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Abstract

This work analytically solved the radial Schrodinger equation with an exponential, generalised, anharmonic Cornell
potential using the series expansion method. It also obtained the bound state energy spectra. Through suitable adjustments
to the potential parameters, the well-known potential models, such as the pseudoharmonic and Kratzer potentials, were
deduced. With the potential parameters also adjusted, the energy spectra for the pseudoharmonic and Kratzer potentials
were obtained as special cases. The numerical values of the energy spectra for CO, NO, CH and N, diatomic molecules
were computed for different quantum numbers, n and /, respectively. In addition, with the application of the spectra, an
expression for the mass spectra of heavy quarkonium systems (charmonium and bottomonium) was obtained. The results
agree with the experimental and theoretical studies in previous works.
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1 Introduction

It is a well-known fact that the Schrodinger equation (SE)
describes many physical problems in different branches of
physics and chemistry (Kumar and Fakir 2012; Milanovic
and Ikovic 1999; Roy and Roy 2002). Generally speaking,
when dealing with a particular physical system, a potential
model is used, and this potential model will provide a good
amount of information about the system. There are only a
few potentials, such as the harmonic oscillator and hydro-
gen atom, for which the SE can be solved exactly
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(Alhaidari 2002; Serra and Lipparini 1997). In the fields of
quantum physics and quantum chemistry, the most chal-
lenging task is obtaining exact, analytic solutions to the
radial SE with a given interacting potential (Rani and
Chand 2018; Dong and Ma 1998; Child et al. 2000; Panahi
and Gavabar 2016). In particular, the arbitrary I-state
solutions to the SE find some interest in chemical physics
and molecular spectroscopy (Ikot et al. 2018; Rani et al.
2018). To describe the spectra of diatomic molecules,
potential models like the Morse potential are generally
utilised (Alavi and Rouhani 2004; Arima and Iachello
2000; Bonatsos et al. 1997). The harmonic oscillator
potential is useful in many branches of physics (Monteiro
et al. 1996; Rosmalen et al. 1983), and the Kratzer and
pseudoharmonic potentials are intermediates between
anharmonic and harmonic oscillator potentials (Bayrak
et al. 2007; Berkdemir et al. 2006a; Ikhdair and Sever
2009a). The exact solution of the SE, with spherically
symmetric potential, plays a vital role in nuclei, atoms,
molecules and spectroscopy in many fields of modern
physics. Therefore, many authors have devoted time to
obtaining this exact SE solution via different analytical
methods, such as point canonical transformation (PCT)
(Abu-Shady 2015; De et al. 1992), the Nikifarov—Uvarov
method (Ikot et al. 2011; Hassanabadi et al. 2017; Dong
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et al. 2003; Hassanabadi et al. 2013; Ikot et al. 2016a; Ikot
and Akpabio 2011), numerical methods (Ixaru et al. 2000;
Sandin et al. 2016; Hassanabadi et al. 2012), the asymptotic
iterative method (AIM) (Ikot et al. 2018; Kumar and Fakir
2013; Ikhdair 2011; Ikot et al. 2014), supersymmetry
quantum mechanics (SUSYQM) (Hamzavi et al. 2013; Ikot
et al. 2016b), the factorisation method (Okorie et al.
2018a, b) and the Hill determinant method (Choudhury and
Mondal 1995), amongst others. Due to the importance of
anharmonic potentials in molecular physics, molecular
spectroscopy and chemical physics, researchers have stud-
ied them in relativistic and non-relativistic regimes (Al-
Jamel and Wityan 2012). Amongst many applications of
the SE solution is investigating the mass spectra of heavy
quarks for some special potential models. Arrays of
potential models are commonly used in studying heavy
quarkonium spectra. For instance, Martin, logarithmic and
Cornell potentials have often been used (Al-Jamel 2011;
Patel and Vinodkumar 2009a; Rai et al. 2008; Reyes et al.
2003; Zalewski 1998; Bhanot and Rudaz 1978) to investi-
gate quark confinement. Most of these potentials consider
two distinctive features of the strong interaction—asymp-
totic freedom and confinement (Al-Jamel 2011). The suc-
cessful potential model for such systems is the one that
produces its mass spectra in agreement with the experi-
mental data, within about 20 MeV, and leptonic decay
widths, within a factor of two (Al-Jamel 2018). The study
of heavy quarkonium systems provides a solid understating
for the quantitative test of quantum chromodynamic (QCD)
theory and the standard model (Kuchin and Maksimenko
2013; Yazarloo and Mehraban 2016). Studying the wave
function of the bound state of a quark and antiquark from
the strong interaction between quark and antiquarks in B
and D mesons gives important information about the
property of strong interaction and the mechanism of heavy
meson decays (Roy et al. 2012). Constructing phe-
nomenological models by employing the basic properties of
QCD is very useful for predicting the properties of hadrons,
such as mass, form factors, decay widths, etc. In this con-
text, potential models for mesons, involving potential
between heavy and light quarks, have been very successful
for studying hadrons and their properties (Kumar and
Chand 2014). In recent years, many scientists have become
interested in investigating the spectra of the above-men-
tioned quarks. Kumar and Fakir (2013) analytically
obtained the energy eigenvalues and normalised eigen-
functions of the radial SE in N-dimensional space for the
quark—antiquark interaction potential using the power series
technique via a suitable ansatz to the wavefunction.
Yazarloo and Mehraban (2016) studied the B and Bs
mesons spectra and their decays properties within the
framework of a non-relativistic potential model, using a
new potential model for the interaction of mesonic
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systems—the Coulomb plus exponential-type potential, of
the form

