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Abstract
This article concerns the problem of interval estimation for the population quantiles in ranked set sampling. Some intervals

are developed using asymptotic normality of nonparametric quantile estimator and/or resampling methods. The proposed

procedures are evaluated in terms of coverage rate and average length. Some comparisons with analogous intervals in

simple random sampling are also made. Finally, a medical data set is used to illustrate application of the intervals.
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1 Introduction

Ranked set sampling (RSS) is a sampling method that can

be used when there is a mechanism to rank potential

sample units inexpensively and fairly accurately, without

actually measuring them. It was first employed by McIn-

tyre (1952) for estimating average yields in agriculture. In

this specific problem, an expert may provide a reliable

ranking of the yields for a few adjacent plots based on

visual inspection. The aforesaid informal ranking process is

known as ‘‘judgment ranking’’ in RSS literature. It is often

implemented visually, but using one or more concomitant

variables could be a viable alternative. If the rankings are

free of errors, it is called perfect ranking. In practical sit-

uations, the ranking errors are inevitable, which is referred

to as imperfect ranking.

An unbalanced ranked set sample is drawn as follows.

One first specifies a set size k and values m1; . . .;mk. For

r ¼ 1; . . .; k, one then draws mr independent simple ran-

dom samples of size k and ranks the units within each

sample from smallest to largest using the judgment rank-

ing. Finally, the unit with rank r is selected for measure-

ment from each sample. The resulting sample is denoted by

fX½r�i : r ¼ 1; . . .; k ; i ¼ 1; . . .;mrg, where X½r�i is the rth

judgment order statistic from the ith cycle. Balanced RSS

corresponds to special case that m1 ¼ � � � ¼ mk ¼ m. The

set size k is typically chosen to be small so that units in sets

of size k can be ranked accurately.

A ranked set sample is more informative than a simple

random sample of comparable size. This is so because the

judgment ranking process serves as a guide to select the

units. This may be interpreted as a kind of stratification

performed at the sample level. It is formally shown that

many RSS-based methods outperform their SRS versions

as long as the ranking quality is better than random. Wolfe

(2012) provides a good review of RSS and its applications.

Some applications of RSS include agriculture (Murray

et al. 2000), environmental monitoring (Kvam 2003),

reliability (Mahdizadeh and Zamanzade 2018a, c), and

medicine (Mahdizadeh and Zamanzade 2019a).

Nonparametric estimation based on RSS has drawn

much attention in the literature. Several variations of RSS

have been introduced for estimating the population mean

(Mahdizadeh and Zamanzade 2018d, 2019b). Many sta-

tistical methods have been proposed based on RSS and its

modifications. Stokes and Sager (1988) considered esti-

mation of the population distribution function in RSS. Al-

Omari (2015, 2016) dealt with this problem in L RSS and

quartile RSS. Zamanzade and Mahdizadeh (2018, 2019)

explored the proportion estimation under some variations
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of RSS. Chen (2000) developed quantile estimator in bal-

anced RSS and showed that it is asymptotically more

efficient than its SRS counterpart if the perfect ranking is

assumed. Mahdizadeh and Arghami (2012) addressed

quantile estimation in RSS from a population with known

mean. Balakrishnan and Li (2006) studied confidence

intervals (CIs) for quantiles and tolerance intervals based

on ordered ranked set samples. Mahdizadeh and Zaman-

zade (2018b) proposed some CIs for the reliability

parameter in RSS. This article deals with the problem of

interval estimation for the population quantiles in balanced

RSS.

In Sect. 2, quantile estimator in RSS and its asymptotic

normality are reviewed. Next, estimating the asymptotic

variance is discussed. Based on asymptotic normality of the

quantile estimator and/or resampling methods, some CIs

for quantiles are constructed in Sect. 3. In Sect. 4, cover-

age rates and average lengths of the proposed intervals are

judged by means of Monte Carlo simulation. Application

of the developed procedures is illustrated using a medical

data set in Sect. 5. A summary of the findings appears in

Sect. 6.

