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Abstract
The heat treatment techniques are significant methods for improving metals and alloys. Particularly, it is important to

control transformation temperature and improve mechanical and physical properties of materials. There are two important

parameters that can be controlled, which are temperature and time of aging. In this study, a quaternary Cu79–Al12–Ni4–Nb5
(wt%) alloy was produced using arc melting under an atmosphere control. The alloy was aged isothermally at 1073 K for 1,

2, 3, 6, 12, and 24 h. The map of constituents showed that neither Cu contributed in Nb-rich phases nor Nb dissolved in the

matrix. The martensitic phase transformation for as-casted and aged specimens was carried out using a DSC device. The

phase transformation was generally shifted to the higher temperature by increasing the time of aging, but the alloy lost its

shape memory feature when it was aged for 24 h. XRD and optical microscopy were utilized to investigate characteri-

zations of the alloy. Additionally, the aging introduced multiphases in the alloys and the intensity of XRD peaks was

increased by increasing the time of aging up to 3 h.
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1 Introduction

In recent decades, shape memory alloys (SMAs) have

made a significant contribution to the high technological

application, because they have shown a remarkable noise

reduction, high strain recovery, and comparably high

vibration damping (Graesser and Cozzarelli 1991; Mabe

2008; Qader et al. 2019a, b). These alloys are classified

into some families, such as NiTi-based and Cu-based

SMAs, where they get more attention from researchers and

engineers. Since their crystal structure can be flipped

between two solid phases (austenite and martensite), the

energy of deformation can be stored in the martensite and it

can be released through austenite phase transformation.

Although NiTi-based alloys are more prominent in the

industrial fields, they have a comparably high price and

mostly can be used for low-temperature applications. On

the other hand, Cu-based SMAs are considered as an

alternative for some other applications. Cu–Al–Ni-based

SMAs have demonstrated phase transformation between

- 200 and 200 �C (Čolić et al. 2010), while the production

technique and alloying with new elements can enhance the

range of phase transformation and other some other phys-

ical characteristics of the alloy (Dagdelen et al. 2019a, b;

Qader et al. 2019a, b; Vajpai et al. 2013).

Saud et al. (2016) investigated the effect of different

aging conditions on microstructural and mechanical prop-

erties of quaternary CuAlNiTi SMAs. They found that the

increase in both temperature and aging time could shift

phase transformation temperatures to higher temperatures.
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The microstructural phase was affected through the aging

process; thus, the tensile strength and other mechanical

characteristics were influenced by keeping the alloys in

different temperatures and various times. Suresh and

Ramamurty (2008) found that the fraction of precipitate

increased with increasing aging temperature, and thus, the

damping of the alloy was decreased. There is not any

investigation about the effect of aging on the microstruc-

tural and thermal characteristics of Cu–Al–Ni–Nb in the

literature.

In this study, a quaternary Cu–Al–Ni–Nb shape memory

alloy has been obtained using the arc-melting technique. The

alloy has been investigated for a controlled isothermally

aging process. The crystal structural analysis has been car-

ried out using XRD measurement, and surface morphology

has been scanned with a metallurgical microscope (optical

microscope). In addition, the thermal analysis of the CuAl-

NiNb SMA has been studied using differential scanning

calorimetry (DSC). Some other related calculations have

been done to broaden the scope of the study.

2 Materials and Experimental Procedures

To produce the quaternary Cu–Al–Ni–Nb shape memory

alloy, a particular amount of metallic powders with high

purity were weighed with highly sensitive balance

(SCALTEC Analytical balance SBC). The alloy consisted

of copper, aluminum, nickel, and niobium with 79, 12, 4,

and 5 weight percent (wt%), respectively. The powders

were stirred well in a closed compartment to obtain a

desired alloy with comparably high homogeneity. Pelleti-

zation of powders was carried out under 5 MPa compres-

sion, and the pellet was melted in an arc melter in an argon

atmosphere. After the obtained ingot was cooled to room

temperature in the natural atmosphere, it was cut into eight

different samples to apply the aging process. In Table 1, all

specimens with the experimental conditions are summa-

rized. The alloy was aged at 1073 K for 1, 2, 3, 6, 12, and

24 h followed by quenching in the ice-brined medium.

The phase transformation characteristics for as-casted

and aged alloys were accomplished with differential

scanning calorimetry (Perkin Elmer Sapphire). The DSC

was run with 10 K/min and nitrogen gas flowed throughout

the running process. Additionally, the effect of aging on the

crystal structure of the Cu–Al–Ni–Nb alloy was studied

through an X-ray diffraction device (Rigaku D/Max-B

Geigerflex). In addition, the microstructure and the pre-

cipitation of the different constituents were investigated

using optical microscopic (PRIOR Model N334 Incident

Light Metallurgical Trinocular Microscope) and mapping

(EVO 40XVP) technique.

