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Abstract
The main result achieved in this paper is an operational Tau-Collocation method based on a class of Lagrange

polynomials. The proposed method is applied to approximate the solution of variable-order fractional differential

equations (VOFDEs). We achieve operational matrix of the Caputo’s variable-order derivative for the Lagrange poly-

nomials. This matrix and Tau-Collocation method are utilized to transform the initial equation into a system of algebraic

equations. Also, we discuss the numerical solvability of the Lagrange-Tau algebraic system in the case of a variable-

order linear equation. Error estimates are presented. Some examples are provided to illustrate the accuracy and com-

putational efficiency of the present method to solve VOFDEs. Moreover, one of the numerical examples is concerned

with the shape-memory polymer model.

Keywords Variable-order fractional differential equation � Lagrange polynomial � Tau-Collocation method

1 Introduction

Fractional calculus is an old mathematical topic from the

17th century, used to model many phenomena. Its appli-

cations in physics and engineering include viscoelastic

materials (Bagley and Torvik 1985), statistical mechanics

(Mainardi 1997), solid mechanics (Rossikhin and Shitikova

1997), etc. An application to economics is reported in

(Baillie 1996).

Different numerical methods have been used to solve a

variety of various kind of fractional equations. For exam-

ple, Legendre wavelet method (Jafari et al. 2011), B-Spline

functions (Lakestani 2017), Chebyshev polynomials

(Sedaghat et al. 2012), fractional-order general Lagrange

scaling functions (Sabermahani et al. 2019) and so on.

In recent years, the concepts of variable-order fractional

integral and derivative have been introduced. Researchers

have studied the applications of this type of problem.

Variable-order fractional calculus is used to model such

phenomena as transient dispersion in heterogeneous media

(Sun et al. 2014), anomalous diffusions with variable and

random orders (Sun et al. 2010), alcoholism (Gomez-

Aguilar 2018), glass transition from amorphous networks

to shape-memory behavior (Xiao et al. 2013), viscoelastic

and elastoplastic spherical indentation (Ingman et al. 2000)

and so on.

An important application of fractional calculus of vari-

able-order is the modelling of shape-memory polymers

(SMPs) (Li et al. 2017).

A SMP is a polymer material which can be temporarily

deformed in response to an external stimulus such as

change in temperature and light, then return to its initial

shape (Xiao et al. 2013).

SMPs have attracted the attention of many researchers in

fundamental investigation and technology innovation. An

important particular case of SMP is the shape-memory

nanocomposites (SMCs), where the incorporation of

functional inorganic nanofillers in the shape-memory
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polymer matrices is purposely performed. Such materials

can be used in medical devices, self-healing systems,

sensors, controllable devices, adaptive and deployable

structures, etc (Pilate et al. 2016).

Figure 1 shows examples of the ability to change the

shape memory in photoresponsive materials and the effect

of light and temperature on restoring its initial shape.

In this study, one of our examples is dedicated to the

numerical solution of the SMP model.

There have not been many studies on the numerical

analysis of VOFDEs. Lin et al. 2009 have examined the

stability and convergence of finite difference method for

the variable-order fractional diffusion equation. Several

numerical techniques have been used to solve this type of

problems such as the method based on Legendre wavelets

(Chen et al. 2015; Hosseininia and Heydari 2019a), finite

difference method (Sun et al. 2012), Bernstein operational

matrices (Omar and Mohammed 2017), a shifted Legen-

dre–Gauss–Radau collocation approach (Bhrawyi et al.

2017), Gegenbauer wavelets (Usman et al. 2018), Bern-

stein polynomials (Chen et al. 2016), method based on

Chebyshev cardinal functions (Heydari et al. 2019a),

Adams–Bashforth–Moulton method (Ma et al. 2012),

reproducing kernel (Li and Wu 2017; Jia et al. 2017), the

polynomial least squares method (Bota and Căruntu 2017),

wavelet method (Hosseininia et al. 2019; Heydari et al.

2019b), meshfree approach (Shekari et al. 2019), meshfree

moving least squares method (Hosseininia and Heydari

2019b) and so on.

