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Abstract
In this article, we study an efficient combination of the meshless local Petrov–Galerkin and time-splitting methods for the

numerical solution of nonlinear Schrödinger equation in two and three dimensions. The Strang splitting technique is used to

separate the original equation in two parts, linear and nonlinear. The linear part is approximated with the meshless local

Petrov–Galerkin method in the space variable and the Crank–Nicolson method in time. Also, the nonlinear part can be

solved analytically. We use the moving Kriging interpolation instated of the moving least squares approximation to make

the shape functions of the meshless local Petrov–Galerkin method which have the Kronecker delta property, so the

Dirichlet boundary condition is imposed directly and easily. In the meshless local Petrov–Galerkin method, the Heaviside

step function is chosen as the test function in each sub-domain. Several test problems for two and three dimensions are

presented, and the results are compared to their analytical and other numerical methods to illustrate the accuracy and

capability of this technique.

Keywords Nonlinear Schrödinger equation � Meshless local Petrov–Galerkin method � Time-splitting method �
Moving Kriging interpolation � Moving least squares approximation

1 Introduction

The linear and nonlinear Schrödinger equations are very

important in modern physics. These equations have many

applications to explain several occurrences in physics and

engineering. The interested readers can find the most

applications of Schrödinger equation in Teschl (2009). In

the present work, we consider the nonlinear Schrödinger

equation (NLSE) with the following form

iotWþ ar2W ¼ xðx; tÞWþ bjWj2W; t 2 ð0; T �;
x 2 X � Rd; d ¼ 2; 3;

ð1Þ

subject to the Dirichlet boundary condition

Wðx; tÞ ¼ gðx; tÞ; x 2 oX; t 2 ð0; T �;

and the initial condition

Wðx; 0Þ ¼ hðxÞ; x 2 X;

where i2 ¼ �1;W is an unknown complex-valued function,

x is an arbitrary potential function, g, h are specific

functions and a; b are real constants.

As regards, the solution of NLSE is of essential

importance to explain several phenomena in engineering

and physics; thus, solving this equation is very necessary.

Many researchers studied several numerical methods for

NLSE (1). In Jin et al. (2015), Shi et al. (2016), Wang and

Huang (2017), Shi et al. (2017), the finite element methods

were used. In Hong et al. (2019), Li et al. (2012), Yıldırım
Aksoy et al. (2017), Gao and Xie (2011), Hu and Chen

(2016), Dehghan (2006), the authors employed different
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types of finite difference techniques for solving various

models of Schrödinger equation. Some meshless schemes

have been applied for solving many kinds of linear and

nonlinear Schrödinger equations (Kaplan and Dereli 2017;

Zhang and Chen 2016; Dereli 2012; Dehghan and

Mohammadi 2017, 2016; Ilati and Dehghan 2019).

In the past two decades, in order to avoid mesh pro-

duction, many researchers studied meshfree methods.

Dehghan and Shokri (2007) proposed a numerical algo-

rithm based on a collocation scheme by employing the

multi-quadrics and thin-plate spline radial basis functions

to solve the linear Schrödinger equation. Authors of

Abbasbandy et al. (2013) applied a meshless method based

on the non-symmetric radial basis function collocation

method to solve NLSE (1). In a meshfree method, a set of

nodes is scattered in the problem domain instead of

meshing it and a certain weight function with local com-

pact support is associated with each of these nodes. The

meshless local Petrov–Galerkin (MLPG) method (Ilati and

Dehghan 2016, 2015, 2017) is an efficient meshfree

method to solve partial differential equations with com-

plicated domains. This method was first introduced by

Atluri and Zhu (1998) and later developed in-depth by

Atluri and Shen Atluri and Shen (2002). One of the most

important properties of this method is the use of local weak

form in each sub-domain instead of a global weak form.

The MLPG method based on the moving least squares

(MLS) approximation has been widely applied in a broad

field of partial differential equations. Dehghan and Mirzaei

(2008) used the MLPG method based on the MLS

approximation for solving NLSE (1).

Solving the nonlinear part in meshfree methods based on

the weak form can be usually difficult and complicated. To

remove this complexity, different approaches have been

used. For example, in Dehghan and Mirzaei (2008) to deal

with nonlinearity, a predictor–corrector approach is used.