a
V(r) :;-|—be“’—|—Vo. (1)

The authors applied the perturbation approach in their
investigation. Abu-Shady et al. (2018) obtained the exact
solution of the N-dimensional radial SE with the gener-
alised Cornell potential using the Laplace’s transformation
(LT) method. They deduced eigenvalues for some special
cases of the generalised Cornell potential and obtained the
mass spectra for the system. Maksimenko and Kuchin
(2011) generated the mass spectrum of the SE for a
potential comprised of the sum of a harmonic oscillator
potential, a linear potential and a Coulomb potential, using
the Nikiforov—Uvarov method for large and small distances
between particles in the bound state; they obtained
asymptotic expansions for the energy levels and wave
functions. Ciftci and Kisoglu (2018) generated energy
eigenvalues for an exact SE and derived the mass of a
heavy quark-antiquark system (quarkonium) using the
Asymptotic Iteration Method (AIM). They also tested the
accuracy of their formula by comparing the eigenvalues
with those obtained numerically. Furthermore, a semi-an-
alytical formula was applied to cc, bb and cb meson sys-
tems for comparing the masses with the experimental data
(Al-Oun et al. 2015). Al-Oun et al. (2015) examined
characteristic heavy quarkonia (¢ and bb) properties in the
general framework of a non-relativistic potential model
consisting of a Coulomb plus quadratic potential. The
author determined potential parameters by simultaneously
fitting the [ states of both (c¢ and bb) with known experi-
mental values. In similar development, Kuchin and Mak-
simenko (2013) obtained the spin-averaged mass spectra of
heavy quarkonia (bb and mesons with a Cornell potential in
the framework of non-relativistic SE. Rahmani et al. (2014)
investigated the SE with a potential containing Coulomb,
linear and quadratic terms, using the Nikiforov—Uvarov
technique. They further reported the corresponding Isgur—
Wise function parameters and obtained the masses, slope
and curvature parameters of some heavy-light mesons.
Therefore, motivated by the current advances in quark
confinement, the present research introduces a generalised
Cornell potential of the form

c d —or f
V(r):ar2+br—;+;e +3te (2)

where a, b, c, d, e and f are potential parameters. It is to be
noted that the inverse square term, f / r*> makes the poten-
tials more singular and produces better confinement com-
pared to Cornell and Coulomb perturbed potentials (Rani

and Chand 2018). This potential is also more general, since
the Cornell potential and other quark confining potentials
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are embedded in it. The scheme of this presentation is as 2u dod
follows. Section 2studies the potential with the radial SE A= 2 (a 6 >> (8a)
and presents the bound state energy eigenvalue for the 5
potential. Section 3 presents the bound state energies of the B 2_# ( b+ d_oc ) (8b)
pseudoharmonic and Kratzer potentials as special cases of K 2
the generalised energy eigenvalues. Section 4 derives the 2u
mass spectra of the heavy quarkonium systems. The results € = ﬁ( —d), (8¢c)
of the work are discussed in Sect. 5, and a brief conclusion )
is presented in Sect. 6. LIL+1)=1(l+1)+ ;gf 9)
L:_l+l\/(2z+1)2+8uf/h2 (10)

2 The Radial SE with the Generalised 22 '

Potential Using  the wave  function of the form,

¥(r) = e ™ P F(r), Eq. (6) b
This research considers the radial SE of the form (r)=e (r), Eq. (6) becomes
2

CP(r) 2dY I(1+1) 2 F'(r) + {—4ar—23+}F/(r)

(), 2490) [0+ 200y ;

dr? rodr r2 7 |
(3) + [(40(2 —A)r? + (40B — B)r + (C — 2/3)7
where [ is the orbital momentum quantum number; p is the L(IL+1) )
’ - -6 F(r)=0. 11

reduced mass; r is the internuclear separation; and E r2 + (8 “+f ) (r) (1)

denotes the energy eigenvalues of the system. Substituting
the generalised potential given in Eq. (2) into Eq. (3) gives

[i 2d I(+1)

dr?  rdr r2

Y(r)+ {2_,11 (E — (ar* + br

h2

., , (4)
c —0o

——t -+ Y(r) =0.

r+re +r2+e)>] (r)

Taking the Taylor series expansion of the exponential

term of Eq. (4) and neglecting the terms greater than
r*turns Eq. (4) into the following.