2 Quantile Estimation

Let fX½r�i : r ¼ 1; . . .; k ; i ¼ 1; . . .;mg be a balanced ranked

set sample from a population with probability density

function (PDF) f(x) and cumulative distribution function

(CDF) F(x). The empirical CDF in RSS is given by:

~FnðxÞ ¼
1

n

Xk

r¼1

Xm

i¼1

I X½r�i � x
� �

; ð1Þ

where n ¼ mk, and I :ð Þ is the indicator function. Stokes

and Sager (1988) showed that the above estimator is

unbiased for F(x) and has smaller variance than its SRS

competitor, given a total sample size.

The problem of estimating pth population quantile,

denoted by np, is closely related to that of CDF estimation.

Chen (2000) proposed the pth quantile estimator in RSS as:

~np ¼ inffx : ~FnðxÞ� pg; p 2 ð0; 1Þ;

where ~FnðxÞ is defined in (1). Suppose B(a, b; t) is the CDF
of beta distribution with parameters a and b evaluated at t,

i.e.,

Bða; b; tÞ ¼
Z t

0

Cðaþ bÞ
CðaÞCðbÞ x

a�1ð1� xÞb�1
dx;

where Cð:Þ is the gamma function. The asymptotic nor-

mality of ~np is stated in the following result due to Chen

(2000). It should be mentioned that in asymptotic theory of

RSS design, the number of cycles goes to infinity, while the

set size is fixed.

Proposition 1 Suppose that f(x) is positive in a neigh-

borhood of np and is continuous at np. If the judgment

ranking is perfect, then

ffiffiffi
n

p ~np � np
� �

!d N 0;
r2k;p

f 2ðnpÞ

 !
; ð2Þ

where

r2k;p ¼
1

k

Xk

r¼1

Bðr; k � r þ 1; pÞ 1� Bðr; k � r þ 1; pÞ½ �:

If the perfect ranking is assumed, then it can be shown

that the asymptotic variance of ~np is smaller than its SRS

analog. The proof simply follows from Lemma 1 in Chen

(2000). It is worth noting that the asymptotic normality still

holds in the imperfect ranking setup, but the expression of

r2k;p needs some adjustment. Naturally, one would expect

some improvement in interval estimation for np based on

RSS as compared with that in SRS. In the following, we

discuss two approaches for estimating the asymptotic

variance of ~np. These methods will be used in the next

section to construct CIs.

The variance expression for ~np involves the unknown

quantity f ðnpÞ, which needs to be replaced with a consistent
estimate. Chen (1999) considered the density estimation by

the kernel method in RSS. The estimator is given by:

bfRSSðxÞ ¼
1

nh

Xk

r¼1

Xm

i¼1

K
x� X½r�i

h

� �
;

where the kernel K(.) is a symmetric PDF, and the

smoothing parameter h is known as the bandwidth. It is

shown that the bias (variance) of bfRSSðxÞ is equal to (no

larger than) its SRS counterpart.

The bandwidth selection in SRS is awell-treated topic in the

literature. Based on a partial simulation study (whose result is

not reported here),we only consider twomethodswhichwill be

described shortly. Minimizing asymptotic mean integrated

squared error (AMISE) of the kernel density estimator is a basic

scheme. Silverman (1986) recommended the normal reference

(NR) bandwidth given by 1:06 s n�0:2, where s is the sample

standard deviation. To choose the bandwidth in the RSS, we

may treat data as if collected by SRS. Finally, f ðnpÞ can be

estimated by bfRSSð~npÞ, where the required bandwidth is deter-
mined by the above two methods. The estimates obtained by

using AMISE and NR bandwidth selection methods will be

denoted by bfRSS;1ð~npÞ and bfRSS;2ð~npÞ, respectively.
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The asymptotic results are only valid if the total sample

size n is large enough. On the other hand, RSS is applicable

when it is difficult and/or expensive to measure too many

sample units. Thus, it is interesting to have some proce-

dures for estimating the variance of ~np from small data sets.