Also, the authors applied a scheme based on the Newton

method to meet the nonlinear part of NLSE (1) (Abbas-

bandy et al. 2013). In the present study, we use an efficient

operator splitting technique to overcome nonlinearity. The

operator splitting schemes have much superiority, partic-

ularly for some hard issues. Some of these operator split-

ting schemes are mostly used to study physical components

and subsystems such as velocity, density and pressure. The

proposed splitting algorithm has the second-order accuracy

based on the Strang splitting scheme. The main idea of this

technique is to separate the original problem into linear and

nonlinear subproblems. In this case, one needs to solve

each part separately for small time steps and then inter-

connect the solutions at last for every time step. This is

simpler compared to the original equation for obtaining the

approximate solution by using the analytical or numerical

solutions of subproblems in a specific instruction (Dehghan

and Taleei 2011; Bai and Zhang 2011; Bao and Shen 2005;

Degond et al. 2008; Kassam and Trefethen 2005; Liao

et al. 2018; Ducomet et al. 2015; Wang and Zhang 2019;

Wang et al. 2013). Here, the nonlinear subproblem can be

solved exactly.

In the MLPG method based on MLS approximation, the

imposition of the Dirichlet boundary condition is not

always easy, because the MLS shape functions do not have

the Kronecker delta property. We use the moving Kriging

(MK) interpolation instead of MLS approximation to build

shape functions of the MLPG scheme. By doing this, the

MLPG shape functions have the Kronecker delta property.

So, we can apply the Dirichlet boundary condition directly

and easily. Some authors have discussed and extended the

MLPG approach based on the MK interpolation (Gu 2003;

Phaochoo et al. 2016; Shokri and Habibirad 2016; Bui

et al. 2011; Dai et al. 2013; Kaewumpai 2015; Xing-Guo

et al. 2010; Zheng and Dai 2011).

In this paper, we will apply a combination of the MLPG

method based on MK interpolation and the Strang splitting

scheme to obtain the numerical solution of 2D and 3D

nonlinear Schrödinger equations. We call the proposed

method, as a time-splitting MLPG scheme.

The organization of this paper is as follows: In Sect. 2,

we will explain the MK interpolation. In Sect. 3, we

demonstrate the MLPG scheme with the Heaviside step

function as the test function for solving the linear part of

NLSE. Since the shape functions of MLPG based on MLS

approximation do not have Kronecker delta property, we

cannot impose the essential boundary condition, directly.

Thus, we use the MK interpolation instead of MLS. So, the

MLPG shape functions have the mentioned property and

one can impose the Dirichlet boundary condition directly

and easily. The Crank–Nicolson method is used in time

discretization since it has the same accuracy as Strang

splitting scheme. Also, the nonlinear part will be solved

exactly. A series of numerical experiments are performed

for 2D and 3D nonlinear Schrödinger equations in Sect. 4.

Finally, a brief conclusion is given in Sect. 5.

2 The Moving Kriging Interpolation

In this section, we use the MK interpolation to represent

trial function with the values of unknown variable at some

randomly located points. Like the MLS approximation, the

MK interpolation approach can be expanded in each sub-

domain X
0 � X. Let WhðxÞ be an approximate solution of
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WðxÞ defined in X which is represented by a set of ran-

domly located nodes. The MK interpolation WhðxÞ at node
x has the following form

WhðxÞ ¼
XN

i¼1

/iðxÞwi ¼ UðxÞw; ð2Þ

where

UðxÞ ¼ pTðxÞAþ rTðxÞB: ð3Þ

Also, matrices A and B are as follows

A ¼ðPTR�1PÞ�1
PTR�1; ð4Þ

B ¼R�1ðI � PAÞ; ð5Þ

where I is an unit matrix with size N � N, and pðxÞ is

pTðxÞ ¼ ½p1ðxÞ � � � pmðxÞ�; ð6Þ

in which pjðxÞ; j ¼ 1; 2; . . .;m are m polynomial basis

functions. For example, in two-dimensional (2D) problem,

the linear basis is pTðxÞ ¼ ½1; x; y� and the quadratic basis is
pTðxÞ ¼ ½1; x; y; x2; y2; xy�. Also, in 3D problems the linear

