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Abstract
In this paper, we consider a multiobjective optimization problem with vanishing constraints, in which its objective

functions are continuously differentiable and its constraints are convex, not necessarily differentiable. We introduce two

new Abadie-type constraint qualifications and present some necessary condition for properly efficient solutions of the

problem, using convex subdifferential.
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1 Introduction

Given continuously differentiable functions fj : R
n ! R as

j 2 J :¼ f1; . . .; pg, and convex functions gi; hi : R
n ! R

as i 2 I :¼ f1; . . .;mg, we define the ‘‘multiobjective

mathematical programming with vanishing constraints’’

(MMPVC in brief) as

(MMPVC): min f ðxÞ :¼ f1ðxÞ; . . .; fpðxÞ
� �

s.t. x 2 S :¼ fx 2 Rn j hiðxÞ� 0;

giðxÞhiðxÞ� 0; i 2 Ig:

The above assumptions about objective and constraint

functions are standing throughout the whole paper.

If p ¼ 1, then MMPVC coincides with the ‘‘mathemat-

ical programming with vanishing constraints’’ (MPVC)

which is introduced in Achtziger and Kanzow (2008),

Hoheisel and Kanzow (2007). The MPVCs received

attention from different fields. Some of their applications in

topological optimization and geometry have been intro-

duced in Achtziger and Kanzow (2008), Shikhman (2012).

Karush–Kuhn–Tucker (KKT)-type optimality conditions

for MPVCs, named stationary conditions, are presented in

some studies (see Achtziger and Kanzow 2008; Hoheisel

and Kanzow 2008, 2009 and Kazemi and Kanzi 2018 for

smooth and nonsmooth cases, respectively).

If hiðxÞgiðxÞ� 0 is replaced by hiðxÞgiðxÞ ¼ 0 for each

i 2 I, MMPVC reduces to ‘‘multiobjective programming

problem with equilibrium constraints,’’ (MMPEC). Sta-

tionary conditions for smooth and nonsmooth MMPECs

are established under various constraint qualifications

(CQ); see, e.g., (Ansari Ardali et al. 2016; Bigi et al. 2016;

Movahedian 2017; Movahedian and Nobakhtian 2010) for

p ¼ 1, and (Luu 2016) for p[ 1.

It is easy to see that MMPVC is a generalization of

MMPEC and MPVC. To the best of our knowledge, it is

not any work available dealing with stationary conditions

for MMPVCs. The aim of this paper is to extend some

stationary conditions for optimality of MMPVCs. In addi-

tion to classic multiobjective optimization, we can consider

different kinds of optimality (efficiency) for MMPVC,

including weakly efficient solution, efficient solution,

strictly efficient solution, isolated efficient solution, and

properly efficient solution. In this paper, we focus on

properly efficient solutions for MMPVCs.
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The structure of subsequent sections of this paper is as

follows: In Sect. 2, we define required definitions and

preliminary results which are requested in sequel. Sec-

tion 3 is devoted to the main results of paper, containing

some Abadie-type CQs and some kinds of necessary sta-

tionary conditions for the problem.

2 Preliminaries

This section contains some preliminary results in convex

analysis from (Rockafellar 1970; Rockafellar and Wets

1998).

First, we recall that the nonnegative real numbers

½0;þ1Þ, the nonpositive real number ð�1; 0�, the stan-

dard inner product of vectors x; y 2 Rn, and the zero vector

of Rn are, respectively, denoted by Rþ, R�, hx; yi, and 0n.

Considering X � Rn, the negative polar cone of X is

defined as

X0 :¼ fx 2 Rn j hx; ui� 0; 8u 2 Xg:

The closure, the convex cone (containing origin), and the

closed convex cone of X are, respectively, denoted by

clðXÞ, coneðXÞ, and clconeðXÞ. Also, the orthogonal set,

contingent cone of X at �x 2 clðXÞ, and the Fréchet normal

cone of X at �x are, respectively, defined as

X? :¼ fx 2 Rn j hx; ui ¼ 0; 8u 2 Xg;

CXð�xÞ :¼
n
y 2 Rn j 9t‘ # 0; 9y‘ ! y such that

�xþ t‘y‘ 2 X 8‘ 2 N
o
;

and bNXð�xÞ :¼ CXð�xÞð Þ0.