Jackknife and bootstrap are helpful tools that can be uti-

lized in this setup.

The jackknife methodology has been applied in reducing

a possible bias of an estimator, and in approximating its

variance [see Quenouille (1956) and Tukey (1958)]. Let

ĥðX1; . . .;XnÞ be a statistic of interest, where Xi’s are iid

random variables, and ĥ is invariant under permutation of

the arguments. Suppose ĥðiÞ denotes the value of ĥ based on

X1; . . .;Xi�1;Xiþ1; . . .;Xn. The jackknife estimate of VarðĥÞ
is computed as:

dVarðĥÞ ¼ n� 1

n

Xn

i¼1

ĥðiÞ � ĥð0Þ
� �2

;

where ĥð0Þ ¼
Pn

i¼1 ĥ
ðiÞ=n.

A ranked set sample consists of independent but not

identically distributed random variables. More precisely,

for any fixed r, X½r�1; . . .;X½r�m have a common distribution.

The data, however, can be considered as m iid random

vectors X1; . . .;Xm, where Xi ¼ ðX½1�i; . . .;X½k�iÞ
(i ¼ 1; . . .;m) contains elements of the sample in the ith

cycle. Now, the jackknife technique may be used to esti-

mate Varð~npÞ. If ~nðiÞp is the value of pth sample quantile

with Xi omitted from the data, then the jackknife estimate

of the variance is given by:

dVar jackð~npÞ ¼
m� 1

m

Xm

i¼1

~nðiÞp � ~nð0Þ
� �2

; ð3Þ

where ~nð0Þ ¼
Pm

i¼1
~nðiÞp =m.

Efron (1979) introduced the bootstrap as a method for

estimating the standard error of a statistic. In the past four

decades, a large body of the literature has developed
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Fig. 1 Estimated coverage rates and average lengths of 95% intervals

for n ¼ 20 in the perfect ranking setup when the parent distribution is

normal. Black/solid, blue/dashed, red/dotted, green/dotdash,

orange/longdash, pink/twodash and skyblue/solid curves relate to

Norm1, Norm2, Norm-J, Norm-B, Boot-p, Boot-t1, and Boot-t2

intervals, respectively
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around applied and theoretical research on the bootstrap

technique (see Good (2006), for example). Bootstrap

method in RSS has drawn some attention as well. The

bootstrap ranked set sampling (BRSS) algorithm, due to

Modarres et al. (2006), is an efficient one which is

described here. Let ~Fn be defined as in (1). According to

the BRSS algorithm, a bootstrap sample is drawn as

follows:

1. Assign a probability of n�1 to each element of the

ranked set sample.

2. Randomly draw k elements X1; . . .;X k �
iid ~Fn, sort them

in ascending order Xð1Þ; . . .;XðkÞ, and retain

X�
½r�1 ¼ XðrÞ.

3. Perform step 2 for r ¼ 1; . . .; k.

4. Repeat steps 2 and 3 m times to obtain {X�
½r�i}.

Suppose B bootstrap ranked set samples are generated,

and ~nbp is the value of the pth sample quantile based on data

in the bth (b ¼ 1; . . .;B) replication. Then, bootstrap vari-

ance estimator is given by:

dVarbootð~npÞ ¼
1

B� 1

XB

b¼1

~nbp � �n�
� �2

; ð4Þ

where �n� ¼
PB

b¼1
~nbp=B.