< 2d I(I+1) 2u do®
—+—-——- b4 SE-{a——)r
Lir2 rdr r? (r)+ [}‘12 ( (a 6 )r
do? 1 f
—(b—&—?)r+(c—d);—r—2—e>]‘ll(r)=0,
(5)
Simplifying Eq. (5) yields
¢ 24 LIL+1) 2u 5 1
[ﬁ+;E_T+rT e—Ar —Br—&-C; Y(r)
:07
(6)
where
2
e=(E—e) L (7)

Assuming the wave function for the series solution of
Eq. (11) in the form

o0
F(r) = Z a,r*"

n=0

(12)

And substituting Eq. (12) into Eq. (11) results in the
following

i an{[(2n+L)(2n+L— 1) +2(2n+ L) — L(L+ 1)]/?"+72
n=0

+[-2f2n+L+1)+ C}r2n+L—1
+ [—4a(2n+ L) + &+ B> — 60" F
+ [49(,3 — B]}’Z’H'L'*'1 + [4“2 _ A] r2n+L+2} -0

(13)

Equation (13) is a linearly independent function, each
equal to zero, noting that r is a non-zero function; therefore,
the coefficients of r are zeros. With this in mind, the rela-
tion for each of the terms is obtained as shown below

(2n+L)(2n+L+1)—L—L*=0, (14)

e =20(4n+ 2L +3) — (15)

C=2p02n+L+1), (16)
VA

06277 (17)
B

B=1 (18)

The energy eigenvalues expressions are then obtained
using Egs. (15) and (7) as,
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2p

(E—e)?:2oc(4n+L+3)—ﬁ2.. (19)

By substituting the expression for L, o, f, A and B, into
Eq. (19), the energy eigenvalue is obtained as follows

P{o-df( o+ )]

12u

x <4n+2+ (21+1)2+%f> ’

2 -2
_2me—a) <4n—|— 1+4/(1+ 1)2+8hi2f>

2
(20)
where parameters a, b, c,d and f must satisfy the condition
b+do?(1
c= _2d(1 —I—OC) _A'_M
2% \/ »  8u(f+d)
—— | 4n+1 2141 —— .
u(4a+dcc4)< RRATIC "

(1)

This result is new, and, to the best of the authors’
knowledge, no study has been reported on this generalised
Cornell potential and its application to mass spectra and
diatomic molecules. To compute the numerical results of
Eq. (20) for some selected diatomic molecules, the spec-
troscopic parameters are taken from Ref. Rani and Chand
(2018) as given in Table 1 (Rani and Chand 2018), using
the following conversion factors (Ikot et al. 2019) hc =
1973.29eV and 1 a.m.u = 931.49408 MeV/c?>. Four dia-
tomic molecules—CO, NO, CH and N, (Rani and Chand
2018)—were selected and adjusted to the potential
parameters as

D
Cl:—267 b:Dw C:2Der€7 d:_zDere’ e
r

e

=2D, and f = Derz.

Using Eq. (20) with these parameters as input, the
numerical results for the four diatomic molecules of CO,
NO, CH and N, were computed. Since this result is new,

and there is no available literature with which to compare
this study, we rather investigate the special cases of the
generalised Cornell potential which reduced to the well-
known pseudoharmonic and Kratzer potentials.

3 Special Cases

The generalised Cornell potential reduces to pseudohar-
monic and the Kratzer potentials, which have many appli-
cations in physics and chemistry.

3.1 The Pseudoharmonic Potential

The pseudoharmonic potential is used to study the anhar-
monicity of diatomic molecules and may be considered as a
potential with behaviour between exactly solvable har-
monic oscillator and nonlinear anharmonic models
(Ussembayev 2009). This potential is used in both classical
and quantum physics to describe the interaction of some
diatomic molecules (Rani and Chand 2018). By adjusting
the generalised Cornell potential as

D,

a=—,b=o0,c=d=0,e=—2De,f =D,r,, (22)
re
The pseudoharmonic potential was obtained as
D, , D.r?
V() =5+ =5 = 2D (23)

where D, represents the dissociation energy, and r, is the
equilibrium internuclear separation. Then, by substituting
Eq. (22) into Eq. (20), the authors obtained the energy
eigenvalue for the pseudoharmonic potential as

WD, \/ 5 8uD,r?
dn+2 20+ 1)+ 554 ).
2W2<n+ +/ U+ 1)+ P

e

E, = _ZDe +

(24)

Equation (24) is in good agreement with that of refer-
ences Rani and Chand (2018) and Ikhdair et al. (2015).