basis is pTðxÞ ¼ ½1; x; y; z�. In this paper, we use the linear

basis in our computations for 2D and 3D problems. Matrix

P in (3) and (4) is given with the following form

P ¼
p1ðx1Þ � � � pmðx1Þ
� � � � � � � � �

p1ðxNÞ � � � pmðxNÞ

2

64

3

75: ð7Þ

The vector rðxÞ in (3) is as follows

rTðxÞ ¼ gðx; x1Þ � � � gðx; xNÞ½ �; ð8Þ

where gðx; xjÞ is the correlation function between any pair

of points x and xj. Many functions can be used as a cor-

relation function (Gu 2003; Zheng and Dai 2011). In this

work, we use the Gaussian function with the following

form

gðx; xjÞ ¼
exp½�ðdj=cjÞ2� � exp½�ðrj=cjÞ2�

1� exp½�ðrj=cjÞ2�
; 0� dj � rj;

0; dj � rj;

8
><

>:

ð9Þ

where dj ¼ kx� xjk, cj is a constant controlling the shape

of correlation function and rj is the size of support domain

(Abbasbandy and Shirzadi 2011). The size of support

domain rj must be selected to have a sufficient number of

nodes covered in every sub-domain associated with each

node. Also, rj should be small suitable to protect the local

character of MK interpolation. Moreover, a very small rj
may occur a relatively large error in computing the entries

of matrix system. The correlation matrix R is as follows

R ¼
gðx1; x1Þ � � � gðx1; xNÞ

� � � � � � � � �
gðxN ; x1Þ � � � gðxN ; xNÞ

2
64

3
75: ð10Þ

The first-order partial derivative of shape function UðxÞ in
(3) with respect to xi is as follows

U;iðxÞ ¼ pT;iðxÞAþ rT;iðxÞB; ð11Þ

in which ð:Þ;i denote the first derivative.

Unlike to the shape function of MLS, the shape function

obtained by MK interpolation has the following d Kro-

necker property:

/kðxjÞ ¼
1; ðk ¼ j; k; j ¼ 1; 2; . . .;NÞ;
0; ðk 6¼ j; k; j ¼ 1; 2; . . .;NÞ:

�
ð12Þ

In the following, we use this property to impose the

Dirichlet boundary condition directly and easily. To see the

other properties of MK interpolation, one can refer to Gu

(2003); Chen and Liew (2011); Dai et al. (2013).

3 The Time-Splitting MLPG Method for NLSE

In this section, we introduce an efficient combination of

MLPG and time-splitting schemes to solve the NLSE (1).

Consider the following NLSE

iotW ¼ ðN þ LÞW; ð13Þ

where N ¼ xðx; tÞ þ bjWj2 and L ¼ �ar2 are nonlinear

and linear operators, respectively. The basic idea in time-

splitting technique for numerical solution of NLSE (1) is

separating this equation to the following subproblems

iotW ¼ xðx; tÞWþ bjWj2W; ð14Þ

iotWþ ar2W ¼ 0: ð15Þ

In this work, the nonlinear subproblem (14) can be solved

exactly and Eq. (15) will be solved by the MLPG method.

Suppose s be the time step, let tk ¼ ks and Wk be an

approximation of Wðx; tkÞ where k ¼ 0; 1; 2; . . .Nt; and

Nt ¼ T=s. From tk to tkþ1, the second-order Strang split-

time scheme for (13) is as follows (Dehghan and Taleei

2011)

W	 ¼ exp �i
s
2
ðxðx; tÞ þ bjWkj2Þ

� �
Wk; ð16Þ

W		 ¼ expðsLÞW	; ð17Þ

Wkþ1 ¼ exp �i
s
2
ðxðx; tÞ þ bjW		j2Þ

� �
W		; ð18Þ

where Wk ¼ Wðx; tkÞ and Wkþ1 ¼ Wðx; tkþ1Þ. The nonlin-

ear part in (16) and (18) will be solved analytically, and the

following linear part
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iotWþ ar2W ¼ 0;

will be solved by the MLPG method in the space variable

and Crank–Nicolson technique in time. The Crank–Nicol-

son method has the same order of accuracy as the Strang

splitting scheme described in this paper. So, in this work,

this method is used for the time discretization.

Let x1; x2; x3; . . .; xn be suitably scattered nodes in the

global domain X � Rdðd ¼ 2; 3Þ; bounded by oX. Instead
of calculating the global weak form, the MLPG

scheme constructs the weak form over a local sub-domain

such as Xx which is a small area for any point in the global

domain X. These sub-domains can be of any geometric

shape and size (Atluri and Zhu 1998) which overlap each

other and cover the entire problem domain X. In this work,

we choose the circle shape in 2D and sphere in 3D (Fig. 1).