Lagrange polynomials are a well-known mathematical

tool. There are different ways of choosing the nodes for

Lagrange interpolation (ti; i ¼ 0; 1; . . .;N). If we consider ti

as zeros of orthogonal polynomials (such as Legendre

polynomials, Chebyshev polynomials, etc), we derive a set

of orthogonal Lagrange polynomials (Szegö 1967).

In this case, the properties of the orthogonal polyno-

mials can be combined with features of Lagrange

interpolation.

In this work, we first recall in Sect. 2 some known

preliminaries which are used in this study. In Sect. 3, we

present the Tau-Collocation algorithm and matrix repre-

sentation of present method for solving fractional differ-

ential equations of variable-order. Also, we discuss the

numerical solvability of the Lagrange-Tau algebraic sys-

tem in the case of a linear equation. Error analysis is

proposed in Sect. 4. In Sect. 5, we present some tests and

their numerical results to display the high accuracy and

efficiency of proposed method.

Here, the general form of the fractional differential

equations of variable-order is considered as follows:

DcðtÞuðtÞ ¼ Fðt; uðtÞ;Dc1ðtÞuðtÞ;Dc2ðtÞuðtÞ; . . .;DcnðtÞuðtÞÞ;
ð1Þ

on the interval t 2 ½0; 1�, subject to

uð0Þ ¼ u0;

where 0\cðtÞ� 1, 0\c1ðtÞ\c2ðtÞ\. . .cnðtÞ\cðtÞ.

2 Preliminaries

This section provides some definitions and notations that

are used in this study.

Definition 2.1 The Caputo’s fractional derivative of order

c is defined as (Podlubny 1999)

DcuðtÞ ¼
1

Cðm � cÞ

Z t

0

uðmÞðsÞ
ðt � sÞc�mþ1

ds; m � 1\c\m; m 2 N; t[ 0

dmf ðtÞ
dtm

c ¼ m

8>>><
>>>:

For the Caputo derivative, we have:

1.

Dctk ¼
0; c 2 N0; k\c;

Cðk þ 1Þ
Cðk � cþ 1Þ tk�c; otherwise:

8<
: ð2Þ

2.
Dck ¼ 0;

where k is constant.

Definition 2.2 Let u : ½0; 1� ! R be a function, c[ 0 a

real number and m ¼ dce, where dce denotes the smallest

Fig. 1 Shape-memory effect of photoresponsive polymers. a A film of

grafted polymer. (a) Permanent shape; (b) temporary shape; (c) re-

covered permanent shape. b An IPN polymer film. (a) Permanent

shape; (b) corkscrew spiral temporary shape; (c) recovered shape

obtained by irradiation with UV light. Adapted from Pilate et al.

(2016)
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integer greater than or equal to c, the Riemann–Liouville

fractional integral is defined as (Podlubny 1999)

IcuðtÞ ¼ 1

CðcÞ

Z t

0

ðt � sÞc�1
uðsÞds; c[ 0; t [ 0;

For this fractional integral, we have

Ictn ¼ Cðn þ 1Þ
Cðn þ 1 þ cÞ tcþn; n[ � 1: ð3Þ

and

ðDcIcuÞðtÞ ¼ uðtÞ;

ðIcDcuÞðtÞ ¼ uðtÞ �
Xdce�1

i¼0

uðiÞð0Þ ti

i!
;

Icðk1uðtÞ þ k2wðtÞÞ ¼ k1IcuðtÞ þ k2IcwðtÞ:

Definition 2.3 The variable order of Riemann–Liouville

fractional integral operator is defined by (Doha et al. 2017;

Samko 1995)

IcðtÞuðtÞ ¼ 1

CðcðtÞÞ

Z t

0

ðt � sÞcðtÞ�1
uðsÞds: ð4Þ

Moreover, we have the following property (Bahaa 2017)

IcðtÞtk ¼
Cðk þ 1Þ

Cðk þ cðtÞ þ 1Þ tkþcðtÞ; m� k 2 N;

0 otherwise:

8<
: ð5Þ

Definition 2.4 The variable order of Caputo’s fractional

derivative operator is defined by (Bhrawyi et al. 2017;

Zhao et al. 2015)

DcðtÞuðtÞ ¼ 1

Cðm � cðtÞÞ

Z t

0

uðmÞðsÞ
ðt � sÞcðtÞ�mþ1

ds; t[ 0;

ð6Þ

where m � 1\cðtÞ\m.