Theorem 1 (bipolar theorem Rockafellar and Wets 1998)

Suppose that X is a subset on Rn. Then,

ðX0Þ0 ¼ clconeðXÞ:

Theorem 2 (Rockafellar and Wets 1998) Let

w : Rn ! Rbe a continuously differentiable function at

�x 2 X � Rn. If the minimum of w on X is attained at �x, then

�rwðx0Þ 2 bNXð�xÞ:

Theorem 3 (Rockafellar 1970) Suppose that the linear

function w : Rn �! R is defined as wðxÞ ¼ hz; xi for a

given z 2 Rn. If A � R is a given convex set and we define

w�1
�
clðAÞ

�
:¼ fx 2 Rn j wðxÞ 2 clðAÞg, then

w�1
�
clðAÞ

�� �0¼ A0z:

Theorem 4 (Rockafellar and Wets 1998) Suppose that

L is an arbitrary index set and that X‘ � Rn is closed

convex cone for each ‘ 2 L. Then

[

‘2L
X‘

 !0

¼
\

‘2L
X0

‘ ;
\

‘2L
X‘

 !0

¼ clcone
[

‘2L
X0

‘

 !

:

Theorem 5 (Rockafellar 1970) Let X1; . . .;Xk be closed

convex cones in Rn. One may conclude that

cone
[k

‘¼1

X‘

 !

¼
Xk

‘¼1

X‘:

Let u : Rn ! R [ fþ1g be a convex function, and

x0 2 domu :¼ fx 2 Rn j uðxÞ\þ1g. The subdifferen-

tial of u at x0 is defined as

ouðx0Þ :¼ fn 2 Rn j uðxÞ � uðx0Þ� hn; x� x0i; 8x 2 Rng:

It should be noted that the subdifferential set ouðx0Þ is

always nonempty, compact, and convex in Rn.

3 Main Results

At starting point of this section, we recall from (Geoffrion

1968; Gopfert et al. 2003) that a feasible point �x 2 S is

called a properly efficient solution to MMPVC when there

exist some positive scalars g1; . . .; gp [ 0 such that

Xp

j¼1

gjfjð�xÞ�
Xp

j¼1

gjfjðxÞ; 8x 2 S:

Considering a feasible point x̂ 2 S (this point will be fixed

throughout this paper), we define the following index sets:

I00 :¼ fi 2 I j hiðx̂Þ ¼ 0; giðx̂Þ ¼ 0g;
I0þ :¼ fi 2 I j hiðx̂Þ ¼ 0; giðx̂Þ[ 0g;
I0� :¼ fi 2 I j hiðx̂Þ ¼ 0; giðx̂Þ\0g;
Iþ0 :¼ fi 2 I j hiðx̂Þ[ 0; giðx̂Þ ¼ 0g;
Iþ� :¼ fi 2 I j hiðx̂Þ[ 0; giðx̂Þ\0g:

Following (Kazemi and Kanzi 2018), we consider two

linearized cones L0 and L] :¼ L0 \ K for MMPVC, where

L :¼
�[

I0þ

ohiðx̂Þ
�
[
�
�
[

I0þ

ohiðx̂Þ
�

[
�
�
[

I0�[I00
ohiðx̂Þ

�
[
�[

Iþ0

ogiðx̂Þ
�
;
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K :¼
n
m 2 Rn j hm; niihm; fii� 0;

8ni 2
[

I00

ogiðx̂Þ; 8fi 2
[

I00

ohiðx̂Þ
o
:

It is worth mentioning that unlike to L0, the linearized cone

L] is not convex.

Motivated by Achtziger and Kanzow (2008), Hoheisel

and Kanzow (2009), Kazemi and Kanzi (2018), we define

two Abadie-type constraint qualifications for MMPVC.

