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Abstract
In this paper, we study the viscous extended cosmic Chaplygin gas whose equation of state reduces to extended Chaplygin

gas in the limit x ! 0 with varying cosmological constant in flat FRW universe. In this framework, we assume the bulk

viscosity f and cosmological constant K as a linear combination of two terms, one is constant and other is a function of

dark energy density q. We obtain generalized Friedmann equations due to bulk viscosity, cosmological constant and

extended cosmic Chaplygin gas. We calculate the time-dependent dark energy density q for various values of n and

a ¼ 1=2 both analytically and numerically. We analyse the behaviour of scale factor, Hubble expansion parameter and

deceleration parameter graphically and discuss the stability of the model by using square of speed of sound.

Keywords FRW cosmology � Extended cosmic Chaplygin gas � Bulk viscosity � Cosmological constant

1 Introduction

The accelerated expansion of the universe may be descri-

bed by dark energy which has negative pressure and pos-

itive energy density, which works against gravity

(Padmanabhan 2003; Sahni and Starobinsky 2000). There

are several phenomenological models of dark energy. One

of them is called cosmological constant which is not a

dynamical model and has especially simple pressure

expansion p ¼ �q. Some alternative models for dark

energy are quintessence model (Ratra and Peebles 1988;

Wetterich 1988; Liddle and Scherrer 1999; Guo et al.

2007; Khurshudyan et al. 2014; Dutta et al. 2009),

phantom model (Caldwell 2002; Caldwell et al. 2003;

Nojiri and Odintsov 2003; Onemli and Woodard 2004;

Saridakis 2009a, b; Gupta et al. 2009) and holographic

model (Li et al. 2006; Sadeghi et al. 2014a; Setare et al.

2007; Saridakis 2008). Combination of quintessence and

phantom is known as quintom, which is another model for

dark energy (Feng et al. 2005).

An interesting model to describe the dark energy is

Chaplygin gas (CG) (Kamenshchik et al. 2001; Bento et al.

2002), which emerged initially in cosmology from string

theory point of view (Barrow 1986, 1988) which are based

on CG equation of state (EoS) and developed to the gen-

eralized Chaplygin gas (GCG) (Bilic et al. 2002). The

GCG was extended to modified Chaplygin gas (MCG) by

Debnath et al. (2004). Gonzalez-Diaz (2003) gave another

extension for CG called generalized cosmic Chaplygin gas

(GCCG). A further extension of CG model is called

modified cosmic Chaplygin gas (MCCG) was proposed

recently by Saadat and Pourhassan (2013b), Pourhassan

(2013), Sadeghi et al. (2014b).

Saadat and Pourhassan (2013b) considered FRW bulk

viscous cosmology with MCCG. They obtained general-

ized Friedmann equations and calculated time-dependent

dark energy density. They discussed Hubble expansion

parameter deceleration parameter and investigated the

stability of the theory. Pourhassan (2013) studied viscous

& G. S. Khadekar

gkhadekar@yahoo.com;

gkkhadekar@nagpuruniversity.nic.in

Aina Gupta

ainagupta01@gmail.com

S. M. Jogdand

smjog12@gmail.com

1 Department of Mathematics, Rashtrasant Tukadoji Maharaj

Nagpur University, Mahatma Jyotiba Phule Educational

Campus, Amravati Road, Nagpur 440033, India

2 Department of Mathematics, Shri. Sant Gadge Maharaj

College, Loha, Tq. Loha, Dist. Nanded, India

123

Iran J Sci Technol Trans Sci (2020) 44:299–309
https://doi.org/10.1007/s40995-019-00811-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0183-5539
http://crossmark.crossref.org/dialog/?doi=10.1007/s40995-019-00811-4&amp;domain=pdf
https://doi.org/10.1007/s40995-019-00811-4


MCCG with arbitrary a and by using more powerful tools

obtained exact solution of field equations and also inves-

tigated the effect of viscosity to the evolution of the uni-

verse. Sadeghi et al. (2014b) constructed MCCG in the

presence of variable cosmological constant K and space

curvature. By using numerical analysis, they found special

polynomial form for the density and fixed the constant

parameter by using the observational data and stability

condition.

Pourhassan and Kahya (2014) introduced extended

Chaplygin gas (ECG) with EoS

p ¼
X

n

Anq
n � B

qa
; ð1Þ

where An and B are constants and 0\a� 1:

Eq. (1) reduces to MCG for n ¼ 1 with EoS p ¼
Aq� B

qa : Then for A ¼ 0 yields to EoS p ¼ � B
qa which

corresponds to GCG. Hence we get the simplest case for

a ¼ 1 with EoS p ¼ � B
q which is called CG.