Also, we get the following property (Hassani et al.

2017)

DcðtÞtk ¼
Cðk þ 1Þ

Cðk � cðtÞ þ 1Þ tk�cðtÞ; m� k 2 N;

0 otherwise:

8<
: ð7Þ

Definition 2.5 Suppose that 8t 2 ½0; 1�; 0\cðtÞ\1; I1�cðtÞ

f 2 C½0; 1�. Then, the variable of Caputo fractional

derivative for t[ 0 is defined by (Bahaa 2017; Bhrawyi

et al. 2017)

DcðtÞf ðtÞ ¼ I1�cðtÞ d

dt
f ðtÞ: ð8Þ

2.1 Lagrange Polynomials

Consider a set of nodes ti 2 ½0; 1�; i ¼ 0; 1; . . .;N. Then,

the Lagrange polynomials can be defined as follows (Stoer

and Bulirsch 2013):

LiðtÞ :¼
YN

j ¼ 0

i 6¼ j

ðt � tjÞ
ðti � tjÞ

:
ð9Þ

Moreover, in these points, the Lagrange polynomials are

also described by (Sabermahani et al. 2018)

LiðtÞ ¼
XN

s¼0

bist
N�s; i ¼ 0; 1; . . .;N; ð10Þ

where

bi0 ¼ 1QN
j ¼ 0

i 6¼ j

ðti � tjÞ

bis ¼
ð�1Þs

QN
j ¼ 0

i 6¼ j

ðti � tjÞ
XN

ks¼ks�1þ1

� � �
XN�sþ1

k1¼0

Ys

r¼1

tkr
;

where s ¼ 1; 2; . . .; N; i 6¼ k1 6¼ . . . 6¼ ks.

In this study, the nodes ti; ði ¼ 0; 1; . . .;NÞ are the zeros

of the shifted Legendre polynomial PNþ1 of order N þ 1 on

[0, 1]. The system Li; i ¼ 0; 1; 2; . . .;N forms a set of

orthogonal polynomials (Szegö 1967).

3 Description of Numerical Method

Let LðtÞ ¼ fL0ðtÞ; L1ðtÞ; . . .; LNðtÞg be a set of Lagrange

polynomials. We define uNðtÞ as a Tau approximation of

u(t) as follows

uNðtÞ ’
XN

i¼0

uiLiðtÞ ¼ UT
NLðtÞ; ð11Þ

where

UN ¼ ½u0; u1; . . .; uN �T ; ð12Þ

and using Eq. (10), we have

LðtÞ ¼ BXt: ð13Þ

where
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Xt ¼ ½1; t; t2; . . .; tN �T ; B ¼ ½bij�; ð14Þ

The following lemma describes the effect of the variable-

order of derivative on a given set of Lagrange polynomials.

Lemma 3.1 Matrix representing the effect Caputo’s vari-

able-order derivative on the coefficients of the Lagrange

polynomials in Eq. (13) is given by

DcðtÞuNðtÞ ¼ I1�cðtÞ d

dt
uNðtÞ ’ UT

N ~l
c
t Xt; ð15Þ

where ~lct ¼ BDtl
c
t , Dt is derivative operational matrix of

Taylor polynomials and

lct ¼
t1�cðtÞCð1Þ
Cð2 � cðtÞÞ 0 � � � 0 � � � 0

0
t1�cðtÞCð2Þ
Cð3 � cðtÞÞ � � � 0 � � � 0

..

. ..
. . .

. ..
. . .

. ..
.

0 0 0
t1�cðtÞCðm þ 1Þ
Cðm þ 2 � cðtÞÞ � � � 0

..

. ..
. ..

. . .
. . .

. ..
.

