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Abstract
In this paper, a one-step new iterative method (OSNIM) is introduced to obtain an exact solution for Bagley–Torvik frac-
tional differential equation. The suggested method OSNIM is a modification to a well-known iterative method called new 
iterative method. This modification enabled us to get the exact solution for linear as well as nonlinear fractional differential 
equations. Bagley–Torvik fractional differential equation arises naturally in the description of the motion of a rigid plate 
immersed in a Newtonian fluid. The convergence analysis for this method is also discussed. Several examples are presented 
and their solution is compared to that found by other well-known methods, showing the accuracy and fast convergence of 
the proposed method.

Keywords  Bagley–Torvik equation · Fractional differential equation · New iterative technique · One–step new iterative 
method
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1  Introduction

Fractional calculus theory made it possible to take 
real number powers of the differential and the integral 
operators. This generalized calculus made a huge leap 
in describing and modeling a lot of phenomena in sci-
ence and engineering. Take a mechanics example, for 
instance, fractional-order derivatives have been success-
fully used to model damping forces with memory effect. 
They also used it to describe state feedback controllers 
(Hemeda and Al-Luhaibi 2014; Kilbas et al. 2006; Mahdy 
and Mukhtar 2017; Manafian et al. 2014; Ramadan and 
Al-luhaibi 2015; Saadatmandi and Mehdi 2010; Samko 

et al. 1993; Sontakke and Shaikh 2016; Zaslavsky 2005). 
That is because of the fact that realistic modeling of a 
physical phenomenon having dependence not only on the 
time instant but also on the previous time history can be 
successfully achieved by using fractional calculus. Such 
calculus can be named as non-integer order of calculus, 
and the subject of it can be traced back to the genesis 
of integer-order differential calculus itself. Though G.W. 
Leibniz made some remarks on the meaning and possibil-
ity of fractional derivatives of order 1

2
 in the late seven-

teenth century, a rigorous investigation was first carried 
out by Liouville in a series of papers from 1832 to 1837, 
where he defined first an operator of fractional integration. 
Today, fractional calculus generates the derivative and 
antiderivative operations of differential and integral cal-
culus from non-integer orders to the entire complex plane. 
Many examples and techniques for solving fractional dif-
ferential equations will be found in S. Kumar et al. work 
(Sunil et al. 2016, 2017; Sunil 2014; Sunil and Mohammad 
2014; Sunil and Amit 2018). There are several approaches 
to the generalization of the notion of differentiation to 
fractional orders, e.g., Riemann–Liouville, Grunwald–Let-
nikow, Caputo and generalized function approach. Rie-
mann–Liouville fractional derivative is mostly used by 
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mathematicians, but this approach is not suitable for real-
world physical problems since it requires the definition of 
fractional-order initial conditions, which have no physi-
cally meaningful explanation yet. Caputo introduced an 
alternative definition, which has the advantage of defining 
integer-order initial conditions for fractional-order differ-
ential equations. Unlike the Riemann–Liouville approach, 
which derives its definition from repeated integration, the 
Grunwald–Letnikow formulation approaches the problem 
from the derivative side. This approach is mostly used 
in numerical algorithms. In this work, we will work on 
the famous well-known fractional differential equation, in 
particular, the Bagley–Torvik equation (BTE)

(where 1 ≤ n, n ∈ ℕ, r − 1 < 𝛼 ≤ r , the constants B ≠ and 
A, C ∈ ℝ, δi can be identified for the initial conditions given 
in the problem and f : [0, 1] × R → R is a given continu-
ous function) arises, for example, in the modeling of the 
motion of a rigid plate immersed in a Newtonian fluid. It 
was originally proposed in 1984 in (Raja et al. 2011) and 
is thoroughly discussed. Initially, in (Mahdy and Mukhtar 
2017), inhomogeneous BTE was studied with an analyti-
cal solution being proposed. Since then, there were several 
works to solve BTE, starting with numerical procedures for 
a reformulated BTE as a system of functional differential 
equations of order 3

2
 . Following a numerical way for solv-

ing BTE, a generalization of Taylor’s and Bessel’s colloca-
tion method (Daftardar-Gejji and Jafari 2006; Ramadan and 
Al-luhaibi 2014) and the use of evolutionary computation 
(Mainardi 2010) provided acceptable solutions from an engi-
neering point of view. In order to obtain a unique solution for 
BTE, homogeneous initial conditions are assumed. Here, in 
particular, Dq

t  denotes the fractional differential operator of 
order q ∉ ℕ in the sense of Caputo, denoted and defined by

where m is the integer defined by the relation m − 1 < q < m 
and J� is the fractional integral operator,

2 � Different Approaches to the New Iterative 
Method (NIM)

During the past decades, many mathematicians intro-
duced and developed the NIM. After working with that 
technique, they developed many approaches, so it can han-
dle differential as well as partial differential equations. 

(1)
{

y(i)(0) = �i, i = 0, 1, 2,… , r − 1, r ∈ ℕ

Ay(n)(t) + BD�

t
y(t) + Cy(t) = f (t)

D
q

t = Jm−qy(m)(t),

J�g(t) =
1

� (�)

t

∫
0

(t − u)�−1g(u)du.

The last few years though they concentrated on develop-
ing the NIM to work on all types of fractional differential 
equations. We will discuss in detail each approach and 
introduce our approach in order to find the exact solution 
instead of an approximate one for some special problems.