In this work, they used numerical methods to investigate

the behaviour of some cosmological parameters such as

scale factor, Hubble expansion parameter, energy density

and deceleration parameter in the framework of ECG EoS

and investigated the stability of the theory using density

perturbations.

Kahya and Pourhassan (2014) studied the ECG as a

candidate of inflation and predicted the values of gas

parameters for physically viable cosmological model.

Kahya and Pourhassan (2015) considered ECG with n ¼ 2

and obtained energy density in terms of scale factor and

studied density perturbations in relativistic and Newtonian

regime.

Remark 1 In recent years, viscous cosmological models

has been quite popular. The idea that CG may have vis-

cosity was first proposed by Zhai et al. (2006) and then

developed by Amani and Pourhassan (2013), Saadat and

Pourhassan (2013a, b), Saadat and Farahani (2013) and Xu

et al. (2012). In another words, the presence of viscosity in

the fluid introduces many interesting pictures in the

dynamics of homogeneous cosmological models.

When one is considering the deviation from the thermal

equilibrium to the first order in the cosmic fluid, it should

be known that there are in principle two different viscosity

coefficients namely the bulk viscosity f and the shear

viscosity g. In the view of commonly accepted spatial

isotropy of the universe, the shear viscosity is usually

omitted (Brevik et al. 2017). The motivation of considering

the linear combination of bulk viscosity is that by fluid

mechanics we know that the transport/viscosity phe-

nomenon is related by the velocity _a which is related to the

scalar expansion h. Hence, the linear combination of f0 and

f1 is more physical which means that one or more of

physical quantities move to infinity at finite time in future.

Nojiri and Odintsov (2005) came up with the idea that

the viscous fluid can also be understood as a class of

inhomogeneous fluid. Dou and Meng (2011) discussed

unified model of dark matter and dark energy which

assumes that the universe is filled with single non-perfect

viscous fluid. The bulk viscosity contributes to the cosmic

pressure and also plays an important role in accelerating

the universe. They studied red shift-dependent model of the

type 9k ¼ k0 þ k1ð1þ zÞn and effective equation of state

model of the form f ¼ f0 þ f1
_a
a
þ f1

€a
a
. Further, they used

SNe Ia data, CMB shift and BAO observations and

observed that the viscosity model can be fitted very well.

Normann and Brevik (2017) analysed the characteristic

properties of two different viscous cosmological models.

One is a concrete component dark energy model where

bulk viscosity f is associated with the fluid as a whole in

the form of fðqÞ ¼ f0ð qq0Þ
k
where q is the dark energy

density. Other one is a two-component model where f is

associated with dark matter component qm only and the

dark energy component is considered inviscid. Further,

they found that the two-component model is more

favourable with the observations.

In this paper, we construct extended cosmic Chaplygin

gas (ECCG) with following EoS

p ¼
X

n

Anq
n � 1

qa
U þ q1þa � U

� ��x� �
; ð2Þ

where U ¼ B
1þx � 1 and the cosmic effect is represented by

x.
In Eq. (2), if we set x ¼ 0 we get the EoS for ECG

Eq. (1).

Also, for n ¼ 1, Eq. (2) reduces to

p ¼ Aq� 1

qa
U þ q1þa � U

� ��x� �
;

which is the EoS for MCCG given by Saadat and

Pourhassan (2013b).

The case of A ¼ 0 gives EoS

p ¼ � 1

qa
U þ q1þa � U

� ��x� �
;

which corresponds to GCCG.

With the motivation of the work of Pourhassan (2013)

and Pourhassan and Kahya (2014) in this paper, we con-

struct ECCG and obtain time-dependent dark energy den-

sity by using the method given earlier by them analytically

and numerically and investigate the effect of viscosity to

the evolution of universe in the presence of varying cos-

mological constant. We also analysed the behaviour of

scale factor, Hubble expansion parameter and deceleration
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parameter numerically by increasing the values of n. Fur-

ther, we investigate the stability of the system by using

square of speed of sound.

2 FRW Model and Friedmann Equations

We consider the FRW universe of the form

ds2 ¼ �dt2 þ aðtÞ2 dr2

1� kr2
þ r2dX2

� �
; ð3Þ

where dX2 ¼ dh2 þ sin2hd/2 and a(t) represents the scale

factor. The constant k denotes the curvature of space k ¼
0; 1;�1 for flat, closed and open universe, respectively.

The Einstein’s field equations are

Glm ¼ Rlm �
1

2
glmR ¼ Tlm þ glmK; ð4Þ

where Glm is the Einstein tensor, Rlm is the Ricci tensor,

R is the Ricci scalar.