For each node xk 2 Xk
x, the local weak form of Eq. (15) can

be constructed as
Z

Xk
x

iotWþ ar2W
� �

mdX ¼ 0; ð19Þ

in which m is a test function. Using integration by parts and

the divergence theorem, one obtains

Z

Xk
x

iotWð ÞmdXþ a
Z

oXk
x

rW:nð ÞmdC�
Z

Xk
x

rW:rmdX

" #
¼ 0;

ð20Þ

where oXk
x is the boundary of local sub-domain Xk

x and n is

unit outward normal vector in oXk
x (n ¼ ðnx; nyÞ in 2D and

n ¼ ðnx; ny; nzÞ in 3D). If the test function m is assumed as

the following Heaviside step function

m ¼ 1; x 2 Xk
x;

0; x 62 Xk
x;

(
ð21Þ

, the local weak form (20) can be written as

Z

Xk
x

iotWð ÞdXþ a
Z

oXk
x

rW:nð ÞdC ¼ 0: ð22Þ

Note that, oXk
x ¼ Ck

x [ Lkx where Lkx is a part of oXk
x over

which no boundary condition is specified and Ck
x ¼ oXk

x \
C (see Fig. 1). So, in Eq. (22) we have
Z

oXk
x

ð:ÞdC ¼
Z

Ck
x

ð:ÞdCþ
Z

Lkx

ð:ÞdC:

Assuming just N points in the neighborhood node, xk have

effect on the numerical solution, results in

Whðx; tÞ ¼
XN

j¼1

/jðxÞŴjðtÞ: ð23Þ

Substituting the MK interpolation (23) in Eq. (22), the

following system for all nodes will be obtained

i CotŴhðtÞ ¼ �aKŴhðtÞ; ð24Þ

where

Ck;j ¼
Z

Xk
x

/jdX; Kk;j ¼
Z

Ck
x

r/j:n
� �

dCþ
Z

Lkx

r/j:n
� �

dC:

Applying the Crank–Nicolson technique, we get the fol-

lowing form

C � lKð ÞWnþ1 ¼ C þ lKð ÞWn; ð25Þ

in which l ¼ ai
2
s and Wl ¼ ½Ŵl

1; . . .; Ŵ
l
N �

T ; l ¼ n; nþ 1.

So, the complete discrete form of Eq. (22) will be

constructed.

4 Numerical Examples

In this part, we choose four test problems of NLSE to

illustrate the validity and capability of the time-splitting

MLPG scheme. In these examples, we report the following

relative error

Fig. 1 Graph of global and local

domains in 2D (left) and

3D(right)
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�r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1ðWexact

j �Wnumerical
j Þ2

PN
j¼1ðWexact

j Þ2

vuut ;

where Wexact and Wnumerical are analytical and numerical

solutions, respectively. Also, the figure of absolute error

jWexact �Wnumericalj will be shown for some test problems.

We use 8� 8 Gauss points in each local sub-domain Xk
x

and 7 Gauss points on each local boundary Ck
x for

numerical Gauss integration.

Definition 1 Fasshauer (2007) The global data density of

X in X is as follows

h ¼ hX;X ¼ sup
x2X

min
xi2X

kx� xik;

where, in the case of using the regular nodes in global

domain, h is the step size of spatial variables x, y or z (in

3D) ðh ¼ Dx ¼ Dy ¼ DzÞ. Also, the constants in correla-

tion function (9) are dj ¼ h=2 , rj ¼ 4dj and cj ¼ 4rj.

To evaluate the efficiency of our method, we report its

order in time variable as

c� order ¼
log

�r1
�r2

� �

log s1
s2

� � ;

where �r1 and �r2 are relative errors correspond to s1 and s2,
respectively. In all test problems in 2D, we use regular and

irregular nodes in the global domain. In the case of irreg-

ular nodes, we apply the Halton nodes (see Fig. 2).

Remark We have done our calculations by applying

MATLAB software with a Core i7-7700 PC with a 3.60

GHz CPU and 32-GB RAM.