3 Interval Estimation

In this section, we develop different types of CIs for np.
Ozturk and Deshpande (2006) proposed an exact quantile

interval in RSS, but asymptotic and resampling methods

are the center of interest here. Using pivotal quantity is a

common method for constructing CI. In view of Proposi-

tion 1, the asymptotic distribution of
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Fig. 2 Estimated coverage rates and average lengths of 95% intervals

for n ¼ 20 in the perfect ranking setup when the parent distribution is

exponential. Black/solid, blue/dashed, red/dotted, green/dotdash,

orange/longdash, pink/twodash and skyblue/solid curves relate to

Norm1, Norm2, Norm-J, Norm-B, Boot-p, Boot-t1, and Boot-t2

intervals, respectively
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~np � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARð~npÞ

q ð5Þ

is approximately standard normal if VARð~npÞ is a suit-

able estimator for the variance of ~np given in (2). The

corresponding approximate (1� a)-CI has the form of

~np � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARð~npÞ

q
; ~np þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARð~npÞ

q� �
;

where za=2 is the (1� a=2) quantile of the standard normal

distribution. Now, we may plug in any variance estimator

introduced in the previous section into the above formula to

arrive at a CI for np.
If the kernel-based estimator is employed, then one can

use intervals

~np � za=2
rk;pffiffiffi

n
p bfRSS;1ð~npÞ

; ~np þ za=2
rk;pffiffiffi

n
p bfRSS;1ð~npÞ

 !
; ð6Þ

and

~np � za=2
rk;pffiffiffi

n
p bfRSS;2ð~npÞ

; ~np þ za=2
rk;pffiffiffi

n
p bfRSS;2ð~npÞ

 !
; ð7Þ

where bfRSS;1ð~npÞ and bfRSS;2ð~npÞ are introduced in Sect. 2.

Similarly, incorporating estimators (3) and (4) in the

denominator of the pivotal quantity (5) yields intervals

~np � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVar jackð~npÞ

q
; ~np þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVar jackð~npÞ

q� �
; ð8Þ

and

~np � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarbootð~npÞ

q
; ~np þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarbootð~npÞ

q� �
: ð9Þ

Percentile bootstrap is an intuitive approach for con-

structing CI that uses quantiles of bootstrap distribution of
~np. If ~nbp is the b quantile of ~n1p; . . .; ~n

B
p , then the (1� a)

percentile bootstrap CI is defined as:
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Fig. 3 Estimated coverage rates and average lengths of 95% intervals

for n ¼ 20 in the perfect ranking setup when the parent distribution is

uniform. Black/solid, blue/dashed, red/dotted, green/dotdash,

orange/longdash, pink/twodash and skyblue/solid curves relate to

Norm1, Norm2, Norm-J, Norm-B, Boot-p, Boot-t1, and Boot-t2

intervals, respectively
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~na=2p ; ~n1�a=2
p

� �
:

The above type interval is clearly simple to form and easy

to understand, but fails to provide good coverage in small

samples. To overcome this problem, expanded percentile

bootstrap interval can be used. It is a variant of percentile

bootstrap CI, which is obtained by adjusting quantiles of

the bootstrap distribution. Let Uð:Þ be the distribution

function of standard normal random variable and tn�1;a=2 be

the (1� a=2) quantile of Student’s t distribution with n� 1

degrees of freedom. The (1� a) expanded percentile

bootstrap CI is given by:

~na
0=2
p ; ~n1�a0=2

p

� �
; ð10Þ

where a0=2 ¼ U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� 1Þ

p
tn�1;a=2

� �
.

The procedure of the bootstrap-t interval is as follows.

For each bootstrap sample, compute

Tb ¼
~nbp � ~npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARð~nbpÞ

q ðb ¼ 1; . . .;BÞ;

where ~nbp andVARð~nbpÞ are obtained from the bth bootstrap

sample. If tb is the b quantile of T1; . . .; TB, then the (1� a)
bootstrap-t interval is given by:

~np � t1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARð~npÞ

q
; ~np � ta=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARð~npÞ

q� �
:

Again, using the kernel-based variance estimators in Tb and

in the above results in intervals

~np � t1�a=2
rk;pffiffiffi

n
p bfRSS;1ð~npÞ

; ~np � ta=2
rk;pffiffiffi

n
p bfRSS;1ð~npÞ

 !
;

ð11Þ

and
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Fig. 4 Estimated coverage rates and average lengths of 95% Norm1

interval for n ¼ 20 in the perfect ranking setup when the parent

distribution is normal (a), exponential (b), or uniform (c).