We assume c ¼ 1 and 8pG ¼ 1.

The energy-momentum tensor Tlm corresponding to the

bulk viscous fluid is given by

Tlm ¼ ðqþ pÞulum þ �pglm; ð5Þ

where q is energy density.

Also,

�p ¼ p� 3fH; ð6Þ

is the total pressure which involves the pressure p, which is

given in Eq. (2), bulk viscosity f and Hubble parameter H.

The field equations (4) with the help of line element (3)

with k ¼ 0 are given by

3
_a

a

� �2

¼ qþ K; ð7Þ

and

2€a

a
þ _a

a

� �2

¼ ��pþ K; ð8Þ

where dot (�) denotes the derivative with respect to cosmic

time t.

The first Friedmann equation is given by

H2 ¼ q
3
þ K

3
; ð9Þ

and its conservation equation is given by

_qþ 3Hðqþ �pÞ ¼ � _K: ð10Þ

We assume both bulk viscosity f and cosmological con-

stant K as the linear combination of two terms where one is

constant and other is a function of q of the form

f ¼ f0 þ f1q
1=2; ð11Þ

and

K ¼ K0 þ K1q: ð12Þ

Then Eq. (6) becomes

�p ¼ p� 3ðf0 þ f1q
1=2ÞH: ð13Þ

With the help of f and K from Eqs. (11) and (12), the

conservation equation (10) becomes

ð1þ K1Þ _qþ 3Hðqþ pÞ � 9ðf0 þ f1q
1=2ÞH2 ¼ 0: ð14Þ

We solve the above conservation equation with ECCG EoS

for three different cases.

Case I n ¼ 2 and a ¼ 1=2

In this case, ECCG EoS (2) reduces to

p ¼ A1qþ A2q
2 � 1

ffiffiffi
q

p U þ q3=2 � U
	 
�xh i

: ð15Þ

Byusing above equation in conservation equation (14),we get

_qþ f ðqÞ ¼ 0; ð16Þ

where

f ðqÞ ¼ a1q
3 þ a2q

2 � a3q
3=2 þ a4q� a5q

1=2 � a6 � a7q
�1=2;

with

a1 ¼
ffiffiffiffiffiffi
3

K0

r
A2

2
; a2 ¼

ffiffiffiffiffiffiffiffi
3K0

p 1þ A1 þ x
2K0

þ A2

1þ K1

� �
;

a3 ¼ 3f1; a4 ¼
ffiffiffiffiffiffiffiffi
3K0

p
ð1þ A1 þ xÞ
1þ K1

� 3f0;

a5 ¼
ffiffiffiffiffiffi
3

K0

r
B

2
þ 3f1K0

1þ K1

; a6 ¼
3f0K0

1þ K1

and a7 ¼
ffiffiffiffiffiffiffiffi
3K0

p
B

1þ K1

:

After solving Eq. (16), we obtain the following integral

t ¼ �
Z

dq
f ðqÞ þ C; ð17Þ

where C is the constant of integration.

Since it is very difficult to find the solution of the above

integral equation. Therefore, to solve Eq. (17) we use the

method given earlier by Pourhassan and Kahya (2014). It

gives the following energy density

q ¼ Y þ C exp
�t

2Y2
QðYÞ

	 
h i2
; ð18Þ

where QðYÞ ¼ 7a1Y
6 þ 5a2Y

4 � 4a3Y
3 þ 3a4Y

2 � 2a5Y �
a6 and Y is the root of the equation
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a1Y
7 þ a2Y

5 � a3Y
4 þ a4Y

3 � a5Y
2 � a6Y � a7 ¼ 0:

We have drawn the behaviour of dark energy density q
with respect to cosmic time t in Fig. 1. It is observed that

the dark energy density q is a decreasing function of time

for n ¼ 2.

Now, from Eqs. (2), (7), (8), (12) and (13) we get the

second-order differential equation of scale factor for n ¼ 2

and a ¼ 1=2 as

2€a

a
þ ð1þ 3l0Þ

_a

a

� �2

�3
_a

a
f0 þ f1

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

1=2
2
64

3
75

þ A1

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
Aþ A2

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

2

� B
3 _a

a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

�a

�ð1þ l0ÞK0 ¼ 0;

ð19Þ

where l0 ¼ x�K1

1þK1
:

Also, with the help of Eq. (7) we can rewrite Eq. (8) as

2 _H þ 3H2 ¼ ��pþ K: ð20Þ

By using Eqs. (2), (7), (12) and (13) in (20), we get the

differential equation of Hubble parameter for n ¼ 2 and

a ¼ 1=2 as

2 _H þ 3ð1þ l0ÞH2 � 3 f0 þ f1
3ðH2 � K0

3
Þ

ð1þ K1Þ

 !1=2
2
4

3
5H

þ A1

3ðH2 � K0

3
Þ

ð1þ K1Þ

 !
þ A2

3ðH2 � K0

3
Þ

ð1þ K1Þ

 !2

� B
3ðH2 � K0

3
Þ

ð1þ K1Þ

 !�a

�ð1þ l0ÞK0 ¼ 0:

ð21Þ

We solved Eq. (19) numerically and obtained the general

behaviour of scale factor a with respect to cosmic time t for

n ¼ 2 in Fig. 2. It is noted that as time increases scale factor

increases at late time. Figures 3 and 4 show the short-term

and long-term variation of scale factor. Also, Eq. (21) is

solved graphically and Hubble parameter is drawn with

respect to cosmic time t for n ¼ 2 in Fig. 5. It can be seen that

the Hubble parameter H decreases as time increases.

Case II: n ¼ 3 and a ¼ 1=2

In this case, the EoS (2) for ECCG reduces to the fol-

lowing expression

p ¼ A1qþ A2q
2 þ A3q

3 � 1
ffiffiffi
q

p U þ q3=2 � U
	 
�xh i

:

ð22Þ

By using the above equation conservation equation (14)

becomes

_qþ gðqÞ ¼ 0; ð23Þ

where

Fig. 1 Plot of the density ðqÞ versus time (t) with

A1 ¼ A2 ¼ A3 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1;K0 ¼ K1 ¼ 1, n ¼ 1

(solid line), n ¼ 2 (dashed line) and n ¼ 3 (dotted line)
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20

40
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80

100

t

a

Fig. 2 Plot of the scale factor (a) versus time (t) with

A1 ¼ A2 ¼ A3 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1; K0 ¼ K1 ¼ 1,

x ¼ 0:5, n ¼ 1 (solid line), n ¼ 2 (dashed line) and n ¼ 3 (dotted

line)
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gðqÞ ¼ b1q
4 þ ðb2 � a1Þq3 þ f ðqÞ;

with

b1 ¼
ffiffiffiffiffiffi
3

K0

r
A3

2
and b2 ¼

ffiffiffiffiffiffiffiffi
3K0

p A3

1þ K1

þ A2

2K0

� �
:

After solving Eq. (23), we obtain the following integral

t ¼ �
Z

dq
gðqÞ þ C1; ð24Þ

where C1 is the constant of integration.

Again, by using the method given earlier by Pourhassan

and Kahya (2014) we get the following energy density

q ¼ Z þ C1 exp
�t

2Z2
RðZÞ

	 
h i2
; ð25Þ

where

RðZÞ ¼ 9b1Z
8 þ 7b2Z

6 þ 5a2Z
4 � 4a3Z

3 þ 3a4Z
2 � 2a5Z � a6;

C1 is the constant of integration and Z is the root of the

equation

b1Z
9 þ b2Z

7 þ a2Z
5 � a3Z

4 þ a4Z
3 � a5Z

2 � a6Z � a7 ¼ 0:

The graphical representation of dark energy density q with

respect to cosmic time t for n ¼ 3 is shown in Fig. 1. It is

noted that as time increases dark energy density decreases.

Again, from Eqs. (2), (7), (8), (12) and (13) we get the

second-order differential equation of scale factor for n ¼ 3

and a ¼ 1=2 as

2€a

a
þ ð1þ 3l0Þ

_a

a

� �2

� 3
_a

a
f0 þ f1

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

1=2
2

64

3

75

þ A1

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0

@

1

Aþ A2

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0

@

1

A
2

þ A3

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

3

�B
3 _a

a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

�a

� ð1þ l0ÞK0 ¼ 0:

ð26Þ

0 2 4 6 8 10
0

20

40

60

80

t

a

Fig. 4 Plot of the scale factor (a) versus time (t) with

A1 ¼ A2 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1; K0 ¼ K1 ¼ 1, x ¼ 0:5,
n ¼ 2, a ¼ 0:1 (solid line), a ¼ 0:5 (dashed line) and a ¼ 0:9 (dotted

line)

0.00 0.01 0.02 0.03 0.04 0.05

2

4

6

8

10

t

H

Fig. 5 Plot of the Hubble parameter (H) versus time (t) with

A1 ¼ A2 ¼ A3 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1; K0 ¼ K1 ¼ 1,

x ¼ 0:5, n ¼ 1 (solid line), n ¼ 2 (dashed line) and n ¼ 3 (dotted line)