3 Results and Discussion

The distribution of the alloy’s constituents is shown in

Fig. 1. The dominant Cu elements have distributed all over

the alloys except in some particular positions, which seems

to be filled by Nb elements. Ni elements homogenously

have distributed, which means nickel could be presented as

a solid solution, while Al, on the other hand, could be

dissolved in the matrix and presented in the same

microstructures that Nb elements have created.

The DSC measurements (Fig. 2) determined the phase

transformation temperatures (TTs), which are listed in

Table 2. It can be seen that the investigated alloys have

TTs around 500 K which can be considered as a high-

temperature shape memory alloy (HTSMA). The aging

process shifted the TTs to the higher temperatures (Fig. 3),

and after 24 h, the alloy evolves from a martensitic trans-

formation to a non-martensitic transformation alloy, and

the alloy lost its shape memory properties. These results

show that the thermal aging method significantly affects

the transformation temperatures of CuAl-based SMAs.

In another study, Balo and Sel (2012) also examined the

effect of aging time (0–7 h) on the CuAlNi alloy and found

that the TTs fluctuated. However, Benke and his friends

(2007) found that the TTs of CuAlNi SMA were increased

by increasing aging time. On the other hand, Zhou et al.

(2017) reported that the coherence precipitates were the

main reason for the emergence of the phase transformation

in FeNiCoAlTaB.

The amount of latent heat (enthalpy change) needed for

the phase transformation process is obtained from the area

under the endothermic troughs and exothermic peaks of the

DSC curves. The value of enthalpy change (DH) was

obtained through the DSC software program. Mathemati-

cally, the enthalpy change (DH) of the phase transforma-

tion is represented by (Elrasasi et al. 2013; Kök et al. 2020;

Recarte et al. 2004):

Table 1 The nominal codes and a summary of the applying procedure

on the Cu–Al–Ni–Nb shape memory alloy

Alloys’ code Temperature (K) Time (h) Quenching procedure

0 h – – –

1 h 1073 1 Ice brined

2 h 1073 2 Ice brined

3 h 1073 3 Ice brined

6 h 1073 6 Ice brined

12 h 1073 12 Ice brined

24 h 1073 24 Ice brined
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DSM!A ¼
ZAf

As

dq

dT

dT

dt

� ��1
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¼ DHM!A
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ð1Þ

Fig. 1 The obtained mapping for concentration of Cu, Al, Ni, and Nb constituents in the as-cast alloy
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Fig. 2 The DSC curves of the aged Cu–Al–Ni–Nb SMA

Table 2 Phase transformation temperatures for all the aged Cu–Al–

Ni–Nb shape memory alloys

Name As Ap Af Ms Mp Mf

(K) (K) (K) (K) (K) (K)

0 h 481.2 501.8 512.4 473.2 464.4 436.5

1 h 469.1 508.6 541.2 480.7 465.4 427.9

2 h 477.3 517.3 546.9 481.2 466.8 435.6

3 h 479.7 521.4 549.5 485.9 472.8 437

6 h 479.4 520.3 556 503.6 489 456.1

12 h 478.5 520.3 545.2 509.3 498.4 473.8

24 h – – – – – –
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where DS is the entropy change of martensitic phase

transformation and To is the temperature where Gibbs free

energy for both austenite and martensite phase transfor-

mation is equal to zero (To ¼ Ms þ Af

� �
=2) (Dagdelen

et al. 2019a, b; Kok et al. 2019). The enthalpy and entropy

change values for all cases are listed in Table 3. Figure 4

presents the DH and DS for forward and reverse martensitic

phase transformations, in which generally they decreased

with increasing heat treatment. The DHA!M and DSA!M

recorded the minimum value for 3-h aging at 1073 K. In

different circumstances, Ii et al. (2009) investigated aging

time and temperature for CuAl alloyed by different com-

positions of Mn. They have found that the time of aging

increased TTs and enthalpy change of the alloys.

The energy associated with the martensitic phase

transformation is known as Gibbs free energy of transfor-

mation (DG). The pushing force at equilibrium temperature

can be formulated as (Dagdelen et al. 2019a, b):

DGM!A Toð Þ ¼ GA Toð Þ � GM Toð Þ
¼ HA � ToS

A
� �

� HM � ToS
M

� �
¼ DHM!A � ToDS

M!A
� �

¼ 0 ð2Þ

where superscript A and M represent austenite and

martensite, respectively. For the martensite phase trans-

formation, Eq. (2) can be rewritten as (Dagdelen et al.