0 0 0 � � � 0
t1�cðtÞCðN þ 1Þ
CðN þ 2 � cðtÞÞ

2
66666666666666666664

3
77777777777777777775

:

Proof The analytic form of the Lagrange polynomials is

given by Eq. (13). Using Eqs. (5), (13) and 0\cðtÞ� 1, for

the variable-order derivative, we get

DcðtÞuNðtÞ ¼I1�cðtÞ d

dt
uNðtÞ ’ I1�cðtÞ d

dt
ðUT

NBXtÞ

¼UT
NBI1�cðtÞ d

dt
ðXtÞ ¼ UT

NBDtI
1�cðtÞðXtÞ

¼UT
NBDt

Cð1Þ
Cð2 � cðtÞÞ t1�cðtÞ;

Cð2Þ
Cð3 � cðtÞÞ t2�cðtÞ;

�

. . .;
CðN þ 1Þ

CðN þ 2 � cðtÞÞ tNþ1�cðtÞ
�T

¼UT
NBDtl

c
t Xt;

so the proof is complete. h

Now, using the Lagrange polynomials as basis func-

tions, we employ the Tau-Collocation method together

with matrix representing the effect Caputo’s variable-order

derivative in order to transform the problem (1) into a

system of algebraic equations.

Substituting Eqs. (11)–(15) in problem (1), we derive

UT
N ~l

c
t Xt ¼ Fðt;UT

N ~lc1
t Xt;UT

N ~l
c2
t Xt; . . .;UT

N ~l
cn
t XtÞ; ð16Þ

with initial condition

UT
NBXtð0Þ ¼ u0:

As in the Tau method, the basic idea of the Tau-

Collocation method is to add, a perturbation term HNðtÞ to

the right hand side of Eq. (16). We consider HNðtÞ as

follows

HNðtÞ ¼ gðt; s0; s1; . . .; s/�1ÞLN�mþ1ðtÞ;

where gðt; s0; s1; . . .; s/�1Þ is a function of t and si; i ¼
1; 2; . . .;/� 1 are free parameters for this function. Since

LN�mþ1ðtÞ is an orthogonal polynomial, then we get

UT
N ~l

c
t Xt � Fðt;UT

N ~l
c1
t Xt;UT

N ~l
c2
t Xt; . . .;UT

N ~l
cn
t XtÞ ¼ HNðtÞ;

ð17Þ

with initial condition

UT
NBXtð0Þ ¼ u0:

As proved in (Ortiz and El-Daou 1998), the classical col-

location method with collocation points cj is equivalent to

the Tau method with a polynomial perturbation term M(t),

if cj are the roots of M(t). In the case of the Tau-Colloca-

tion method proposed here, the roots of the perturbation

term HNðtÞ coincide with the roots of the polynomial

LN�mþ1ðtÞ, which are also the collocation points. There-

fore, the Tau-Collocation method can be applied as the

usual collocation method, independently of the form of the

perturbation term HNðtÞ. When the collocation method is

applied to Eq. (17) using N � m þ 1 roots of LN�mþ1ðtÞ as

collocation nodes, we derive a system of algebraic equa-

tions. Solving this system by an adequate numerical

method, we achieve the unknown vector UN .

3.1 Numerical Solvability of the Lagrange-Tau
Algebraic System

Here, we consider the Lagrange-Tau algebraic system,

Eq. (16), and we discuss the numerical solvability of this

system in the case of a linear equation.

In this discussion, we use the bounded and compact

operator’s theory. For simplicity, consider following

equation

DcðtÞuðtÞ ¼ uðtÞ þ f ðtÞ; t 2 X ¼ ½0; 1� ð18Þ

with the initial conditions

uð0Þ ¼ u0; ð19Þ

where u(t) satisfies in Eqs. (18), (19).

Suppose that K 2 ðL2ðXÞÞ2
and K : L2ðXÞ ! L2ðXÞ is

defined as follows

ðKuÞðtÞ ¼
Z t

0

Kðt; sÞuðsÞds; t 2 X;

K is a linear and compact operator. The integral operators

with weakly singular kernel functions are linear, bounded

and compact operators. So, if uðtÞ 2 H1ðXÞ, then the
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variable-order Caputo’s fractional derivative operator

DcðtÞuðtÞ : H1ðXÞ ! L2ðXÞ is a linear and compact opera-

tor, where H1ðXÞ is the well-known Sobolev space.