0.0 0.2 0.4 0.6 0.8 1.0

10

15

20

25

t

a

Fig. 3 Plot of the scale factor (a) versus time (t) with

A1 ¼ A2 ¼ A3 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1; K0 ¼ K1 ¼ 1,

x ¼ 0:5, n ¼ 1 (solid line), n ¼ 2 (dashed line) and n ¼ 3 (dotted

line)
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Also, by using Eqs. (2), (7), (12) and (13) in Eq. (20) we

get the differential equation of Hubble parameter for n ¼ 3

and a ¼ 1=2 as

2 _H þ 3ð1þ l0ÞH2 � 3 f0 þ f1
3ðH2 � K0

3
Þ

ð1þ K1Þ

 !1=2
2

4

3

5H

þ A1

3ðH2 � K0

3
Þ

ð1þ K1Þ

 !
þ A2

3ðH2 � K0

3
Þ

ð1þ K1Þ

 !2

þ A3

3ðH2 � K0

3
Þ

ð1þ K1Þ

 !3

�B
3ðH2 � K0

3
Þ

ð1þ K1Þ

 !�a

� ð1þ l0ÞK0 ¼ 0:

ð27Þ

We solved Eq. (26) numerically for n ¼ 3 and obtained the

behaviour of scale factor a with respect to cosmic time t in

Fig. 2. It can be seen that as time increases scale factor is

constant initially and increases afterwards. The short-term

and long-term variation of scale factor is shown in Figs. 3

and 4, respectively. After solving Eq. (27) graphical plot of

Hubble parameter with respect to cosmic time t is given in

Fig. 5 for n ¼ 3. It is observed that as time increases

Hubble parameter H decreases.

Case III: n ¼ arbitrary and a ¼ 1=2

The ECCG EoS (2) becomes

p ¼ A1qþ A2q
2 þ � � � þ Anq

n � 1
ffiffiffi
q

p U þ q3=2 � U
	 
�xh i

:

ð28Þ

Therefore, the conservation equation becomes

_qþ hðqÞ ¼ 0; ð29Þ

where

hðqÞ ¼ cnqnþ1 þ cn�1qn þ � � � þ c1q2 � a3q4

þa4q3 � a5q2 � a6q� a7;

with

cn ¼
ffiffiffiffiffiffi
3

K0

r
An

2
; cn�1 ¼

ffiffiffiffiffiffiffiffi
3K0

p An

1þ K1

þ An�1

2K0

� �
;

cn�2 ¼
ffiffiffiffiffiffiffiffi
3K0

p An�1

1þ K1

þ An�2

2K0

� �
; . . .;

c1 ¼
ffiffiffiffiffiffiffiffi
3K0

p A3

1þ K1

þ A2

2K0

� �
:

Upon solving, we obtain the following integral

t ¼ �
Z

dq
hðqÞ þ C2; ð30Þ

where C2 is the constant of integration.

By using similar procedure, we get the expression for

density as

q ¼ X þ C2 exp
�t

2X2
TðXÞ

	 
h i2
; ð31Þ

where

TðXÞ ¼
X

n

ð2nþ 3ÞcnX2nþ2 � 4a3X
3 þ a4X

2 � 2a5X � a6;

X is the root of the equation
X

n

cnX
2nþ3 � a3X

4 þ a4X
3 � a5X

2 � a6X � a7 ¼ 0:

From the above equation, we have drawn the behaviour of

dark energy density q for n ¼ 1 along with graph for n ¼ 2

and n ¼ 3 with respect to cosmic time t in Fig. 1. It is

observed that the dark energy density decreases as time

increases for various value of n and approaches to an

infinitesimal constant at late times. It is also noted that the

dark energy density decreases as n increases from 1 to 3.

We can also find the dark energy density q for n ¼ 4 from

Eq. (31) and plot the same.

By using the previous method differential equation of

scale factor and Hubble parameter for arbitrary n and

a ¼ 1=2, respectively, is obtained as

2€a

a
þ ð1þ 3l0Þ

_a

a

� �2

�3
_a

a
f0 þ f1

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

1=2
2
64

3
75

þ
X

n

An

3 _a
a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

n

�B
3 _a

a

� �2� K0

3

	 