Definition 1 We say that MMPVC satisfies the ACQ

(resp. ACQ]), if CSðx̂Þ � L0
�
resp. CSðx̂Þ � L]

�
.

Trivially, the following implication holds by L] � L0,

ACQ ¼) ACQ]:

Remark 1 We observe that ACQ] is named MPVC-ACQ

in some studies; see Hoheisel and Kanzow (2009) and

Kazemi and Kanzi (2018) for MPVCs with smooth and

nonsmooth data, respectively. Since the concepts of ACQ

and ACQ] are described and discussed in detailed manner

in Hoheisel and Kanzow (2009), Kazemi and Kanzi (2018),

we do not repeat that descriptions in the present article.

Also, there are provided MPVC-tailored constraint quali-

fications which are sufficient conditions for ACQ and ACQ]

in (Achtziger and Kanzow 2008. Theorems 2 and 3),

(Hoheisel and Kanzow 2008, Sect. 4), and (Kazemi and

Kanzi 2018, Theorem 3.1).

The following simple theorem is a normal extension of

(Kazemi and Kanzi 2018, Theorem 4.1).

Theorem 6 Let x̂ be a properly efficient solution to

MMPVC, and ACQ holds at x̂.

(i) There exist some positive scalars kfj ; j 2 J, such

that

�
Xp

j¼1

kfjrfjðx̂Þ 2 clcone
�
L
�
:

(ii) If, in addition, cone
�
L
�
is a closed cone, we can

find some coefficients khi and kgi as i 2 I, such that:

0n 2
Xp

j¼1

kfjrfjðx̂Þ þ
Xm

i¼1

�
kgi ogiðx̂Þ � khi ohiðx̂Þ

�
;

ð1Þ

kgi � 0; i 2 Iþ0;

kgi ¼ 0; i 2 I0þ [ I0� [ I00 [ Iþ�; ð2Þ

khi is free; i 2 I0þ; k
h
i � 0; i 2 I0� [ I00;

khi ¼ 0; i 2 Iþ� [ Iþ0:

ð3Þ

Proof (i) The definition of properly efficiency leads us to

fine some positive scalars kfj [ 0, for j 2 J, such that x̂ is a

minimizer of
Pp

j¼1 k
f
j fjðxÞ on S. Thus, owing to Theorem 2,

we get

�
Xp

j¼1

kfjrfjðx̂Þ 2 bNSðx̂Þ: ð4Þ

On the other hand, by ACQ and bipolar Theorem 1 we

conclude that

NSðx̂Þ ¼ CSðx̂Þð Þ0�
�
L0
�0 ¼ clcone

�
L
�
:

This inclusion and (4) imply the result.

(ii) The structure of convex cones implies that

coneðLÞ ¼
[

ai;bi;ci2Rþ

X

i2I0þ
aiohiðx̂Þ þ

X

i2I0þ
bi
�
� ohiðx̂Þ

�
(

þ
X

i2I0�[I00
ai
�
� ohiðx̂Þ

�
þ
X

i2Iþ0

ciogiðx̂Þ j ai; bi; ci � 0

)

¼

[

kg
i
;khi

Xm

i¼1

kgi ogiðx̂Þ � khi ohiðx̂Þ
� �

kgi � 0; i 2 Iþ0

kgi ¼ 0; i 2 I n Iþ0

khi is free; i 2 I0þ

khi � 0; i 2 I0� [ I00

khi ¼ 0; i 2 Iþ� [ Iþ0

������������

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

;

ð5Þ

where,

kgi :¼ ci; i 2 Iþ0; and khi :¼
bi � ai; i 2 I0þ

ai; i 2 I0� [ I00

�
:

The closedness condition, virtue of (5), and part (i) con-

clude the result. h

It is worth mentioning that when p ¼ 1, conditions (1)–

(3) which are named ‘‘strongly stationary condition’’ (resp.