Theorem 3.1 (Atkinson and Han 2009) Assume that V; ~V

are Banach spaces and fPNg is a family of bounded

projections on ~V with

PNm ! m; as n ! 1;

where m 2 V . Let W : V ! ~V be a compact operator, then

kW � PNWk ! 0; as n ! 1:

Theorem 3.2 (Atkinson and Han 2009) Let W : V ! ~V be

bounded and at least one is a Banach space and k�W :

V ! ~V ; k 2 C is bijective. Moreover, suppose that

kW � PNWk ! 0; as n ! 1;

then, the bounded operator ðk� PNWÞ�1 : ~V ! V exists.

We presume the orthogonal projection YN : ~V ! V ,

where ~V ¼ R � L2ðXÞ, V ¼ R � PM
N and

PM
N ¼ fL0ðtÞ; L1ðtÞ; . . .; LNðtÞg.

Now, consider Eq. (18) that is a special form of Eq. (1).

Let the Eq. (18) must be solved. By approximating this

equation by Lagrange-Tau method, we have the following

problem

YN

Id þ DcðtÞ

B

 !
~uN ¼ YN

f

0

� �
; ~uN 2 PM

N :

where B and Id are the linear initial and the identity

operator, respectively. The method is implemented in this

form, as it converts directly to an equivalent finite linear

system, special form of Eq. (16). We can rewrite this

equation as

Id

0

� �
~uN � YN

�DcðtÞ

�B

 !
~uN ¼ YN

f

0

� �
; ~uN 2 PM

N :

Let

~I ¼
Id

0

� �
; ~D ¼ �DcðtÞ

�B

 !
; ~f ¼

f

0

� �
:

Therefore, we have

ð~I � YN
~DÞ~uN ¼ YN

~f :

~u 2 H1ðXÞ, the operator DcðtÞ : H1ðXÞ ! L2ðXÞ is bounded

and compact, then ~D is a linear, bounded and compact

operator. Therefore, by Theorems 3.1 and 3.2 display the

operator ð~I � YN
~DÞ�1

exists and is bounded. Thus, the

Legendre-Tau numerical solution of Eq. (18) exists and is

unique.

4 Error Analysis

Here, we propose a technique for estimating the error of the

Lagrange-Tau-Collocation method.

For simplicity, we rewrite this problem in the following

form

DcðtÞuðtÞ ¼ uðtÞ þ f ðtÞ; ð20Þ

with the initial conditions

uð0Þ ¼ u0; ð21Þ

where u(t) satisfies in Eqs. (20), (21). Moreover, uNðtÞ
satisfies in the Tau problem as follows

DcðtÞuNðtÞ ¼ uNðtÞ þ f ðtÞ þ HNðtÞ; ð22Þ

with

uNð0Þ ¼ u0; ð23Þ

We define an error function as

eNðtÞ ¼ uðtÞ � uNðtÞ:

Subtracting Eq. (22) from (20), we obtain

DcðtÞuðtÞ � DcðtÞuNðtÞ ¼ uðtÞ � uNðtÞ þ f ðtÞ � ðf ðtÞ þ HNðtÞÞ;

which can be rewritten as

DcðtÞeNðtÞ ¼ eNðtÞ � HNðtÞ: ð24Þ

Moreover, from Eqs. (23) and (21), we conclude that

eNð0Þ ¼ 0; ð25Þ

Now, if we apply the Tau-Collocation method to solve

Eqs. (24), (25), we obtain the Tau problem

DcðtÞeN;MðtÞ ¼ eN;MðtÞ � HNðtÞ þ HMðtÞ; ð26Þ

with initial conditions

eN;Mð0Þ ¼ 0; ð27Þ

By solving the problem (26), (27) we obtain eN;MðtÞ which

is an approximation of eNðtÞ by the Lagrange-Tau-Collo-

cation method with M �N and can be used to achieve a

more accurate result.