4.1 Test problem 4.1

In this test problem, we take NLSE (1) in 2D as the fol-

lowing form

i
oW
ot

þ 0:5 Wxx þWyy

� �
¼ �2jWj2W; ðx; yÞ 2 X:

ð26Þ

The exact solution is Wang (2010)

Wðx; y; tÞ ¼ eið2xþ2y�3tÞsech xþ y� 4tð Þ: ð27Þ

The initial and Dirichlet boundary conditions will be

obtained from the exact solution. Table 1 reports the rel-

ative errors for real and imaginary parts in different times,

t ¼ 0:25; 0:50; 0:75; 1:00; 2:00, where the time step is

s ¼ 0:001. The computations are done by 22� 22 uniform

nodes in global domain X ¼ ½0; 2� � ½0; 2�.
The first column of Table 2 shows various domains, and

the second column shows different uniform nodes in these

rectangular domains. Moreover, the third and fourth col-

umns present relative error of real and imaginary parts,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

*

Fig. 2 Halton scattered nodes

Table 1 �r errors for Test problem 4.1 in different times

tðs ¼ 0:001Þ �r-error

Re-part Im-part

0.25 9:7099e� 04 8:7531e� 04

0.50 9:1665e� 04 1:3215e� 03

0.75 1:4614e� 03 1:1149e� 03

1.00 1:8455e� 03 2:0564e� 03

2.00 2:7787e� 03 2:2883e� 03

Table 2 �r errors for Test problem 4.1 in different rectangular

domains with s ¼ 0:0001

X Number

of points

�r-error

Re-part Im-part

½0; 1� � ½0; 1� 11� 11 6:0194e� 03 2:8802e� 03

½0; 2� � ½0; 2� 22� 22 1:6365e� 03 1:6705e� 03

½0; 3� � ½0; 3� 33� 33 2:5762e� 04 1:4182e� 04

½0; 4� � ½0; 4� 44� 44 2:1673e� 03 2:1721e� 03

½�3; 3� � ½�3; 3� 66� 66 4:3497e� 03 2:9709e� 03

Table 3 �r errors for Test problem 4.1 in X	 with different time steps

s �r-error �r c-order

Re-part Im-part

0.008 6:5094e� 01 1:5383e� 01 1:8175e� 01 �
0.004 3:2937e� 02 2:1804e� 02 3:8759e� 02 2.2294

0.002 7:6435e� 03 5:1797e� 03 9:2041e� 03 2.0742

0.001 1:4016e� 03 1:2775e� 03 2:2532e� 03 2.0303
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respectively. Also, the numerical results for this test

problem in global domain X	 (see Fig. 2 ) are shown in

Table 3. From this table, we conclude that the time-split-

ting MLPG method has a good accuracy in irregular nodes

and almost Oðs2Þ order in time variable.

The absolute error of real (left) and imaginary (right)

parts in X ¼ ½0; 3� � ½0; 3� at t ¼ 1 is depicted in Fig. 3.

These tables and Fig. 3 show that the approximated solu-

tion by the time-splitting MLPG method and the exact

solution are in a good agreement for a large space and time

domain in this test problem.

4.2 Test problem 4.2

We consider the second test problem for NLSE (1) as

follows

iotWþ ar2W ¼ xðx; tÞWþ jWj2W; ðx; yÞ 2 X; ð28Þ

where a ¼ b ¼ 1 and the initial condition is

0

1

2

3

0

1

2

3
0

1

2

3

4

5

6

x 10
−4

Re−part error 

0

1

2

3

0

1

2

3
0

1

2

3

x 10
−4

Im−part error 

Fig. 3 Absolute errors of real (left) and imaginary (right) parts at t ¼ 1 in Test problem 4.1 on X ¼ ½0; 3� � ½0; 3�

Table 4 �r errors for Test problem 4.2 in different times

t �r-error CPU-time(s)

Re-part Re-part (Dehghan

and Mirzaei 2008)

Im-part Im-part (Dehghan and

Mirzaei 2008)

MK MLS (Dehghan and

Mirzaei 2008)