1þ K1ð Þ

0
@

1
A

�a

� ð1þ l0ÞK0 ¼ 0 ð32Þ

and

2 _H þ 3ð1þ l0ÞH2 � 3 f0 þ f1
3ðH2 � K0

3
Þ

ð1þ K1Þ

 !1=2
2
4

3
5H

þ
X

n

An

3ðH2 � K0

3
Þ

ð1þ K1Þ

 !n

�B
3ðH2 � K0

3
Þ

ð1þ K1Þ

 !�a

� ð1þ l0ÞK0 ¼ 0: ð33Þ

We solved Eq. (32) numerically and obtained the behaviour

of scale factor a with respect to cosmic time t in Fig. 2. We

fix all the other parameters and we took the values of n as

1, 2, 3 to find that as n increases value of scale factor

decreases. Figure 3 shows the short-term variation of scale

factor. Here also increasing n decreases the value of scale

factor. Behaviour of scale factor at later stage is shown in

Fig. 4. It is observed that increasing a decreases the value

of scale factor. Also, we solved Eq. (33) graphically and

drawn Hubble parameter with respect to cosmic time t for
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n ¼ 2 and 3 along with n ¼ 1 by fixing all the other

parameters in Fig. 5. It can be seen that as n increases the

value of Hubble parameter H decreases. Similarly, we can

also find the differential equation of scale factor and

Hubble parameter for n ¼ 4 and plot the same from

Eqs. (32) and (33).

Remark 2 We can also write Eq. (29) in terms of scale

factor as

Hdq
hðqÞ ¼

�da

a
: ð34Þ

With the help of Eqs. (9) and (12) above equation after

integration becomes

q ¼ K þ C0 a
�1

2K2ð1þmK2Þ

ffiffiffiffi
3
K0

p
FðKÞ

	 
" #2
; ð35Þ

where

FðKÞ ¼
X

n

ð2nþ 3ÞcnK2ðnþ1Þ þ 5a2K
4

� 4a3K
3 þ 3a4K

2 � 2a5K � a6;

m ¼ 1þK1

2K0
and K is the root of the equation

X

n

cnK
2nþ3 þ a2K

5 � a3K
4 þ a4K

3 � a5K
2 � a6K � a7 ¼ 0:

Putting the above value of q in the field equation (7), one

can obtain

H2 ¼ d1 þ d0ð1þ d2a
�d3Þ2; ð36Þ

where d1 is the constant related to K. d0, d2 and d3 are

constants related to K, ci0s and ai0s.
We can write the above equation of H in terms of red

shift as

H ¼ d1 þ d0ð1þ d2ð1þ zÞd3Þ2
	 
h i1=2

: ð37Þ

Remark 3 In Fig. 6, we have drawn the Hubble parameter

in terms of red shift and compared our numerical results

with observational data (Thakur et al. 2009). We can see

that our model is in agreement with the observational data.

It can also be observed that the current value of Hubble

parameter H � 70 is confirmed. Pourhassan (2013),

Kahya and Pourhassan (2014) and Pourhassan (2016) have

earlier obtained similar kind of behaviour of Hubble

parameter.

3 Deceleration Parameter

In the previous section, we discussed the scale factor and

Hubble parameter numerically. However, the analytical

behaviour of these parameters is not quite clear so in this

section we deal with another parameter of cosmology

called deceleration parameter which is important from

theoretical and observational point of view. It characterizes

the accelerating ðq\0Þ or decelerating ðq[ 0Þ nature of

the Universe and is given by

q ¼ � _a

a

� ��2€a

a
¼ �1�

_H

H2
: ð38Þ

By using Eqs. (2), (7), (12) and (13) in (38)

q ¼ 1

2
þ 1

SðqÞ
X

n

Anq
n þ xq� B

qa

 !
� f0 þ f1q

1=2
	 


� 3

SðqÞ

� �1=2

� K0 þ K1q
SðqÞ

� �
; ð39Þ

where SðqÞ ¼ 2
3
ðK0 þ qð1þ K1ÞÞ:

At early stage of the universe, the density is very high

hence we set B ¼ 0. So, the deceleration parameter may be

reduced to

q � 1

2
þ 1

SðqÞ
X

n

Anq
n þ xq

 !
� f0 þ f1q

1=2
	 


� 3

SðqÞ

� �1=2

� K0 þ K1q
SðqÞ

� �
: ð40Þ

At late time, there is low energy density so after ignoring

Fig. 6 Plot of the Hubble parameter (H) versus red shift (z) with

d1 ¼ 1=3; d2 ¼ 0:5, d3 ¼ 1:5 (solid), d3 ¼ 1:6 (dotted), d3 ¼ 1:7
(dashed), d3 ¼ 1:8 (dashdotted) and d3 ¼ 1:9 (long dashed); dots

denotes observational data
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the high energy terms and viscosity the behaviour of

deceleration parameter may be described as

q � 1

2
þ 1

SðqÞ xq� B

qa

� �
� f0 þ f1q

1=2
	 
 3

PðqÞ

� �1=2

� K0 þ K1q
SðqÞ

� �
: ð41Þ

Remark 4 Numerically, we have drawn deceleration

parameter in terms of q in Fig. 7. It is noted that as n in-

creases value of q also increases. For extended Chaplygin

gas, Pourhassan and Kahya (2014) obtained the identical

behaviour of deceleration parameter with increasing energy

density.