Remark 4.1 Suppose that uNðtÞ ¼
PN

i¼0 uiLiðtÞ is the best

approximation of u on the interval [0, 1] and

U ¼ spanfL0ðtÞ; L1ðtÞ; . . .; LNðtÞg. Then, using Taylor’s

formula and according to concept of the best approxima-

tion, we have
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ku � uNkL2½0;1� �
supt2½0;1� juðNÞðtÞj

N!ð2N þ 1Þ

Since, N is constant. We conclude that uNðtÞ converges to

u(t) as N tends to infinity.

Remark 4.2 Matrix representing the effect Caputo’s vari-

able-order derivative presented in Lemma 3.1 is obtained

without any approximation. So its error is zero. On the

other hand, Tau-Collocation method is convergent (Canuto

et al. 2006). Consequently, with respect to this and Remark

4.1, it can be concluded that the proposed method is

convergent.

5 Numerical Results and Illustrative Test
Problems

In order to evaluate the advantages and the efficiency and

accuracy of this method to solve VOFDEs, we have applied

this method to some examples. The computations associ-

ated with the tests have been performed using Mathematica

10.0.

Example 1 Here, we consider the variable order cðtÞ for a

linear VOFDE modelling the shape-memory behavior

which has the form (Li et al. 2017)

DcðtÞuðtÞ ¼ f ðtÞ; 0\cðtÞ\1; t 2 ½0; 1�; ð28Þ

with uð0Þ ¼ 0 and cðtÞ ¼ 0:65 þ 0:2t2; f ðtÞ ¼ 2t1:35�0:2t2

Cð2:35�0:2t2Þ.

The analytic solution of Eq. (28) is uðtÞ ¼ t2. We apply the

present method with N ¼ 2 for solving this problem. Fig-

ure 2a displays the absolute error of numerical results for

this equation. By comparing the numerical results obtained

from our method with the method presented in Li and Wu

(2017), we can see that our results are much more accurate

even with a smaller number of basis functions.

Additionally, we present an error estimate obtained by

the method described in Sect. 4. Figure 2b displays the

error estimate of this problem for M ¼ N ¼ 2.

Example 2 Consider the following linear VOFDE (Chen

et al. 2015)

DcðtÞuðtÞ � 10u0ðtÞ þ uðtÞ ¼ f ðtÞ; t 2 ½0; 1�; 0\cðtÞ\1;

ð29Þ

subject to

uð0Þ ¼ 5;

the variable order is chosen to be cðtÞ ¼ tþ2et

7
, and

f ðtÞ ¼ 10
2 � cðtÞ

Cð3 � cðtÞ þ
t1�cðtÞ

Cð2 � cðtÞÞ

� �
þ 5t2 � 90t � 95:

The analytic solution of Eq. (29) is uðtÞ ¼ 5ð1 þ tÞ2
. We

apply the present method for solving this problem with

N ¼ 2, then the problem can be transformed into the fol-

lowing equation

UT
2 ~l

c
t Xt � 10UT

2 ~l
c1
t Xt þ UT

2 BXt ¼ f ðtÞ þ H2ðtÞ: ð30Þ

Then, by using the collocation method, we derive the

numerical solution for this problem. The absolute error of

the present scheme is displayed in Table 1 and compared

with the errors obtained by the finite difference sche-

me(FDS) (Chen et al. 2015) and Legendre wavelet method

reported in (Chen et al. 2015). From this Table, we can see

that this method is efficient to solve this equation.

Example 3 We consider the following VOFDE (Bhrawyi

et al. 2017)

DcðtÞuðtÞ þ 3u0ðtÞ � uðtÞ ¼ f ðtÞ; 0\cðtÞ\1; ð31Þ

with uð0Þ ¼ 0,

0.0 0.2 0.4
a

b

0.6 0.8 1.0

0

2. 10 17

4.×

×

10–

–

17

6.× 10–17

8.× 10–17

1.× 10–16

a

b

0.0 0.2 0.4 0.6 0.8 1.0

2.× 10–17

3.× 10–17

4.× 10–17

5.× 10–17

6.× 10–17

7.× 10–17

Fig. 2 a Absolute error of approximate solutions for N ¼ 2, b error

estimate of the present method for N ¼ 2 in Example 1
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f ðtÞ ¼ et 3 � Cð1 � cðtÞ; tÞ
Cð1 � cðtÞÞ

� �

and cðtÞ ¼ 1þcos2ðtÞ
4

.