Blue/dashed and red/dotted curves relate to k ¼ 2 and k ¼ 5,

respectively. Black/solid curve shows the analogous results in SRS
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~np � t1�a=2
rk;pffiffiffi

n
p bfRSS;2ð~npÞ

; ~np � ta=2
rk;pffiffiffi

n
p bfRSS;2ð~npÞ

 !
:

ð12Þ

For brevity, the intervals (6), (7), (8), (9), (10), (11), and

(12) will be referred to as Norm1, Norm2, Norm-J, Norm-

B, Boot-p, Boot-t1, and Boot-t2, respectively.

4 Numerical Results

To assess performances of the proposed intervals, a com-

prehensive simulation study was carried out. In doing so,

we assumed that the parent distribution is standard normal,

standard exponential, or standard uniform. Also, the total

sample sizes n ¼ 10; 20; 30 and the sizes k ¼ 2; 5 were

chosen. Under each distribution, 10,000 ranked set samples

were generated for any combination of n and k. Next, 0.95

CIs for np, p 2 ð0; 1Þ, were constructed from each sample.

The number of bootstrap replications was set to B ¼ 500.

Finally, coverage rate and average length of any interval

were estimated based on the corresponding 10,000 inter-

vals observed. In the following, the perfect ranking is

assumed, unless otherwise stated. Also, output figures for

n ¼ 10; 30 are not reported here to save space, but they are

available on request from the first author.

Figures 1, 2, and 3 display the results for the different

distributions when n ¼ 20. For convenience, the nominal

confidence coefficient is marked with a gray line in the

corresponding plots. As expected, trends of coverage rate

and length of the CIs are symmetric around the mean for

symmetric distributions. An interval with good coverage

probability is likely to be long. A property shared by dif-

ferent CIs is that coverage rate generally decreases for

extreme quantiles. This is more evident in the case of some

intervals other than Boot-t1 and Boot-t2. On the other

hand, there is a sharp increase in length of Boot-t1 and

Boot-t2 CIs for extreme quantiles.
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Fig. 5 Estimated coverage rates and average lengths of 95% Boot-p

interval for n ¼ 20 in the perfect ranking setup when the parent

distribution is normal (a), exponential (b), or uniform (c).

Blue/dashed and red/dotted curves relate to k ¼ 2 and k ¼ 5,

respectively. Black/solid curve shows the analogous results in SRS
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It is observed that Boot-t1 and Boot-t2 CIs show the best

coverage rates for most of the quantiles, usually higher

than the nominal level. This is achieved at the expense of

extra length. In addition, Boot-t1 is always outperformed

by Boot-t2 with respect to coverage rate, while the situa-

tion is reversed when comparing length. Also, it appears

that if we are interested in estimating an extreme quantile,

then Boot-t1 is a reliable CI in that it can attain good

coverage rate with smaller length as compared with Boot-

t2. This is highly important in the case of interval esti-

mation for an extreme right tail quantile of exponential

distribution, because other types of intervals have poor

coverage rates.

One can see that Norm1 is the second best CI in terms of

coverage rate in many situations, and much shorter than the

two bootstrap-t intervals. It works satisfactorily, in view of

both aspects of optimality, in estimating intermediate

quantiles, especially when the parent distribution is

symmetric.