KKT condition) (Hoheisel and Kanzow 2007; Kazemi and

Kanzi 2018) (resp. Achtziger and Kanzow 2008; Hoheisel

and Kanzow 2008), present an important optimality con-

dition for MPVCs which are an appropriate alternative for

classic KKT condition. Another important point of Theo-

rem 6 is that all the coefficients kfj are nonzero, which

guaranties the effect of each objective functions in the

relation of (1); to see the theoretical significance of this

topic, we can refer to (Kanzi 2015, 2018). The present

paper is the first that studies this kind of stationary con-

dition for MMPVCs.
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Since ACQ] is weaker than ACQ, we cannot expect the

strongly stationary condition to hold at properly efficient

solution x̂ where ACQ] is satisfied. In the rest of this sec-

tion, we get another optimality condition under ACQ],

which is weaker than strongly stationary condition. Since

the ACQ] is easier to happen than ACQ, this new stationary

condition will be more user-friendly in applications. We

observe that owing to nonconvexity of L], we cannot fol-

low the simple strategy of Theorem 6 for giving the new

stationary condition, and for achieve it, we need some

preliminaries.

For each w 2 Rn, i 2 I, and I� � I, let

BiðwÞ :¼
�
hw; nii j ni 2 ogiðx̂Þ

	

	 hw; fii j fi 2 ohiðx̂Þf g � R2;

BI� ðwÞ :¼
[

i2I�
BiðwÞ:

The following technical lemma plays a key role in the

reminder of this article.

Lemma 1 Suppose that the constraints of MMPVC with

index i 2 I00 are first written, then the constraints with

index i 2 I0þ, then i 2 I0�, then i 2 Iþ0, and finally i 2 Iþ�.

Assume also that Y � R2m is defined as

Y :¼
Y

I00

R� 	 Rþð Þ 	
Y

I0þ

R	 f0gð Þ 	
Y

I0�

R	 Rþð Þ

	
Y

Iþ0

R� 	 Rð Þ 	
Y

Iþ�

R	 Rð Þ:

ð6Þ

Then, one has

�
w 2 Rn j

Ym

i¼1

BiðwÞ � Y


0

¼

cl

"
[

kg
i
;khi

�Xm

i¼1

kgi ogiðx̂Þ � khi ohiðx̂Þ
� �

kgi � 0; i 2 I00 [ Iþ0

kgi ¼ 0; i 2 I0þ [ I0� [ Iþ�

khi is free; i 2 I0þ

khi � 0; i 2 I0� [ I00

khi ¼ 0; i 2 Iþ� [ Iþ0

������������


#

:

Proof Due to Theorem 4, the following equalities are

fulfilled:

�
w 2 Rn j

Ym

i¼1

BiðwÞ � Y


0

¼
�
w 2 Rn j BI00ðwÞ � R� 	 Rþ; BI0þðwÞ

� R	 f0g; BI0�ðwÞ � R	 Rþ;

