in

cellular organelles such as tonoplast and metabolism of

sugars. This is an adaptive mechanism for preserving

osmotic potential under chitosan treatment.

Fig. 2 Effect of different concentrations of ZnO-NPs, chitosan, and

jasmonate on the carbohydrate content of Carla plant; The values are

shown the mean of 3 replicates and ± SD (standard deviation). The

meanings that have common words in each treatment were not

statistically significant (p B 0.05)
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3.7 Effect of ZnO-NPs, Chitosan, and Jasmonate
on Proline Content

The results showed that the proline content increased by all

concentrations of ZnO-NPs. Proline content was signifi-

cantly increased under concentrations of 50 and 100 lM
chitosan. All concentrations of jasmonate significantly

increased the proline content compared to control (Fig. 3).

Under stress conditions, proline accumulation occurs

more than other amino acids, which may contribute to

osmotic regulation and possibly maintenance of plant

enzymatic activity (Ashraf and Harris 2004). Proline plays

a vital role in the improvement of environmental stresses,

including the stresses of heavy metals in plants and

microorganisms (Siripornadulsil et al. 2002). Proline sta-

bilizes proteins and chelates metals and prevents lipid

peroxidation and reactive oxygen species (Shah and Dubey

1998). Thus, during the stress of heavy metals, proline

production is enhanced to protect the plant against toxicity.

In addition to osmotic regulation, proline also acts as a

protector against stress, thereby directly interacting with

macromolecules, and further supporting the maintenance of

the shape of proteins and the natural structure of stress-

affected biological membranes (Kuznetsov and Shevya-

kova 1999). The researchers reported the increased level of

proline chitosan and jasmonate (Mahdavi et al. 2011;

Wasternack and Kombrink 2009).

3.8 Effect of ZnO-NPs, Chitosan, and Jasmonate
on Lipid Peroxidation

The results of the study showed that all concentrations of

ZnO-NPs, chitosan, and jasmonate significantly increased

lipid peroxidation (Fig. 4).

Under normal growth conditions, many metabolic pro-

cesses in plants produce reactive oxygen species, but plants

have efficient antioxidant mechanisms to eliminate reactive

oxygen species (Ma et al. 2020; Sharifan et al. 2020).

Under stress conditions, this balance is disturbed, and the

amount of reactive oxygen species increases. The presence

of these active species is harmful to the plant and damages

cellular structures such as membranes, proteins, and

nucleic acids (Laspina et al. 2005). Measurement of lipid

peroxidation products is one of the most common and

accepted methods of measuring oxidative damage to the

membrane (Shulaev and Oliver 2006). According to

Mckersie and Ya’acov (1994), antioxidant enzymes are

present in peroxisomes, cytosols, and mitochondria and

cause H2O2 to H2O and O2 conversion. Numerous studies

have shown that chitosan, as a biological elicitor, may have

the potential to eliminate free radicals (Kim and Thomas

2007; Yen et al. 2008). It has been suggested that the

amount of malondialdehyde increased by chitosan (Naderi

et al. 2014). External application of methyl jasmonate can

lead to increased production of reactive oxygen species

such as superoxide and hydrogen peroxide. These species

result in the peroxidation of membrane lipids by producing

malondialdehyde (Charles and Simon 1990).

Fig. 3 Effect of different concentrations of ZnO-NPs, chitosan, and

jasmonate on prolin content of Carla plant; The values are shown the

mean of 3 replicates and ± SD (standard deviation). The meanings

that have common words in each treatment were not statistically

significant (p B 0.05)
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3.9 Conclusion

In the present study, we evaluated the physiological

responses of M. charantia in exposure to various concen-

trations of selected non-biological elicitors. We found that

chitosan (10 lM) and jasmonate (250 lM) were acting as

growth stimulators. Secondary metabolites (phenols, fla-

vonoids, carotenoids) significantly increased by all used

elicitors. Based on our result, M. charantia combat

oxidative stress induced by elicitors through increasing in

proline, carbohydrate, phenolic, malondialdehyde content,

and up-regulation of antioxidant enzymes activity as well.

Furthermore, the present study also suggests that the elic-

itors used in this study are useful for the production of

bioactive compounds of M. charantia via metabolic engi-

neering techniques.
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