2020; Tatar et al. 2020):

DGA!M Msð Þ ¼ DGM!A Toð Þ � DGM!A Msð Þ ð3Þ

or

DGA!M Msð Þ ¼ � To �Msð ÞDSM!A: ð4Þ

Additionally, the elastic energy (Ge) can be calculated

from subtracting Gibbs free energy for forward and reverse

phase transformation (Acar et al. 2020; Kok et al. 2019):

Ge ¼ DGA!M Msð Þ � DGA!M Mf

� �
¼ Ms �Mf

� �
DSM!A:

ð5Þ

The calculated results for Gibbs free energy, elastic

energy, equilibrium temperature, and temperature
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Fig. 3 The obtained phase transformation temperatures for different

aging times of the Cu–Al–Ni–Nb SMA

Table 3 Enthalpy and entropy change obtained for aged Cu–Al–Ni–

Nb alloys

Name DHM?A DHA?M DSM?A DSA?M

(J/g) (J/g) (J/kg K) (J/kg K)

0 h 10.7 9.49 21.71 19.26

1 h 10.2 9.36 19.96 18.32

2 h 10.0 8.72 19.45 16.96

3 h 10.4 8.47 20.09 16.36

6 h 6.79 8.83 12.82 16.67

12 h 7.26 10.0 13.77 18.97

24 h – – – –
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Fig. 4 The enthalpy change and entropy changes of the aged Cu–Al–

Ni–Nb SMA
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hysteresis (Mf �Ms) for as-casted and aged alloys are

listed in Table 4. There were no calculations for the

CuAlNiNb alloy aged for 24 h. Figure 5a shows that Gibbs

free energy and temperature hysteresis of the alloy were

closely related to each other. These parameters reached

maximum values for 2–3-h aging at 1073 K and then by

increasing the time of aging their values diminished.

Elastic energy of the alloy attained the highest value for

1-h aging at 1073 K. The value of Ge decreased and stayed

nearly constant for 6 h of aging, and then, it decreased

again for increasing aging time at that particular

temperature.

Figure 6 shows the optical microscope (OM) images.

There are flower-like precipitated phases spread all over

the alloys. It was found that the flower-like phases are

niobium-rich phases with no copper content and the Al and

Ni were dissolved in the alloys. The matrixes consist of

martensite thin discrete middle phase (b01). b
0
1 has an 18R-

type ordered structure (Araujo et al. 2017).

The crystal structural and various phases included in the

as-casted and heat-treated Cu–Al–Ni–Nb SMAs are given

in Fig. 7. The peaks were indexed with Refs. Ercan et al.

(2020), Moghaddam et al. (2017), and Qader et al.

(2019a, b). They showed that the matrix of the alloys is

martensite (b01) phase with high-temperature cubic austen-

ite phases, including a and b1. b
0
1, c

0, and b1 phases that

have order types of DO3 (BiF3), 18R (Cu3Al), and 2H

(Cu3Ti) phases, respectively (Braga et al. 2017; Otsuka

et al. 1979). Additionally, there is also c0 phase, which

appeared for all treated times and after 24 h it disappeared.

The martensitic phase transformation can be defined as a
and/or b1 $ b01 and c0. It can be seen that the as-casted

alloy shows a single peak (b01), while the aged samples

illustrate multipeaks with different phases. Besides, the

intensity of the peaks was increased by increasing the time

of aging up to 3 h, and it again decreased for more aging

times. Although the 24-h aged alloy did not show shape

memory characteristic, it still has a crystalline phase.

The crystallite size of the alloys was calculated through

the Scherrer equation (Buytoz et al. 2019; Shiva et al.

2015):

D ¼ 0:9k
B cos h

ð6Þ

where k is the X-ray wavelength that has been used for the

XRD measurement (for this study it was 1.5406 Å), B is

full width at half maximum (FWHM), and h is the Braggs

angle. The results of the calculations showed that the

crystallite sizes dramatically decreased by applying heat

treatment on the alloy (Fig. 8).

Table 4 Temperature hysteresis (Ht), equilibrium temperatures (To),

Gibbs free energy (DG) for martensite phase transformation

(DGA?M), and elastic energy (GE) for the Cu–Al–Ni–Nb shape

memory alloy

Name Temperature hysteresis To DGA?M GE

(K) (K) (J) (J)

0 h 37.4 492.8 425.6 706.7

1 h 43.2 511.0 603.9 967.2

2 h 50.5 514.1 639.0 773.5

3 h 48.6 517.7 638.8 800.0

6 h 31.3 529.8 335.8 791.7

12 h 21.9 527.3 247.2 673.3

24 h – – – –
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Fig. 5 The calculated a Gibbs free energy and temperature hysteresis,

and b elastic energy of the as-casted and aged Cu–Al–Ni–Nb SMA
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Fig. 6 The optical microscopy images of the aged Cu–Al–Ni–Nb SMA
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4 Conclusions

A quaternary Cu–Al–Ni–Nb shape memory alloy was

produced using the arc-melting technique. The alloy was

aged for seven different aging times. The as-casted and

other aged alloys were characterized using DSC, OM, and

XRD. Additionally, some related calculations were per-

formed. The important outcome of this study is as follows:

• The matrix phases showed martensite-b01 with some

flower-like precipitations distributed all over the alloys.