The analytic solution is uðtÞ ¼ et. The absolute errors of

the approximation obtained by the present method using

various values of N are shown in Table 2. From these

results, we can see that this method provides high accuracy

when applied to the given equation.

Example 4 Consider the nonlinear VOFDE (Hassani et al.

2017)

DcðtÞuðtÞ þ sinðtÞu2ðtÞ ¼ f ðtÞ; 0\cðtÞ� 1; ð32Þ

with uð0Þ ¼ 0; cðtÞ ¼ 1 � 0:5e�t and

f ðtÞ ¼ Cð9
2
Þþt

7
2
�cðtÞ

Cð9
2
�cðtÞÞ þ sinðtÞt7.

The exact solution of Eq. (32) is uðtÞ ¼ t
7
2. This equation

is solved by using the present method with N ¼ 6; 10. The

graph of the absolute error for this problem is displayed in

Fig. 3. The absolute errors of our results with N ¼ 6; 10 are

displayed in Table 3.

Example 5 Consider the following nonlinear VOFDE

DcðtÞuðtÞ � 2DuðtÞ � u2ðtÞ ¼ f ðtÞ; t 2 ½0; 1�; 0\cðtÞ\1;

ð33Þ

and the function f(t) is selected so that the analytical

solution of Eq. (33) is uðtÞ ¼ cosðtÞ. By applying the

proposed technique, we solve this problem, numerically

with N ¼ 6. Figure 4a displays a comparison between the

curves of the analytic and approximate solutions this value

of N. The absolute error of the numerical solutions for

N ¼ 6 is plotted in Fig. 4b. In conclusion, Fig. 4 demon-

strates the effectiveness of the present method when

applied to this nonlinear problem.

Table 1 Comparison of absolute errors of approximate solutions for Example 2

t FDS (N = 20) (Chen et al. 2015) Legendre wavelets (k = 2, M = 4) (Chen et al. 2015) Our method (N = 2)

0.2 4:737 � 10�2 8:091305 � 10�12 2:66454 � 10�15

0.4 7:718 � 10�2 2:024535 � 10�09 3:55271 � 10�15

0.6 7:891 � 10�2 9:564669 � 10�10 1:77636 � 10�15

0.8 4:821 � 10�2 1:696030 � 10�10 3:55271 � 10�15

1.0 9:251 � 10�3 1:734222 � 10�10 3:55271 � 10�15

Table 2 Comparison of absolute errors of the approximate solutions

for Example 3

t Present method

N ¼ 6 N ¼ 10

0.1 8:66084 � 10�9 1:04385 � 10�12

0.3 1:60010 � 10�8 4:57315 � 10�14

0.5 2:49049 � 10�8 2:81775 � 10�11

0.7 4:19171 � 10�8 3:12130 � 10�11

0.9 5:92718 � 10�8 1:46156 � 10�10

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10−7

4.×10−7

6.×10−7

8.×10−7

Fig. 3 Absolute error of the present method for N ¼ 10, in Example 4

Table 3 Absolute errors of the present method for Example 4

t Present method

N ¼ 6 N ¼ 10

0.2 3:70929 � 10�6 2:07663 � 10�7

0.4 5:79180 � 10�6 4:14451 � 10�8

0.6 5:22717 � 10�6 2:67798 � 10�7

0.8 1:33024 � 10�5 1:51750 � 10�8

1.0 3:44242 � 10�5 1:57873 � 10�5
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6 Conclusion

The aim of the present paper is to develop an efficient and

accurate method to solve VOFDEs by using the well-

known Tau-Collocation method based on Lagrange poly-

nomials. The effect of the Caputo’s variable-order deriva-

tive on the coefficients of the Lagrange polynomials is

obtained. This effect and the Tau-Collocation method are

utilized to transform the initial equation into a system of

algebraic equations. Moreover, we employ the present

technique for the numerical solution of an equation mod-

elling the behavior of a the shape-memory polymer. We

discuss the numerical solvability of the variable-order of

Lagrange-Tau algebraic system and presented the conver-

gence analysis. The accuracy, validity and applicability of

this scheme are confirmed by the numerical results.
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