Table 1 The properties of the diatomic molecules (Rani and Chand 2018)

Diatomic molecules  Dissociation energy D,(eV)

Equilibrium separation r, (A)

Reduced mass p(a.m.u)  Screening parameter A

N, 11.938193820 1.0940
(60) 10.842073641 1.1283
CH 3.94748149 1.1198
NO 8.043729855 1.1508

7.00335 2.69860
6.860586 2.29940
0.6929931 -

7.468441 2.75340
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3.2 The Kratzer Potential

The Kratzer potential has been extensively used to describe
molecular structures and interactions. Adjusting the values
of the generalised Cornell potential parameters as

a:b:0,d:o,c:2Dere,e:De,f:Dere2 (25)
gives the Kratzer potential as

D,r2 2D
V(r) = D, + 2efe _ ZDele. (26)

r2 r

Using Eq. (25) in Eq. (20) provides the energy eigen-
values for the Kratzer potential as

E D 2uD?r? n 1 . 1 2+ 2uD,r?
nl — e hz n 4 2 hz

-2

(27)

Equation (27) is also in good agreement with that of
references Rani and Chand (2018) and Ikhdair et al. (2015),
and it can be written as

— ZDS rf

.
(n +ie/+ %)2+2Dgr3)

E, = (28)

The pseudoharmonic and Kratzer potentials have been
successfully used to study the eigenvalue spectra of a class
of diatomic molecules (Oyewumi et al. 2008). This research
now uses results of the energy eigenvalue spectra for the
pseudoharmonic and Kratzer potentials to study the four
diatomic molecules of CO, NO, CH and N,. Some useful
properties of these diatomic molecules are presented in
Table 1 (Rani and Chand 2018). Using Table 1 alongside
Egs. (24) and (27), the authors compute the numerical
values of the energy eigenvalues for the Kratzer and
pseudoharmonic potentials given in Tables 2, 3,4, 5, 6,7, 8
and 9. In Tables 2, 3, 4 and 5, the energy spectra for the
pseudoharmonic potentials of the four diatomic molecules
are shown and compared with that of references Rani and
Chand (2018), Ikhdair et al. (2015), Ikhdair and Sever
(2009b), Arda and Sever (2012), Sever et al. (2008) and
Berkdemir et al. (2006b). Also, Tables 6, 7, 8 and 9 show
the energy spectra of the Kratzer potential for the four
diatomic molecules for quantum numbers n and [/, respec-
tively, in comparison with those in references Rani and
Chand (2018), Ikhdair et al. (2015), Ikhdair and Sever
(2009b), Arda and Sever (2012), Sever et al. (2008) and
Berkdemir et al. (2006b). Interestingly, the numerical
results are in good agreement with those obtained in ref-
erences Rani and Chand (2018), Ikhdair et al. (2015),
Ikhdair and Sever (2009b), Arda and Sever (2012), Sever
et al. (2008) and Berkdemir et al. (2006b).

Table 2 Numerical result of the generalised energy eigenvalues (GeV)
for different diatomic molecules with

a= D—;, b=D,, ¢c=2D,r,, d=—-2D,r,, ¢ =2D, and f = Derf
n l N, CO NO
0 0 4.164066002 3.115813810 3.121378397
1 0 4.201998332 3.144988093 3.153253716
1 4.202052445 3.145030875 3.153304707
2 0 4.240017239 3.174230826 3.185210617
1 4.240114640 3.174307830 3.185302394
2 4.240233681 3.174401943 3.185414562
3 0 4.278122720 3.203542001 3.217249089
1 4.278263401 3.203653223 3.217381647
2 4.278425719 3.203781550 3.217534590
3 4.278609672 3.203926981 3.217707917
4 0 4.316314758 3.232921608 3.249369117
1 4316498711 3.233067038 3.249542444
2 4.316704296 3.233229570 3.249736151
3 4.316931509 3.233409202 3.249950234
4 4.317180348 3.233605928 3.250184690
5 0 4.354593334 3.262369628 3.281570678
1 4.354820547 3.262549260 3.281784761
2 4.355069386 3.262745986 3.282019217
3 4.355339846 3.262959806 3.282274039
4 4.355631922 3.263190715 3.282549224
5 4.355945611 3.263438708 3.282844766

4 Mass Spectra of Heavy Quarkonium

This section derives the mass spectra of the heavy
quarkonium systems, such as charmonium and bottomo-
nium, which quarks and antiquarks of the same variety. To
determine the mass spectra of the system, the approach
from references Patel and Vinodkumar (2009b), Rajabi
(2005) and Yu et al. (2004) is followed.