We have also drawn deceleration parameter q in terms

of cosmic time t. It is observed from Fig. 8 that for n ¼ 1;

q ¼ �1 which is in agreement with KCDM model. Further,

from Fig. 9 it is seen that for n ¼ 2 and n ¼ 3, q ! �1.

Also, it can be seen that for increasing n, q is decreasing. It

clearly shows the transition of the universe from deceler-

ation to acceleration at late time epoch. The similar kind of

behaviour of deceleration parameter with respect to cosmic

time t have been earlier obtained by Naji (2014).

Remark 5 In the following part, we obtain the deceleration

parameter in terms of red shift.

We differentiate Eq. (36) and obtain

_H ¼ a

2

d

da
ðd1 þ d0ð1þ d2a

�d3Þ2Þ; ð42Þ

which can be simply written as

_H ¼ �ca�d3ð1þ d2a
�d3Þ; ð43Þ

where c is some constant.

After using Eqs. (36) and (43), we get the deceleration

parameter in terms of red shift as

q ¼ �1�
_H

H2
¼ �1þ cð1þ zÞd3ð1þ d2ð1þ zÞd3Þ

d1 þ ð1þ d2ð1þ zÞd3Þ2
: ð44Þ

Remark 6 We have given the plot of deceleration

parameter in terms of red shift in Fig. 10. The transition

from decelerated q\1=2 to accelerated q\0 universe is

realized when q crosses zero, which means that the

Fig. 7 Plot of the deceleration parameter (q) versus energy density

ðqÞ with A1 ¼ A2 ¼ A3 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1; K0 ¼ K1 ¼ 1,

x ¼ 0:5, n ¼ 1 (solid line), n ¼ 2 (dashed line) and n ¼ 3 (dotted

line)

Fig. 8 Plot of the deceleration parameter (q) versus cosmic time

(t) with A1 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1;K0 ¼ K1 ¼ 1;x ¼ 0:5,
n ¼ 1

Fig. 9 Plot of the deceleration parameter (q) versus cosmic time

(t) with A1 ¼ A2 ¼ A3 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1; K0 ¼ K1 ¼ 1,

x ¼ 0:5, n ¼ 2 (solid line) and n ¼ 3 (dashed line)
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universe passes from matter dominated era to dark energy-

dominated era where ðqDE � qmatterÞ. It is interesting to

note that the crossing happens and the acceleration

expansion begins at z � 0:5 which is consistent with the

observational data. It can also be said that for d3 ¼ 1:7 the

plot of q(z) fits well for spatially flat universe given by Li

et al. (2011). The identical behaviour of deceleration

parameter has been discussed earlier by Akarsu and Dereli

(2012) and Aberkane et al. (2017).

From Figs. 6 and 10, it can be said that we can always

choose the appropriate values of d2 and d3 to have a model

which is in accordance with the experimental data.

4 Stability

It is important to investigate the stability of the theory.

There are several ways to investigate the same. Setare

(2007) and Sadeghi et al. (2010) used the speed of sound in

viscous fluid and studied the stability of the system. The

square of sound speed is defined as

C2
s ¼

d�p

dq
� 0: ð45Þ

By using the ECCG Eq. (2) and the Friedmann Eq. (9) in

Eq. (13), we get

�p ¼
X

n

Anq
n � U

qa
� q1þa � Uð Þ�x

qa

�
ffiffiffi
3

p
ðf0 þ f1q

1=2Þðqð1þ K1Þ þ K0Þ
1
2: ð46Þ

For Case I, i.e. n ¼ 2 and a ¼ 1=2 above equation becomes

�p ¼ A2q
2 �

ffiffiffiffiffiffi
3

K0

r
ð1þ K1Þf1

2

� �
q3=2

þ A1 þ x�
ffiffiffiffiffiffi
3

K0

r
ð1þ K1Þf0

2

� �
q� Bq�

1
2

�
ffiffiffiffiffiffiffiffi
3K0

p
ðf0 þ f1q

1=2Þ: ð47Þ

The expression for square of speed of sound is

C2
s � d�p

dq
¼ 2A2q�

ffiffiffiffiffiffi
3

K0

r
3ð1þ K1Þf1

4

� �
q1=2

�
ffiffiffiffiffiffiffiffi
3K0

p

2
f1q

�1=2 þ 1

2
Bq�

3
2 þ A1

þ x�
ffiffiffiffiffiffi
3

K0

r
ð1þ K1Þf0

2
� 0; ð48Þ

where q is given in Eq. (18).