0.5 4.8573e-05 3.4933e-04 5.5834e-06 3.4558e-05 0.41 0.92

1.0 7.7985e-05 3.0033e-04 3.8839e-06 5.8424e-05 0.62 0.95

2.0 1.9904e-05 3.8440e-04 3.8816e-06 2.4665e-05 1.10 1.85

3.0 5.6884e-05 2.3131e-04 4.5578e-06 9.3009e-05 1.61 2.37

4.0 1.5965e-04 6.9342e-04 4.1872e-06 6.5351e-06 2.12 3.74

5.0 4.3312e-04 1.3733e-03 1.5394e-06 2.5723e-06 2.63 4.27

6.0 1.1811e-04 2.2293e-03 1.0599e-06 1.3126e-06 3.07 5.67

Table 5 �r errors for Test problem 4.2 with different number of nodes

at t ¼ 1 with s ¼ 0:01

Number of points �r-error �r

Re-part Im-part

ð6� 6; h ¼ 1=5Þ 3.4163e-04 9.3282e-04 4.6804e-04

ð11� 11; h ¼ 1=10Þ 7.5490e-05 5.8717e-05 3.8936e-05

ð21� 21; h ¼ 1=20Þ 5.4879e-05 6.1019e-05 3.2631e-05

ð41� 41; h ¼ 1=40Þ 2.8351e-05 2.5588e-05 1.5631e-05

Table 6 �r errors for Test problem 4.2 in different rectangular

domains with s ¼ 0:0001

X Number of points �r-error

Re-part Im-part

½0; 1� � ½0; 1� 11� 11 7.7985e-05 3.8839e-06

½0; 2� � ½0; 2� 22� 22 1.6178e-04 2.4432e-05

½0; 3� � ½0; 3� 33� 33 1.5009e-04 4.1807e-05

½0; 4� � ½0; 4� 44� 44 2.9268e-04 8.5384e-05

½0; 6� � ½0; 6� 66� 66 1.0394e-03 1.8276e-04

½0; 10� � ½0; 10� 110� 110 2.6818e-03 8.7499e-04
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Fig. 4 Real and imaginary parts of exact (right) and numerical solutions (left) at t ¼ 6 with s ¼ 0:0001, for Test problem 4.2

0
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Wðx; y; 0Þ ¼ x2 � y2 þ ið1þ xyÞ:

Also, the potential function has the following form

xðx; yÞ ¼ � expð�2tÞðx2 � y2Þ2 � ðxyþ 1Þ2

�
i expð�tÞðx2 � y2Þ2 expð�tÞðx2 � y2Þ2 � iðxyþ 1Þ

h i

expð�tÞðx2 � y2Þ þ ðxyþ 1Þ :

Moreover, the exact solution is Dehghan and Mirzaei

(2008)

Wðx; y; tÞ ¼ ðx2 � y2Þ expð�tÞ þ ið1þ xyÞ: ð29Þ

Similar to the previous example, the Dirichlet boundary

condition will be obtained from the exact solution. Table 4

presents the relative errors of real (Re-part) and imaginary

(Im-part) parts in domain X ¼ ½0; 1� � ½0; 1�, for 11� 11

uniform nodes at different times, t ¼ 0:5; 1:0; 2:0; . . .; 6:0,
with s ¼ 0:001. The second and the third columns of this

table show the relative error for real part by our technique

and the MLPG method based on MLS (Dehghan and

Mirzaei 2008). Also, columns four and five demonstrate the

relative error of imaginary part by our scheme and the

MLPG method based on MLS (Dehghan and Mirzaei

2008), respectively. Moreover, the last two columns pre-

sent the CPU-time dependent to our method and scheme of

Dehghan and Mirzaei (2008). The results of this table il-

lustrate that the time-splitting MLPG method is superior

and faster than the MLPG method based on MLS (Dehghan

and Mirzaei 2008). Table 5 illustrates the errors for dif-

ferent numbers of nodes (space steps) in domain X. Here,
the time step and final time are s ¼ 0:01 and t ¼ 1,

respectively. As can been seen, by increase the number of

nodes, the errors will be decreased. So, our scheme is

capable in these cases.

Table 6 provides the �r errors of real (Re-part) and

imaginary (Im-part) parts in different domains, with the

final time t ¼ 1 and time step s ¼ 0:0001. One can observe

that the presented scheme has a good performance in large

domains. The behavior of exact and approximate solutions

for real (left) and imaginary (right) parts at t ¼ 6 with s ¼
0:0001 on X ¼ ½0; 6� � ½0; 6� is depicted in Fig. 4. The

absolute errors obtained by the proposed method for real

(left) and imaginary (right) parts are shown in Fig. 5. These

figures show that the time-splitting MLPG results are in

good agreement with the exact solution for this test

problem.