M=m;+m +E,., (29)

which assumes

mp = my = my., (30)
Resulting in the expression

M =2m, + E,., (31)

where my, is the mass of the particle under investigation and
E,; is the derived energy eigenvalues. Substituting Eq. (20)
into Eq. (31) gives
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Table 3 Comparison of bound state energy eigenvalues N, molecules (eV)

N [ Present work Rani and Chand Ikhdair et al. (2015) Ikhdair and Sever Arda and Sever Sever et al. (2008)
(2018) (2009b) (2012)
0 0 0.1091850000 0.10918452 0.10918501 0.1091559 0.109180 0.10915590
1 0 0.3274303300 0.32742891 0.32743034 0.3273430 0.327414 0.32734304
1 0.3279290500 0.32792762 0.32792905 0.3278417 0.327913 0.32784167
2 0 0.5456756500 0.54567331 0.54567566 0.5455302 0.545648 0.54553018
1 0.5461743700 0.54617203 0.54617437 0.5460288 0.546147 0.54602881
2 0.5471717800 0.54716942 0.54717177 0.5470260 0.547145 0.54702603
3 0 0.7639207900 0.76391770 0.76392098 - 0.763883 -
1 0.7644197000 0.76441641 0.76441969 - 0.764382 -
2 0.7654171000 0.76541381 0.76541710 - 0.764382 -
3 0.7669131300 0.76690982 0.76691313 - 0.765380 -
4 0 0.9821663000 0.98216208 0.98216631 0.9819045 0.766877 0.98190446
1 0.9826650200 0.98266080 0.98266502 0.9824031 0.982117 0.98240309
2 0.9836624200 0.98365820 0.98366242 0.9834003 0.982616 0.98340031
3 0.9851584600 0.98515421 0.98515845 0.9848961 0.983614 0.98489606
4 0.9871530200 0.98714876 0.98715302 0.9868903 0.985111 0.98689026
5 0 1.2004116200 1.20040647 1.20041163 1.2000916 0.987107 1.20009160
1 1.2009103400 1.20090519 1.20091034 1.2005902 - 1.20059020
2 1.2019077500 1.20190258 1.20190774 1.2015875 - 1.20158750
3 1.2034078000 1.20339859 1.20340377 1.2030832 - 1.20308320
4 1.2053983400 1.20539314 1.20539834 1.2050774 - 1.20507740
5 1.2078913100 1.20788609 1.20789131 1.2075699 - 1.20756990

(s o[ ()] )

12u

8
x <4n+2+ (21+1)2+hi2f> ’

-2
) _ 2
_2ue—d) (4n+ 144/ + 1)%%) ,

M=2m+e+

h2
(32)

where m is the mass of the element under consideration,
and a, b, ¢, d, e and f are the potential parameters deter-
mined by fitting the experimental values. Applying the
energy eigenvalues obtained from Eq. (20), the authors
obtained an expression for mass spectra using Eq. (32) and
obtained the potential parameters a, b, c, d, e and f by fitting
the experimental values into the mass spectra equation and
solving it simultaneously. Using the obtained potential
parameters, the mass spectra of the heavy quarkonium
systems (the charmonium and bottomonium) were calcu-
lated, as presented in Tables 11 and 12. These results are in
good agreement with the experimental and theoretical
results reported in references Kumar and Fakir (2013) and

2
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Al-Jamel and Wityan (2012). However, the present work is
slightly different from the experimental and theoretical
works, which can be accounted for as an approximation
error.

5 Discussion of Results

This work has introduced an exponential term into gener-
alised anharmonic Cornell potentials and analytically
solved the radial SE with the general potential, using the
series expansion method. The bound state energy spectra of
the SE was obtained and applied to the generalised energy
to deduce the pseudoharmonic and Kratzer potentials as
special cases. Suitable readjustments were also carried out
on the potential parameters, and the improved results gave
the pseudoharmonic and Kratzer potentials. Applying the
parameters of some classes of diatomic molecules—CO,
NO, CH and N,—allowed the authors to generate plots and
compute the numerical values of the special cases. Figure 1
gives the shape of the generalised potential for different
screening parameters; Fig. 2 gives the shape of the gener-
alised potential for different diatomic molecules; Fig. 3
gives the shape of the pseudoharmonic potential for the
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Table 4 Comparison of bound state energy eigenvalues (eV) of CO molecules

n

I

Present work

Rani and Chand

Ikhdair et al. (2015)

Ikhdair and Sever

Arda and Sever

Sever et al. (2008)

(2018) (2009b) (2012)
0 0 0.1019487400 0.1019483 0.1019578 0.1019306 0.101953 0.1019306
1 0 0.3057265700 0.3057253 0.3057537 0.3056722 0.305738 0.3056722
1 0.3062051800 0.3062039 0.3062324 0.3061508 0.306217 0.3061508
2 0 0.5095044000 0.5095022 0.5095496 0.5094137 0.509524 0.5094137
1 0.5099830100 0.5099808 0.5100283 0.5098923 0.510003 0.5098923
2 0.5109402100 0.510938 0.5109856 0.5108495 0.510961 0.5108495
30 07132822300 0.7132792 0.7133455 - 0.71331 -
1 0.7137608400 0.7137578 0.7138242 - 0.713789 -
2 0.7147180400 0.714715 0.7147815 - 0.714747 -
3 0.7161537500 0.7161507 0.7162175 - 0.716183 -
4 0 09170600500 0.9170561 0.9171414 0.9168969 0.917095 0.9168969
1 0.9175386700 0.9175347 0.9176201 0.9173755 0.917574 0.9173755
2 0.9184958700 0.9184919 0.9185774 0.9183327 0.918532 0.9183327
309199315800 0.9199276 0.9200134 0.9197684 0.919969 0.9197684
4 09218457200 0.9218418 0.9219279 0.9216825 0.921885 0.9216825
5 0 1.1208378800 1.1208331 1.1209372 1.1206384 - 1.1206384
1 1.1213165000 1.1213117 1.1214159 1121117 - 1121117
2 1.1222737000 1.1222689 1.1223733 1.1220742 - 1.1220742
3 1.1237094100 1.1237046 1.1238093 1.1235099 - 1.1235099
4 1.1256235500 1.1256187 1.1257238 1.125424 - 1.125424
5 0.128159900  1.1280111 1.1281166 1.1278165 - 1.1278165