Similarly, for the case II, i.e. n ¼ 3 and a ¼ 1=2

expression for square of speed of sound is of the form

C2
s � d�p

dq
¼ 3A3q

2 þ 2A2q�
ffiffiffiffiffiffi
3

K0

r
3ð1þ K1Þf1

4

� �
q1=2

�
ffiffiffiffiffiffiffiffi
3K0

p

2
f1q

�1=2 þ 1

2
Bq�

3
2 þ A1

þ x�
ffiffiffiffiffiffi
3

K0

r
ð1þ K1Þf0

2
� 0; ð49Þ

where q is given in Eq. (25).

The graphical representation of C2
s is given in Fig. 11. It

is observed that for n ¼ 2 and n ¼ 3 the speed of sound is

decreasing in early universe and then it is constant at late

time but for n ¼ 1 speed of sound increases in early uni-

verse and then it is constant in late universe as shown in

Fig. 10 Plot of the deceleration parameter (q) versus red shift (z) with

d1 ¼ 1=3; d2 ¼ 0:5, d3 ¼ 1:5 (solid), d3 ¼ 1:6 (dotted), d3 ¼ 1:7
(dashed), d3 ¼ 1:8 (dashdotted) and d3 ¼ 1:9 (long dashed)

Fig. 11 Plot of square of speed of sound ðC2
s Þ versus time (t) with

A1 ¼ A2 ¼ A3 ¼ 1=3;B ¼ 3:4, f0 ¼ f1 ¼ 0:1; K0 ¼ K1 ¼ 1,

x ¼ 0:5, n ¼ 2 (solid line) and n ¼ 3 (dashed line)
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Fig. 12. Hence, we found that for x ¼ 0:5 the theory is

completely stable and there is no region of instability.

5 Conclusion

In this paper, we have studied the ECCG with varying

cosmological constant in flat FRW bulk viscous cosmol-

ogy. We discussed the evolution of CG from its simplest

form to ECCG with their corresponding EoS. Then, we

introduced viscosity and cosmological constant as the lin-

ear combination of two terms, one is constant and other is a

function of dark energy density q. Further, we obtained

modified Friedmann equation and conservation equation

due to bulk viscosity, cosmological constant and ECCG.

We considered n ¼ 2; 3 and arbitrary n with a ¼ 1=2

and solved the nonlinear differential equation for dark

energy density analytically and numerically for all the three

cases and obtained the time-dependent dark energy density

q. We discussed the behaviour of dark energy density q for

n ¼ 1, 2 and 3 in Fig. 1. It is seen that dark energy density

q is a decreasing function of time which agrees with the

expansion of the universe. It begins with the positive value

and recovers asymptotically to a constant value. Also, it is

observed that the dark energy density decreases as n in-

creases in the presence of cosmological constant.

Further we solved Eqs. (32), (33) and (35) numerically

for n ¼ 1; 2 and 3 and obtained the evolution of scale factor

a, Hubble expansion parameter H and deceleration

parameter q and found the effect of increasing n in these

cosmological parameters. The graphical representation of

scale factor a is shown in Fig. 2 and it is found that scale

factor decreases with increasing value of n. The behaviour

of scale factor in early and late universe is drawn in Figs. 3

and 4, respectively. It is noted that as a increases a de-

creases in later stage of the universe.

Remark 7 Also, the behaviour of Hubble parameter H is

drawn in terms of cosmic time t and red shift z in Figs. 5

and 6, respectively. It is observed that as n increases

Hubble parameter H decreases. It is also seen that our

model is in agreement with the observational data.

Remark 8 We plot deceleration parameter in terms of q,
cosmic time t ðn ¼ 1 and n ¼ 2; 3Þ and red shift z in

Figs. 7, 8, 9 and 10, respectively. It is observed that q !
�1 which recovers the result of KCDM model indicating

the acceleration of the universe. Also, it is noted that as

n increases value of q decreases. Further, it can be seen that

the acceleration expansion begins at z � 0:5 which is

consistent with the observational data. From the graphs, it

is clear that universe transits from matter dominated era to

dark energy-dominated phase.

Finally, we investigated the stability of the theory by

using square of speed of sound ðC2
s Þ. The graphical rep-

resentation of C2
s is shown in Fig. 11. From the figure, it

can be inferred that for n ¼ 2 and 3 the speed of sound

decreases at early time and is constant at late time but for

n ¼ 1 the speed of sound increases as shown in Fig. 12. It

starts with a positive value and reaches a constant value at

late time. Hence, for x ¼ 0:5 the theory is completely

stable.

For the future study, it is possible to discuss this work

for the case of arbitrary a with non-flat universe where

k 6¼ 0.
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