The rest of the intervals, i.e., Norm2, Norm-J, Norm-B,

and Boot-p, have comparable length, nearly similar to

Norm1 interval. As to coverage rate, Norm2 and Boot-p

CIs behave good for a smaller set of quantiles, as compared

with Boot-t1, Boot-t2, and Norm1 intervals. Coverage

probabilities of Norm-J and Norm-B CIs are always

smaller than 0.95, where this is true in the former case

often by a wide margin. Thus, these two intervals are not

suggested for use in practice, although their lengths are in

an acceptable range.

As mentioned in Sect. 1, RSS-based procedures are

usually more efficient than their SRS competitors. We

conducted a simulation study to investigate this property

in the context of quantile estimation. In the following, we

focus on Norm1 and Boot-p CIs as the general trends are

more or less similar for other CIs. Although the details for

constructing SRS versions of intervals (6)–(12) are not

reported here, they are straightforward to derive. For

example, by setting k ¼ 1 in Proposition 1, the asymptotic
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Fig. 6 Estimated coverage rates and average lengths of 95% Norm1

interval for n ¼ 20 in the imperfect ranking setup when the parent

distribution is normal (a), exponential (b), or uniform (c).

Blue/dashed and red/dotted curves relate to k ¼ 2 and k ¼ 5,

respectively. Black/solid curve shows the analogous results in SRS
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normality of the quantile estimator in SRS is established.

This result can be used to develop CIs for quantiles from

simple random samples. Obviously, some modifications

for the jackknife and bootstrap methods in SRS are

required. Figures 4 and 5 depict estimated coverage rates

and average lengths of 95% intervals for n ¼ 20. It is

observed that in both methods, RSS-based CIs are shorter

than their SRS counterparts, regardless of the parent

distribution. Moreover, increasing the set size leads to

further reduction in length. As to coverage rate, RSS-

based CI shows a very slight edge over their SRS rivals.

Also, there is a minor improvement by increasing the set

size.

Up to now, the perfect ranking was assumed. This is the

ideal situation for any RSS-based method, but it is unlikely

to happen in practice. Thus, it is vital to evaluate perfor-

mance of the proposed CIs in the presence of judgment

ranking errors. Toward this end, we consider an imperfect

ranking model in which ranking the variable of interest X is

done based on a concomitant variable Y. If lx and rx are

the mean and standard deviation of X, then the two vari-

ables are related as:

Y ¼ q
X � lx
rx

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Z; q 2 ½0; 1�;

where Z is a standard normal random variable independent

from X. Here, parameter q is the correlation coefficient

between X and Y and thus controls the ranking quality. The

random ranking and the perfect ranking correspond to q ¼
0 and q ¼ 1, respectively.

By selecting q ¼ 0:7 (fairly accurate ranking), coverage

rates and average lengths of 95% Norm1 and Boot-p

intervals were again estimated for n ¼ 20. The results

appear in Figs. 6 and 7. The trends of interval length par-

allel those in Figs. 4 and 5. However, coverage rates of

RSS-based CIs are no longer higher than their SRS ana-

logs. The situation even deteriorates as the set size

becomes larger, given a total sample size. This property is
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Fig. 7 Estimated coverage rates and average lengths of 95% Boot-p

interval for n ¼ 20 in the imperfect ranking setup when the parent

distribution is normal (a), exponential (b), or uniform (c).

Blue/dashed and red/dotted curves relate to k ¼ 2 and k ¼ 5,

respectively. Black/solid curve shows the analogous results in SRS
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somewhat supported by findings of Terpstra and Miller

(2006) in the context of exact inference for a population

proportion based on the RSS. They observed that RSS-

based CI is uniformly (as a function of the true population

proportion) shorter than SRS-based CI. However, superi-

ority for coverage probability is not uniform.