above-mentioned diatomic molecules; and Fig. 4 gives the
shape of the Kratzer potential for the above-mentioned
diatomic molecules. A careful perusal of the graphs in
Figs. 3 and 4 reveals that they follow the trend of the
generalised potential graphs in Figs. 1 and 2. Figures 5 and
6 show the variation of the mass spectra with the screening
parameter. It can be deduced from the graphs that the mass
spectra increase as the screening parameter increases.
Table 2 gives the numerical result of the generalised energy
eigenvalues from Eq. (20). It may be observed in Table 2
that the quantum numbers n and [ increase as the bound
state energy for the different diatomic molecules increases,
and this is in line with results from other works of the same
kind (Ikhdair et al. 2015; Ikhdair and Sever 2009b; Arda
and Sever 2012; Sever et al. 2008; Berkdemir et al. 2006b;
Ikot et al. 2019). The numerical results for the special cases
were computed to check the validity of the employed
method in this research against methods in other, similar
studies. Tables 3, 4, 5 and 6 show the energy spectra for the
pseudoharmonic potential of different diatomic molecules,
and Tables 7, 8, 9 and 10 display the energy spectra of the
Kratzer potential for the different diatomic molecules with
various principal and magnetic quantum numbers n and /,
respectively. In addition, applying the energy generated

from the present work, the authors generated an expression
for mass spectra for the potential and obtained the potential
parameters a, b, ¢, d, e and f by fitting the experimental
values into the energy mass spectra equation and simulta-
neously solving it. The mass spectra of heavy quarkonium
systems—specifically charmonium and bottomonium—
were calculated, and the results are presented in Tables 11
and 12, respectively. Comparing the results with the
experimental data and other theoretical studies (Kumar and
Fakir 2013; Al-Jamel and Wityan 2012) indicated that this
work’s numerical values are fractionally improved.

6 Conclusion

This research exactly solved the radial SE with a new,
generalised, anharmonic Cornell potential using the series
expansion method. The authors obtained the bound state
energy spectra of the SE and deduced the pseudoharmonic
and Kratzer potentials as special cases. Numerical results of
the special cases were computed for the CO, NO, CH and
Nydiatomic molecules and were compared with results
from the extant literature. In addition, we employed the
energy expression of the new generalised potential to obtain

2
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Table 5 Comparison of bound state energy eigenvalues (e¢V) of NO molecule

n

l

Present work

Rani and Chand (2018)

Ikhdair et al. (2015)

Ikhdair and Sever (2009b)

Sever et al. (2008)

0

N B WP = O R WD~ O WN = ON=O=O O

0.08251020
0.24742511
0.24784775
0.41233997
0.41276260
0.41360784
0.57725482
0.57767746
0.57852269
0.57979046
0.74219680
0.74259231
0.74343755
0.74470532
0.74639552
0.90708453
0.90750717
0.90835240
0.90962017
0.91131038
0.91342288

0.0825099
0.2474241
0.2478467
0.4123382
0.4127608
0.4136061
0.5772523
0.577675

0.5785202
0.579788

0.7421665
0.7425891
0.7434344
0.7447021
0.7463923
0.9070807
0.9075033
0.9083485
0.9096163
0.9113065
0.913419

0.0825103
0.2474251
0.2478478
0.41234

0.4127626
0.4136078
0.5772548
0.5776775
0.5785227
0.5797905
0.7421697
0.7425923
0.7434375
0.7447053
0.7463955
0.9070845
0.9075072
0.9083524
0.9096202
0.9113104
0.9134229

0.0824883
0.2473592
0.2477817
0.4122301
0.4126526
0.4134977

0.7419718
0.7423944
0.7432395
0.744507

0.7461969
0.9068427
0.9072653
0.9081104
0.9093779
0.9110678
0.9131799

0.0824883
0.2473592
0.2477817
0.4122301
0.4126526
0.4134977

0.7419718
0.7423944
0.7432395
0.744507

0.7461969
0.9068427
0.9072653
0.9081104
0.9093779
0.9110678
0.9131799

Table 6 Comparison of bound state energy eigenvalues (eV) of CH molecule

n

l

Present work

Rani and Chand (2018)