Also, Table 7 presents the relative errors for real (Re-

part) and imaginary (Im-part) parts for this test problem in

the global domain X	 (see Fig. 2 ). This table reveals that

the time-splitting MLPG scheme has a good efficiency in

irregular nodes with approximately Oðs2Þ order in the time

variable.

Tables 4, 5, 6, 7 and Figs. 4, 5 reveal that the accuracy

of our scheme is suitable to obtain numerical solution of

this test problem.

4.3 Test problem 4.3

In this test problem, we consider the NLSE (1) in the fol-

lowing form

Table 7 �r errors for Test problem 4.2 in X	 with different time steps

s �r-error �r c-order

Re-part Im-part

0.008 6.0509e-03 7.4639e-03 9.2299e-03 –

0.004 1.9798e-03 9.0849e-04 2.9638e-03 1.6389

0.002 3.2341e-04 1.8383e-04 7.2366e-04 2.0341

0.001 7.9762e-05 9.8110e-05 1.6879e-04 2.1001

Table 8 �r errors of real and imaginary parts for Test problem 4.3 at

different time steps

s Re-part Im-part

MK MLS MK MLS

0.008 9.1008e-04 3.4200e-02 5.7982e-04 2.4754e-02

0.004 8.7546e-05 3.6444e-03 5.6705e-05 2.5034e-03

0.002 8.6680e-05 3.6203e-03 5.2386e-05 2.1702e-03

0.001 1.6464e-05 1.6803e-03 1.6307e-05 1.5035e-03

�r-error CPU-time(s)

MK MLS MK MLS

1:0362e� 03 4.0443e-02 0.7 6.0

2:9810e� 04 4.6444e-03 0.9 6.1

5:8857e� 05 3.3913e-03 1.2 6.7

1:3618e� 05 1.0490e-03 1.8 7.4
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Fig. 6 Irregular domain, for Test problem 4.3
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i
oW
ot

þ 0:5ðWxx þWyyÞ ¼ ð1� sin2ðxÞ sin2ðyÞÞW

þ jWj2W; ðx; yÞ 2 X ¼ ½0; 2p� � ½0; 2p�:
ð30Þ

The exact solution is Xu and Zhang (2012)

Wðx; y; tÞ ¼ expð�2itÞ sinðxÞ sinðyÞ: ð31Þ

The boundary conditions are as follows

oWð0; y; tÞ
ox

¼ expð�2itÞ sinðyÞ; y 2 ½0; 2p�; t� 0;

oWð2p; y; tÞ
ox

þWð2p; y; tÞ ¼ expð�2itÞ sinðyÞ;

y 2 ½0; 2p�; t� 0;

oWðx; 0; tÞ
oy

¼ expð�2itÞ sinðxÞ; x 2 ½0; 2p�; t� 0;

Wðx; 2p; tÞ ¼ 0; x 2 ½0; 2p�; t� 0;

Also, the initial condition is

Table 9 �r errors for Test
problem 4.3 in different times

tðs ¼ 0:01Þ �r-error �r CPU-time(s)

Re-part Im-part

1 1.1533e--03 8.1967e-04 5.0023e-03 5

2 1.4147e-03 8.2759e-04 6.0322e-03 7

5 2.7428e-03 1.0637e-03 1.0806e-02 11

7 1.3311e-03 2.2323e-03 1.1144e-02 14

Fig. 7 Numerical solution and absolute errors of real (left) and imaginary (right) parts for Test problem 4.3 on Domain Fig. 6
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Wðx; y; 0Þ ¼ sinðxÞ sinðyÞ:

We solve this test problem by the time-splitting MLPG

method, and the results will be compared with the exact

solution. Also, we change the MK interpolation by MLS

approximation and report the �r errors of real (Re-part) and

imaginary (Im-part) parts between our computations and

the exact solution in Table 8. Here, X ¼ ½0; 2p� � ½0; 2p�,
the first column of this table is time step size, and columns

2, 4, 6 show the errors for real and imaginary parts related

to MK. Moreover, computations affiliated with MLS

illustrate in columns 3, 4, 6. As can been seen, our method

based on MK is more accurate than MLS. The last two

columns of this table indicate the time running of our

scheme for these two cases. One can see, the time-splitting

MLPG method based on MK is faster than MLS. A prop-

erty of the meshless method is their efficiency on irregular

domains. To show this property, we solve Eq. (30) with the

Dirichlet boundary condition on the domain as shown in

Fig. 6. Hence,

X ¼ ðx; yÞ 2 R2 : x ¼ r cosðhÞ; y ¼ r sinðhÞ; h 2 ½0; 2p�
� 	

;

in which

r ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinð5hÞ2 þ sinð2hÞ2 þ cosðhÞ2

q
:

We use 629 points on boundary of X and 689 uniform

nodes in interior of this domain. The results for this domain

are reported in different times,t ¼ 1; 2; 5; 7, with s ¼ 0:01

in Table 9.