5 Application to Real Data

Obesity is no longer just a problem for the industrial

nations. There is a growing number of overweight and

obese people in other countries. Obese individuals are

vulnerable to a great number of diseases and bodily mal-

functions which root in the accumulation of excess body

fat. For example, heart-related diseases and disorders are

widespread among such people. Also, majority of the

people having type 2 diabetes suffer from obesity. Body fat

is an important index of health and fitness for the general

population. There are several approaches for assessment of

this measure. Dual energy X-ray absorptiometry (DXA) is

one of the body fat testing methods that has been validated

and thus is considered as the ‘‘gold standard,’’ but it is too

costly to implement.

In this section, we illustrate the suggested procedures by

using a real data in the context of body fat estimation. The

data set has been used by Mahdizadeh and Zamanzade

(2017) and includes 15 measured variables on 252 men.1

The two variables considered are body fat percentage and

abdomen circumference for each man which are denoted

by X and Y, respectively. Suppose the set of 252 men is a

hypothetical population, and we want to construct a CI for

different quantiles of X. As mentioned before, accurate

measurement of the variable of interest based on DXA

technique is expensive. Thus, RSS method can be effi-

ciently utilized in this setup. In particular, the judgment

ranking process can be done using Y as a concomitant

variable. The abdomen circumference is an obesity
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Fig. 8 Estimated coverage rates and average lengths of 95% Norm1 and Boot-p intervals for n ¼ 20 based on the body fat data. Blue/dashed and

red/dotted curves relate to k ¼ 2 and k ¼ 5, respectively. Black/solid curve shows the analogous results in SRS

1 It can be found at http://lib.stat.cmu.edu/datasets/bodyfat.
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measure which is obtained readily. The correlation coeffi-

cient between X and Y is 0.81, ensuring that the judgment

ranking can be implemented fairly accurately.

Coverage rates and average lengths of 95% Norm1 and

Boot-p intervals and their SRS versions were estimated

when n ¼ 20. These two CIs are selected because of the

same reason mentioned in Sect. 4. Again, estimation is

based on 10,000 samples, and 500 bootstrap resamples. In

generating ranked set samples, set sizes k ¼ 2; 5 were used.

The results are given in Fig. 8. One can see that the general

trends are similar to those observed in Figs. 6 and 7, where

the imperfect ranking is assumed. In particular, superiority

of RSS-based intervals in terms of length is preserved, and

it is improved by increasing the set size. A similar property

does not hold for coverage rate, and larger set size leads to

worse performance.

6 Conclusion

This article deals with constructing several CIs for quan-

tiles from ranked set samples. Toward this end, we build on

asymptotic normality of nonparametric quantile estimator

and/or resampling methods. Seven types of CIs were

developed: Norm1, Norm2, Norm-J, Norm-B, Boot-p,

Boot-t1, and Boot-t2. A comprehensive simulation study

was performed to shed light on finite sample properties of

the proposed intervals. In particular, coverage rate and

average length are the two criteria we focused on.

It turns out that Boot-t1 and Boot-t2 CIs often show the

best coverage rates, mostly higher than the nominal level.

As expected, these intervals are longer as compared to their

competitors. Also, Norm1 is the second best CI in terms of

coverage rate in many situations, and much shorter than the

two bootstrap-t intervals. Norm2 and Boot-p CIs possess

good coverage rate for a smaller set of quantiles, as com-

pared with Boot-t1, Boot-t2, and Norm1 intervals. Using

Norm-J and Norm-B CIs is not recommended as their

coverage probabilities are always smaller than the nominal

level. The main findings can be summarized as follows. If

we are interested in estimating intermediate quantiles, then

Norm1 interval is a good choice. As to the extreme

quantiles, especially in the case of asymmetric distribu-

tions, bootstrap-t CIs should be employed because other

types of intervals do not enjoy satisfactory coverage rates.

We also compared Norm1 and Boot-p CIs with their

SRS counterparts. If the perfect ranking is assumed, RSS-

based intervals are superior from both aspects, although

improvement in coverage rate is not noticeable. In the

presence of the judgment ranking errors, RSS-based

intervals are still shorter, while their coverage rates are no

longer higher.