Ikhdair et al. (2015)

Ikhdair and Sever (2009b)

Arda and Sever (2012)

0

N A LW Y= O LW~ O WD~ O N~ O = OO

0.168679329
0.505141808
0.508725634
0.841604290
0.845188111
0.852350893
1.178066768
1.181650590
1.188813372
1.199545389
1.514529247
1.518113069
1.525275870
1.536007868
1.550294628
1.850991726
1.854575548
1.861738329
1.872470347
1.886757107
1.904579457

0.168679
0.50514

0.508723
0.841601
0.845184
0.852347
1.178062
1.181646
1.188808
1.19954

1.514523
1.518107
1.525269
1.536001
1.550288
1.850984
1.854568
1.86173

1.872462
1.886749
1.904571

0.168679
0.505142
0.508726
0.841604
0.845188
0.852351
1.178067
1.181651
1.188813
1.199545
1.514529
1.518113
1.525276
1.536008
1.550295
1.850992
1.854576
1.861738
1.87247

1.886757
1.904579

0.168634
0.505007
0.50859
0.84138
0.844963
0.852125

1.514126
1.517709
1.52487
1.5356
1.549884
1.850498
1.854082
1.861243
1.871973
1.886257
1.904076

0.168634
0.505007
0.50859
0.84138
0.844963
0.852125

1.514126
1.517709
1.52487
1.5356
1.549884
1.850498
1.854082
1.861243
1.871973
1.886257
1.904076
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Table 7 The bound state energy
eigenvalues (eV) of CO
molecules (Kratzer)

Table 8 Comparison of bound
state energy eigenvalues (eV) of
NO (Kratzer)

~

Present work

Rani and Chand (2018)  Berkdemir et al. (2006b)

Arda and Sever (2012)

0 0 0.05082494 0.0508247 0.050823 0.050827
1 0 0.15129165 0.151291 0.151287 0.151296
1 0.15176027 0.1517596 0.151755 0.151765
2 0 025036223 0.2503612 0.250354 0.250369
1 0.25082435 0.2508233 0.250816 0.250831
2 0.25174847 0.2517474 0.251744 0.251756
3 0 0.34806242 0.348061 0.348051 0.348070
1 0.34851816 0.3485167 0.348507 0.348526
2 0.34942953 0.3494281 0.349418 0.349438
3 0.35079629 0.3507948 0.350785 0.350806
4 0 0.44441739 0.4444156 0.444403 0.444425
1 0.44486688 0.444865 0.444852 0.444871
2 0.44576573 0.4457639 0.445751 0.445774
3 0.44711371 04471118 0.447099 0.447123
4 0.44891047 0.4489086 0.448895 0.448921
5 0 053945173 0.5394495 0.539434 -
1 0.53989506 0.5398928 0.539877 -
2 0.54078162 0.5407794 0.540764 -
3 0.54211117 0.5421089 0.542093 -
4 0.54388337 0.5438811 0.543865 -
5 0.54609775 0.5460955 0.546082 -
n 1 Present work Rani and Chand (2018) Berkdemir et al. (2006b)
0 0 0.041123185 0.041123 0.041118
1 0 0.122325837 0.1223253 0.122311
1 0.122738851 0.1227383 0.122724
2 0 0.202298781 0.2022979 0.202274
1 0.207055570 0.2027047 0.202681
2 0.203518985 0.2035181 0.203494
3 0 0.281066725 0.2810656 0.281033
1 0.281467387 0.2814662 0.281434
2 0.282268589 0.2822674 0.282235
3 0.283470071 0.2834689 0.283436
4 0 0.358653753 0.3586523 0.358611
1 0.359048425 0.3590469 0.359006
2 0.359837645 0.3598361 0.359795
3 0.361021161 0.3610197 0.360978
4 0.362598619 0.3625971 0.362555
5 0 0.435083357 0.4350816 0.435032
1 0.435472155 0.4354704 0.435421
2 0.436249633 0.4362478 0.436198
3 0.437415539 0.4374137 0.437364
4 0.438969529 0.4409093 0.438917
5 0.440911119 0.4389677 0.440858
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Table 9 Comparison of bound