• The map compositions of the alloy showed Nb elements

were not dissolved in the matrix, but they precipitated

some secondary phases.

• The phase transformation temperatures increased with

increasing the time of aging.

• The enthalpy and entropy changes of the alloy recorded

minimum value for 3-h aging, which could have the

most stable phase transformation compared to the other

cases.

• The alloy with 24-h aging at 1073 K showed no phase

transformation.

• The crystallite size generally decreased with perform-

ing the aging process for 1 h.
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San Juan J (2004) Thermodynamics of thermally induced

martensitic transformations in Cu–Al–Ni shape memory alloys.

Acta Mater 52:3941–3948. https://doi.org/10.1016/j.actamat.

2004.05.009

Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad H, Hosseinian R

(2016) X-phase precipitation in aging of Cu–Al–Ni–xTi shape

memory alloys and its influence on phase transition behavior.

J Therm Anal Calorim 123:377–389. https://doi.org/10.1007/

s10973-015-4894-4
Shiva S, Palani I, Mishra S, Paul C, Kukreja L (2015) Investigations

on the influence of composition in the development of Ni–Ti

shape memory alloy using laser based additive manufacturing.

Opt Laser Technol 69:44–51. https://doi.org/10.1016/j.optlastec.

2014.12.014

Suresh N, Ramamurty U (2008) Aging response and its effect on the

functional properties of Cu–Al–Ni shape memory alloys. J Alloy

Compd 449:113–118. https://doi.org/10.1016/j.jallcom.2006.02.

094

Tatar C, Acar R, Qader IN (2020) Investigation of thermodynamic

and microstructural characteristics of NiTiCu shape memory

alloys produced by arc-melting method. Eur Phys J Plus

135:311. https://doi.org/10.1140/epjp/s13360-020-00288-w

Vajpai S, Dube R, Sangal S (2013) Application of rapid solidification

powder metallurgy processing to prepare Cu–Al–Ni high

temperature shape memory alloy strips with high strength and

high ductility. Mater Sci Eng A 570:32–42. https://doi.org/10.

1016/j.msea.2013.01.063

Zhou Z, Cui J, Ren X (2017) Phase diagram of FeNiCoAlTaB ferrous

shape memory alloy on aging time. AIP Adv 7:045019. https://

doi.org/10.1063/1.4982695

910 Iran J Sci Technol Trans Sci (2020) 44:903–910

123

https://doi.org/10.1016/j.actbio.2009.06.027
https://doi.org/10.1016/j.actbio.2009.06.027
https://doi.org/10.1140/epjp/i2019-12479-3
https://doi.org/10.1007/s12540-019-00298-z
https://doi.org/10.1007/s12540-019-00298-z
https://doi.org/10.1007/s11837-020-04026-6
https://doi.org/10.1007/s11837-020-04026-6
https://doi.org/10.1016/j.jallcom.2012.06.108
https://doi.org/10.1016/j.jallcom.2012.06.108
https://doi.org/10.1007/s10973-019-08418-y
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2590)
https://doi.org/10.1007/s10973-019-08788-3
https://doi.org/10.1088/2053-1591/ab5bef
https://doi.org/10.1007/s12666-016-1007-4
https://doi.org/10.1016/0001-6160(79)90011-7
https://doi.org/10.1016/j.physb.2018.10.021
https://doi.org/10.1016/j.physb.2018.10.021
https://doi.org/10.31202/ecjse.562177
https://doi.org/10.1016/j.actamat.2004.05.009
https://doi.org/10.1016/j.actamat.2004.05.009
https://doi.org/10.1007/s10973-015-4894-4
https://doi.org/10.1007/s10973-015-4894-4
https://doi.org/10.1016/j.optlastec.2014.12.014
https://doi.org/10.1016/j.optlastec.2014.12.014
https://doi.org/10.1016/j.jallcom.2006.02.094
https://doi.org/10.1016/j.jallcom.2006.02.094
https://doi.org/10.1140/epjp/s13360-020-00288-w
https://doi.org/10.1016/j.msea.2013.01.063
https://doi.org/10.1016/j.msea.2013.01.063
https://doi.org/10.1063/1.4982695
https://doi.org/10.1063/1.4982695

	The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79--Al12--Ni4--Nb5 (wt%) Shape Memory Alloy
	Abstract
	Introduction
	Materials and Experimental Procedures
	Results and Discussion
	Conclusions
	Acknowledgements
	References