In this article, we have developed some CIs for quantiles

based on balanced RSS. In some situations, an unbalanced

ranked set sample may further improve statistical effi-

ciency. It would be interesting to propose similar intervals

for use in the latter case. In doing so, resampling methods

due to Amiri et al. (2014) may be employed. This will be

considered in a follow-up article.
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Kvam P (2003) Ranked set sampling based on binary water quality

data with covariates. J Agric Biol Environ Stat 8:271–279

Mahdizadeh M, Arghami NR (2012) Quantile estimation using

ranked set samples from a population with known mean.

Commun Stat Simul Comput 41:1872–1881

Mahdizadeh M, Zamanzade E (2017) Estimation of a symmetric

distribution function in multistage ranked set sampling. Stat Pap.

https://doi.org/10.1007/s00362-017-0965-x

MahdizadehM, Zamanzade E (2018a) Efficient reliability estimation in

two-parameter exponential distributions. Filomat 32:1455–1463

Mahdizadeh M, Zamanzade E (2018b) Interval estimation of

PðX\YÞ in ranked set sampling. Comput Stat 33:1325–1348

Mahdizadeh M, Zamanzade E (2018c) Smooth estimation of a

reliability function in ranked set sampling. Statistics 52:750–768

Mahdizadeh M, Zamanzade E (2018d) Stratified pair ranked set

sampling. Commun Stat Theory Methods 47:5904–5915

Mahdizadeh M, Zamanzade E (2019a) Dynamic reliability estimation

in a rank-based design. Probab Math Stat 39:1–18

Mahdizadeh M, Zamanzade E (2019b) Efficient body fat estimation

using multistage pair ranked set sampling. Stat Methods Med

Res 28:223–234

McIntyre GA (1952) A method of unbiased selective sampling using

ranked sets. Aust J Agric Res 3:385–390

Modarres R, Hui TP, Zheng G (2006) Resampling methods for ranked

set samples. Comput Stat Data Anal 51:1039–1050

Murray RA, Ridout MS, Cross JV (2000) The use of ranked set

sampling in spray deposit assessment. Asp Appl Biol

57:141–146

Iran J Sci Technol Trans Sci (2019) 43:3017–3028 3027

123

https://doi.org/10.1007/s00362-017-0965-x


Ozturk O, Deshpande JV (2006) Ranked-set sample nonparametric

quantile confidence intervals. J Stat Plan Inference 136:570–577

Quenouille MH (1956) Notes on bias in estimation. Biometrika

43:353–360

Silverman BW (1986) Density estimation for statistics and data

analysis. Chapman & Hall, London

Stokes SL, Sager TW (1988) Characterization of a ranked set sample

with applications to estimating distribution functions. J Am Stat

Assoc 83:374–381

Terpstra J, Miller ZA (2006) Exact inference for a population

proportion based on a ranked set sample. Commun Stat: Simul

Comput 35:19–26

Tukey JW (1958) Bias and confidence in not quite large samples

(abstract). Ann Math Stat 29:614

Wolfe DA (2012) Ranked set sampling: its relevance and impact on

statistical inference. ISRN Probab Stat 1–32

Zamanzade E, Mahdizadeh M (2018) Estimating the population

proportion in pair ranked set sampling with application to air

quality monitoring. J Appl Stat 45:426–437

Zamanzade E, Mahdizadeh M (2019) Using ranked set sampling with

extreme ranks in estimating the population proportion. Stat

Methods Med Res. https://doi.org/10.1177/0962280218823793

3028 Iran J Sci Technol Trans Sci (2019) 43:3017–3028

123

https://doi.org/10.1177/0962280218823793

	Confidence Intervals for Quantiles in Ranked Set Sampling
	Abstract
	Introduction
	Quantile Estimation
	Interval Estimation
	Numerical Results
	Application to Real Data
	Conclusion
	Acknowledgements
	References