. n 1 Present work Rani and Chand (2018) Berkdemir et al. (2006b)
state energy eigenvalues (eV) of
CH (Kratzer) 0 0 0083224181 0.0832238 0.083214
0 0.241151499 0.2411505 0.241123
1 0.244409835 0.2444088 0.244381
2 0 0.389591423 0.3895899 0.389547
1 0.392656021 0.3926545 0.392611
2 0.398769199 0.3987676 0.398722
3 0 0.529288939 0.5292869 0.529229
1 0.532174861 0.5321728 0.532115
2 0.537931843 0.5379297 0.53787
3 0.546530341 0.5465282 0.546467
4 0 0.660917323 0.6609149 0.660844
1 0.663638195 0.6636357 0.663565
2 0.669066123 0.6690636 0.668992
3 0.677173653 0.6771711 0.677098
4 0.687920043 0.6879174 0.687842
5 0 0.785086267 0.7850834 0.785001
1 0.787654437 0.7876516 0.787569
2 0.792777919 0.792775 0.792692
3 0.800431159 0.8231602 0.800343
4 0.810576229 0.8105732 0.810487
5 0.823163301 0.8004282 0.823071
80+
- == a:O_Ol
s = ' 0=0.30
704 — o=0.70
60
)
N 504 =
o) Ny
~
[N 40
304
20 \". 0, : : , : .
cl., 0 1 2,03 : 5
- N #(4)
~— T p—

01 02 03 04 05 06 07 08 09 1.0 Fig. 2 Shape of the generalised potential for different diatomic
molecules

r(a)

Fig. 1 Shape of the generalised potential for different screening
parameters
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Fig. 3 Shape of pseudoharmonic potential for different diatomic
molecules
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Fig. 4 Shape of Kratzer potential for different diatomic molecules

its corresponding mass spectra relation and used the
potential parameters to calculate the mass spectra of heavy
quarkonium systems (charmonium and bottomonium). The
results, when compared with the experimental data and
other theoretical studies, were observed to be fractionally
improved, giving more validity and reliability to the
potential developed and approach used in this work. This
new, generalised, anharmonic Cornell potential will be of

10 - -

(=)
1

mass spectra(eV)
-

=== r'o~=10
_—- i ge=15
— 0=2.0

— (!=2.2

0 2 4 6 8 10
quantumnumber

Fig. 5 Shape of mass spectra of Charmonium for different values of o

"t o035 o
130 |=rro=040 S 7
31 .
— 0=0.45 R 4
— 0=0.50 S /
S o124
X
§
"
E 11-
10-
0 2 4 6 8 10

quantumnumber

Fig. 6 Shape of mass spectra of Bottomonium for different values of
o

great importance and will become a subject of interest in
many fields of physics and chemistry, as it provides valu-
able information on the quantum mechanical system in
atomic, molecule physics and chemical physics (Jia et al.
2017, 2018a, b, c, 2019; Peng et al. 2018; Jiang et al. 2019;
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Table 10 Comparison of bound
state energy eigenvalues (eV) of
N, molecule (Kratzer)

~

Present work

Rani and Chand (2018)

Berkdemir et al. (2006b)

Arda and Sever (2012)

N A WY = O PR WD = O W= O N —~=O = O O

0.05443678
0.16207712
0.16256571
0.26826158
0.26874357
0.26970742
0.3730163
0.37349181
0.37444272
0.37586878
0.47636683
0.47683599
0.47777417
0.47918117
0.48105663
0.578335816
0.57880107
0.57972677
0.58111503
0.58296552
0.58527778

0.0544366
0.1620764
0.162565

0.2682605
0.2687424
0.2697063
0.3730147
0.3734903
0.3744412
0.3758672
0.4763649
0.476834

0.4777722
0.4791792
0.4810546
0.5783358
0.5787987
0.5797244
0.5811126
0.5829631
0.5852753

0.05443

0.162057
0.162546
0.268229
0.268711
0.269675
0.372972
0.373447
0.374398
0.375823
0.476313
0.476779
0.477717
0.479124
0.480999
0.578269
0.578732
0.579658
0.581046
0.582896
0.585208

0.054434
0.162068
0.162557
0.268245
0.268728
0.269692
0.372992
0.373468
0.374419
0.375846
0.476334
0.476803
0.477742
0.47915

0.481026

Table 11 The mass spectrum for Charmonium with the mass m. = 1.48 GeV o = 0.09, f =2.001, a = 0.022, b = 0.483, e = 1.306,
d =0.890 and f = 6.736

State Present work Kumar and Fakir (2013) Al-Jamel and Wityan (2012) Exp.

1s 3.095922883 3.078 3.096 3.096
2s 3.685893337 3.455 3.686 3.686
2p 3.756506900 3.768 3.770 -

3s 4.322810754 4.250 3.984 4.040
4s 4.989406069 4.661 4.150 4.263

Table 12 The mass spectrum for Bottomonium with the mass m, = 4.68 GeV o = 0.16,  =2.105, a = 0.024, b = 0.248, ¢ = 0.684, d =
0.890 and f = —0.213

State Present work Kumar and Fakir (2013) Al-Jamel and Wityan (2012) Exp.

Is 9.515194895 9.510 9.460 9.460
2s 10.01801260 10.038 10.023 10.023
2p 10.09446270 10.390 10.160 10.260
3s 10.44142202 10.566 10.280 10.355
4s 10.85777405 11.094 10.420 10.580

y @ Springer
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Tang et al. 2020; Wang et al. 2019) and also opens new
windows for further investigation.
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