BIþ0
ðwÞ � R� 	 R; BIþ�ðwÞ � R	 R


0

¼
"� \

i2I00

n
w 2 Rn j BiðwÞ � R� 	 Rþ

o�

\
� \

i2I0þ

n
w 2 Rn j BiðwÞ � R	 f0g

o�
\

� \

i2I0�

n
w 2 Rn j BiðwÞ � R	 Rþ

o�

\
� \

i2Iþ0

n
w 2 Rn j BiðwÞ � R� 	 R

o�
\

� \

i2Iþ�

n
w 2 Rn j BiðwÞ � R	 R

o�
#0

¼

clcone

"� [

i2I00

n
w 2 Rn j BiðwÞ � R� 	 Rþ

o0
�
[

� [

i2I0þ

n
w 2 Rn j BiðwÞ � R	 f0g

o0
�

[
� [

i2I0�

n
w 2 Rn j BiðwÞ � R	 Rþ

o0
�
[

� [

i2Iþ0

n
w 2 Rn j BiðwÞ � R� 	 R

o0
�

[
� [

i2Iþ�

n
w 2 Rn j BiðwÞ � R	 R

o0
�#

: ð7Þ

The definition of BiðwÞ and Theorem 4 imply that, for each

i 2 I00, one has

n
w 2 Rn j BiðwÞ � R� 	 Rþ

o0

¼
n

w 2 Rn j fhw; nii j ni 2 ogiðx̂Þg � R�

o
\

n
w 2 Rn j fhw; fii j fi 2 ohiðx̂Þg � Rþ

o�0

¼ clcone

n
w 2 Rn j fhw; nii j ni 2 ogiðx̂Þg � R�

o0

[
n
w 2 Rn j fhw; fii j fi 2 ohiðx̂Þg � Rþ

o0
�
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¼ clcone

� \

ni2ogiðx̂Þ
fw 2 Rn j hw; nii 2 R�g

�0
[

� \

fi2ohiðx̂Þ
fw 2 Rn j hw; fii 2 Rþg

�0�

¼ clcone


clcone

� [

ni2ogiðx̂Þ
fw 2 Rn j hw; nii 2 Rþg0

�
[

clcone
� [

fi2ohiðx̂Þ
fw 2 Rn j hw; fii 2 R�g0

��

¼ clcone

� [

ni2ogiðx̂Þ
fw 2 Rn j hw; nii 2 R�g0

�
[

� [

fi2ohiðx̂Þ
fw 2 Rn j hw; fii 2 Rþg0

��
:

ð8Þ

For each ni 2 ogiðx̂Þ and fi 2 ohiðx̂Þ, we consider the

functions bgni ;
bhfi : R

n ! R as bgniðwÞ :¼ hw; nii and

bhfiðwÞ :¼ hw; fii. Thus, equality (8) can be rewritten as

n
w 2 Rn j BiðwÞ � R� 	 Rþ

o0

¼ clcone

� [

ni2ogiðx̂Þ
bg�1
ni
ðR�Þ

�
[
� [

fi2ohiðx̂Þ

bh�1
fi
ðRþÞ

��
:

The last equality and Theorem 3 yield

n
w 2 Rn j BiðwÞ � R� 	 Rþ

o0

¼

clcone

� [

ni2ogiðx̂Þ
niðR�Þ0

�
[
� [

fi2ohiðx̂Þ
fiðRþÞ0

��
¼

clcone

� [

ni2ogiðx̂Þ
niRþ

�
[
� [

fi2ohiðx̂Þ
fiR�

��
¼

clcone
h
Rþogiðx̂Þ [ R�ohiðx̂Þ

i
¼

cl
h
Rþogiðx̂Þ þ R�ohiðx̂Þ

i
;

ð9Þ

where the last equality holds by Theorem 5.

From (9) and similar processes for i 2 I0þ, i 2 I0�,
i 2 Iþ0, i 2 Iþ�, we deduce that

Now, (7), (10), and Theorem 5 conclude that
�
w 2 Rn j

Ym

i¼1

BiðwÞ � Y


0

¼ clcone

"� [

i2I00
cl
h
Rþogiðx̂Þ þ R�ohiðx̂Þ

i�
[

� [

i2I0þ
cl
h
f0gogiðx̂Þ þ Rohiðx̂Þ

i�

[
� [

i2I0�
cl
h
f0gogiðx̂Þ þ R�ohiðx̂Þ

i�
[

� [

i2Iþ0

cl
h
Rþogiðx̂Þ þ f0gohiðx̂Þ

i�

[
� [

i2Iþ�

cl
h
f0gogiðx̂Þ þ f0gohiðx̂Þ

i�
#

S
i2I00

n
w 2 Rn j BiðwÞ � R� 	 Rþ

o0

¼
S

i2I00 cl
h
Rþogiðx̂Þ þ R�ohiðx̂Þ

i
;

S
i2I0þ

n
w 2 Rn j BiðwÞ � R	 f0g

o0

¼
S

i2I0þ cl
h
f0gogiðx̂Þ þ Rohiðx̂Þ

i
;

S
i2I0�

n
w 2 Rn j BiðwÞ � R	 Rþ

o0

¼
S

i2I0� cl
h
f0gogiðx̂Þ þ R�ohiðx̂Þ

i
;