The last column of this table is CPU-time. Also, the

behavior of real and imaginary parts and related error

between our scheme and exact solution are plotted in

Fig. 7.

The results of Tables 8, 9 and Fig. 7 show the accuracy

and capability of time-splitting MLPG scheme compared to

the exact solution, for this test problem in the regular and

irregular domains.

4.4 Test problem 4.4

In the final test problem, the proposed method is discussed

for NLSE (1) in 3D. We consider the following partial

differential equation
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Fig. 8 11� 11� 11 regular nodes in X1 (left) and 22� 22� 22 uniform nodes in X2(right)

Table 10 �r errors for Test problem 4.4 in X1

tðs ¼ 0:001Þ �r-error

Re-part Im-part

0.25 1.4106e-04 1.8076e-04

0.50 5.1541e-04 1.6883e-03

1.00 2.8857e-03 1.1851e-03

Table 11 �r errors for Test problem 4.4 in X2

tðs ¼ 0:001Þ �r-error

Re-part Im-part

0.25 2.2342e-04 3.2895e-03

0.50 9.2104e-04 3.0619e-03

1.00 2.1417e-03 5.2073e-03
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Fig. 9 Contour plots of absolute errors in three different plans of X2 at t ¼ 0:25 (left) and t ¼ 0:50 (right) for Test problem 4.4
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i
oW
ot

þ 0:5 Wxx þWyy þWzz

� �

¼ 1� sin2ðxÞ sin2ðyÞ sin2ðzÞ
� �

Wþ jWj2W:

ð32Þ

The exact solution is Xu and Zhang (2012)

Wðx; y; z; tÞ ¼ expð�i5t=2Þ sinðxÞ sinðyÞ sinðzÞ: ð33Þ

Our calculations are done in two cubic domains X1 ¼
½0; p� � ½0; p� � ½0;p� and X2 ¼ ½0; 2p� � ½0; 2p� � ½0; 2p�
for this test problem (see Fig. 8). The Dirichlet boundary

condition is homogeneous in both domains X1 and X2.

Also, the initial condition is

Wðx; y; z; 0Þ ¼ sinðxÞ sinðyÞ sinðzÞ:

Table 10 shows the relative error between the exact and

numerical solutions for 11� 11� 11 uniform nodes in X1

at different values of times up to 1. Moreover, Table 11

reports the results for this test problem in 22� 22� 22

regular points in X2.

Figure 9 demonstrates the contour plots of absolute error

in three different plans

S1 ¼ fx ¼ 2p
3
; 0� y� 2p; 0� z� 2pg;

S2 ¼ f0� x� 2p; y ¼ 2p
3
; 0� z� 2pg;

S3 ¼ f0� x� 2p; 0� y� 2p; z ¼ 2p
3
g;

of X2 at t ¼ 0:25 (left) and t ¼ 0:50 (right) with s ¼ 0:001.

These results reveal that the time-splitting MLPG

scheme has a good performance for solving this test

problem in 3D.

5 Conclusion

In this work, we discussed about an efficient combination

of the meshless local Petrov–Galerkin method and the

Strang splitting scheme for solving nonlinear Schrödinger

equation. Since the solution of nonlinear partial differential

equations with meshfree methods based on the weak form

could be complicated, the time-splitting scheme was cho-

sen. In every time step, the NLSE was separated into linear

and nonlinear parts. We used the MLPG method for the

linear part, and the nonlinear part was solved analytically.

So, in every time step, we solved only a system of linear

algebraic equations. In the MLPG method, the shape

functions were built by the moving Kriging interpolation

scheme. These shape functions have the delta function

property, and therefore, the Dirichlet boundary condition

could be implemented easily. To test the proposed method,

we studied three test problems in two dimensions and one

example in three dimensions. The numerical results

showed the efficiency and validity of the time-splitting

MLPG scheme for solving NLSE in these dimensions.
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