S
i2Iþ0

n
w 2 Rn j BiðwÞ � R� 	 R

o0

¼
S

i2Iþ0
cl
h
Rþogiðx̂Þ þ f0gohiðx̂Þ

i
;

S
i2Iþ�

n
w 2 Rn j BiðwÞ � R	 R

o0

¼
S

i2Iþ�
cl
h
f0gogiðx̂Þ þ f0gohiðx̂Þ

i
:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð10Þ
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¼ cl

X

i2I00

�
Rþogiðx̂Þ þ R�ohiðx̂Þ

�

þ
X

i2I0þ

�
f0gogiðx̂Þ þ Rohiðx̂Þ

�

þ
X

i2I0�

�
f0gogiðx̂Þ þ R�ohiðx̂Þ

�

þ
X

i2Iþ0

�
Rþogiðx̂Þ þ f0gohiðx̂Þ

�

þ
X

i2Iþ�

�
f0gogiðx̂Þ þ f0gohiðx̂Þ

��

¼ cl

"
[

lg
i
;lh

i

�Xm

i¼1

lgi ogiðx̂Þ þ lhi ohiðx̂Þ
� �

lgi 2 Rþ; i 2 I00 [ Iþ0

lgi 2 f0g; i 2 I0þ [ I0� [ Iþ�

lhi 2 R; i 2 I0þ

lhi 2 R�; i 2 I0� [ I00

lhi 2 f0g; i 2 Iþ� [ Iþ0

������������


#

¼

cl

"
[

kg
i
;khi

�Xm

i¼1

kgi ogiðx̂Þ � khi ohiðx̂Þ
� �

�quad

kgi � 0; i 2 I00 [ Iþ0

kgi ¼ 0; i 2 I0þ [ I0� [ Iþ�

khi is free; i 2 I0þ

khi � 0; i 2 I0� [ I00

khi ¼ 0; i 2 Iþ� [ Iþ0

������������


#

;

where kgi :¼ lgi and khi :¼ �lhi , for all i 2 I. The proof is

complete. h

Since the negative polar of each subset of Rn is always a

convex cone, Lemma 1 guaranties that i, which is defined

below, is a (not necessarily closed) convex cone in Rn,

i :¼
[

kg
i
;khi

�Xm

i¼1

kgi ogiðx̂Þ � khi ohiðx̂Þ
� �

kgi � 0; i 2 I00 [ Iþ0

kgi ¼ 0; i 2 I0þ [ I0� [ Iþ�

khi is free; i 2 I0þ

khi � 0; i 2 I0� [ I00

khi ¼ 0; i 2 Iþ� [ Iþ0

������������



:

Theorem 7 Let x̂ be a properly efficient solution to

MMPVC, and ACQ] holds at x̂.

(i) There exist some positive scalars kfj ; j 2 J, such

that

�
Xp

j¼1

kfjrfjðx̂Þ 2

cl

"
[

kg
i
;khi

�Xm

i¼1

kgi ogiðx̂Þ � khi ohiðx̂Þ
� �

kgi � 0; i 2 I00 [ Iþ0

kgi ¼ 0; i 2 I0þ [ I0� [ Iþ�

khi is free; i 2 I0þ

khi � 0; i 2 I0� [ I00

khi ¼ 0; i 2 Iþ� [ Iþ0

������������


#

:

(ii) If, in addition, i is a closed cone, we can find some

coefficients khi and kgi as i 2 I, such that:

0n 2
Xp

j¼1

kfjrfjðx̂Þ þ
Xm

i¼1

�
kgi ogiðx̂Þ � khi ohiðx̂Þ

�
;

ð11Þ
kgi � 0; i 2 I00 [ Iþ0; kgi ¼ 0; i 2 I0þ [ I0� [ Iþ�;

ð12Þ

khi is free; i 2 I0þ; k
h
i � 0; i 2 I0� [ I00;

khi ¼ 0; i 2 Iþ� [ Iþ0:
ð13Þ

Proof (i) Owing to (4), we can find some positive scalars

kfj [ 0 as j 2 J such that

�
Xp

j¼1

kfjrfjðx̂Þ 2 bNSðx̂Þ:

From the above inclusion and Lemma 1, it is enough to

prove that

bNSðx̂Þ �
�
w 2 Rn j

Ym

i¼1

BiðwÞ � Y


0

;

in which Y is defined as (6) and the ordering of constraints

is same as considered in Lemma 1. The last inclusion is

true when
�
w 2 Rn j

Ym

i¼1

BiðwÞ � Y



� CSðx̂Þ: ð14Þ

We define uðxÞ : Rn �! R2m and p � R2m as

uðxÞ :¼
�
g1ðxÞ; h1ðxÞ; . . .; gmðxÞ; hmðxÞ

�
;

p :¼ fða1; b1; . . .; am; bmÞ 2 R2m j bi � 0; aibi � 0; 8i 2 Ig:

According to (Hoheisel and Kanzow 2008, Lemma 3.2),

we conclude that
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ðu1; v1; . . .; um; vmÞ 2 Cp
�
uðx̂Þ

�
()

ðui; viÞ 2

R	 f0g; i 2 I0þ;

R	 Rþ; i 2 I0�;

R� 	 R; i 2 Iþ0;

R	 R; i 2 Iþ�;�
ðr; sÞ 2 R	 R j s� 0; rs� 0

	
; i 2 I00:

8
>>>>>><

>>>>>>:

ð15Þ

Thus, Y � Cp
�
uðx̂Þ

�
, and as a result

�
w 2 Rn j

Ym

i¼1

BiðwÞ � Y




�
�
w 2 Rn j

Ym

i¼1

BiðwÞ � Cp
�
uðx̂Þ

�

:

Therefore, for proving (14), it is enough to show that
�
w 2 Rn j

Ym

i¼1

BiðwÞ � Cp
�
uðx̂Þ

�

� CSðx̂Þ: ð16Þ

To prove the above, suppose that m 2
�
w 2 Rn j

Qm
i¼1 BiðwÞ � Cp

�
uðx̂Þ

�

is arbitrarily chosen. Then, by

(15) we have

BI0þðmÞ � R	 f0g; BI0�ðmÞ � R	 Rþ; BIþ0
ðmÞ � R� 	 R;

BIþ�ðmÞ � R	 R; BI00ðmÞ
�
�
ðr; sÞ 2 R	 R j s� 0; rs� 0

	
:

Thus, we get

hm; fii ¼ 0; 8fi 2 ohiðx̂Þ; 8i 2 I0þ;

hm; fii� 0; 8fi 2 ohiðx̂Þ; 8i 2 I0�;

hm; nii� 0; 8ni 2 ogiðx̂Þ; 8i 2 Iþ0;

hm; fii� 0;

hm; fiihm; nii� 0;

�
8fi 2 ohiðx̂Þ; 8ni 2 ogiðx̂Þ; 8i 2 I00;

8
>>>>>>>><

>>>>>>>>:

¼) m 2
S

i2I0þ ohiðx̂Þ
� �?

;

¼) m 2
S

i2I0�

�
� ohiðx̂Þ

�� �0
;

¼) m 2
S

i2Iþ0
ogiðx̂Þ

� �0
;

¼) m 2
S

i2I00

�
� ohiðx̂Þ

�� �0
;

m 2 K;

8
<

:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

¼) m 2 L0 \ K ¼ L]:

We thus proved that

�
w 2 Rn j

Qm
i¼1 BiðwÞ �

Cp
�
uðx̂Þ

�

� L]. This inclusion and ACQ] assumption at x̂

justify (16), and the proof of (i) is complete. (ii) follows

from (i) and closedness assumption of i. h

It is worth mentioning that when p ¼ 1, conditions (11)–

(13) are referred by ‘‘VC stationary condition’’ in Hoheisel

and Kanzow (2008), Kazemi and Kanzi (2018). Clearly,

the VC stationary condition is weaker than strongly sta-

tionary condition.
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