2.1 � First Approach

To describe the idea of the first approach of the NIM (Mana-
fian et al. 2014; Podlubny 1999; Raja et al. 2011; Ramadan 
and Al-luhaibi 2014, 2015), consider the following general 
functional equation

where N is the nonlinear operator and g is a known func-
tion. We are looking for y which has the series solution in 
the form

The operator N can be decomposed into the following

from Eqs. (2) and (3)

We define the following recurrence relation

The k-term series solution of the general Eq. (2) takes the 
following form:

2.2 � Second Approach

The basic mathematical theory of the second approach to the 
NIM is described as follows. This approach is preferred to be 
used for nonlinear problems. Let us consider the following 
nonlinear equation:

where � and N are the linear and nonlinear operators of y(t) 
and g(t) is a known function. We are looking for y which has 
the series solution in the form

(2)y(t) = g(t) + N(y(t)),

y(t) =

∞∑

i=0

yi(t).

(3)

N

(
∞∑

i=0

yi

)
= N

(
y0
)
+

∞∑

i=0

{
N

(
i∑

j=0

yj

)
− N

(
i−1∑

j=0

yj

)}

(4)

∞∑

i=0

yi = g(t) + N
(
y0
)
+

∞∑

i=0

{
N

(
i∑

j=0

yj

)
− N

(
i−1∑

j=0

yj

)}
.

y0 = g(t),

y1 = N
(
y0
)
,

yn+1 = N
(
y0 + y1 +⋯ + yn

)

− N
(
y0 + y1 +⋯ + yn−1

)
, n = 1, 2,…

(5)y(t) = y0 + y1 +⋯ + yk−1.

(6)y(t) = g(t) + �(y(t)) + N(y(t)),
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The linear operator � can be decomposed into the 
following

The nonlinear operator N can be decomposed into the 
following

from Eqs. (6), (7) and (8)

We define the following recurrence relation

The k-term series solution of the general Eq. (7) takes the 
following form:

Example 2.1  Consider the following nonlinear initial value 
problem (Yuzbas 2013)

 Isolating the unknown function

by using Eq. (4), we get

(7)
y(t) =

∞∑

k=0

yk(t).

(8)
∞∑

k=0

�
(
yk
)
= �

(
∞∑

k=0

yk

)
.

(9)

N

(
∞∑

k=0

yk

)
= N

(
y0
)
+

∞∑

k=1

{
N

(
k∑

j=0

yj

)
− N

(
k−1∑

j=0

yj

)}

∞∑

i=0

yi = g(t) + �

(
∞∑

k=0

yk

)
+ N

(
y
0

)

+

∞∑

i=0

{
N

(
i∑

j=0

yj

)
− N

(
i−1∑

j=0

yj

)}
.

(10)

y0 = g(t),

y1 = �
(
y0
)
+ N

(
y0
)
,

y2 = �
(
y1
)
+ N

(
y0 + y1

)
− N

(
y0
)
,

yn+1 = �
(
yn
)
+ N

(
y0 + y1 +⋯ + yn

)

− N
(
y0 + y1 +⋯ + yn−1

)
, n = 1, 2,…

(11)y(t) = y0 + y1 +⋯ + yk−1.

(12)
y���(t) + D

5

2

t y(t) + y2(t) = t4, y(0) = y�(0) = 0, y��(0) = 2.

(13)y(t) = J
5

2

[
−D3y − y2

]
+ J

5

2

[
t4
]
+ t2

y
0
= t2 + J

5

2

[
t4
]
= t2 +

� (5)

� (7.5)
t
13

2 and N(y) = J
5

2

[
−D3y − y2

]

y
1
= N

(
y
0

)
= J

5

2

[
−D3y

0
− y2

0

]

= −
� (5)

� (7.5)
t
13

2 −
1

30
t6 −

17

221760
t
39

2 −
70368744177664

4030227582157711875�
3

2

t57∕2.

We get only an approximate solution of the form

the graph of this solution

0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Exact

NIM

t

y(t)

The same problem will be solved later on in this paper using 
the newly introduced method.

Example 2.2  Consider the time-dependent one-dimensional 
heat conduction equation (Torvik and Bagley 1984) as 
follows:

Isolating the unknown function

by using the second approach of NIM in Eq. (10), suppose 
that

(14)

y(t) = t2 −
1

30
t6 −

17

221760
t
39

2 −
70368744177664

4030227582157711875�
3

2

t57∕2 +⋯

(15)

D�

t
y(x, t) − a(y3(x, t))xx + y3(x, t) = 0, y(x, 0) = exp

�
x

3
√
a

�
.

(16)y(t) = J�[a(y3)xx − y3] + J�
�
y
�
+ exp

�
x

3
√
a

�

y0 = exp

�
x

3
√
a

�
, �(y) = J�[y] and N(y) = J�[�(y3)xx − y3]

y1 = �(y0) + N(y0) = J�[y0] + J�[�(y3
0
)xx − y0]

= J�

�
exp

�
x

3
√
a

��
= exp

�
x

3
√
a

�
t�

� (� + 1)

y2 = �(y1) + N(y0 + y1) − N(y0)

= exp

�
x

3
√
a

�
t2�

� (2� + 1)
.
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We get the exact solution taking the form

where E
�,1(t) is the Mittag-Leffer function.

3 � One‑Step New Iterative Method (OSNIM)

A variety of problems in physics, chemistry, biology and 
engineering can be formulated in terms of the nonlinear 
functional equation

where f is a given function and N is the nonlinear operator. 
Equation (18) represents integral equations, ordinary dif-
ferential equations (ODEs), partial differential equations 
(PDEs), differential equations involving fractional-order, 
systems of ODE/PDE and so on. Various methods such as 
Laplace and Fourier transform and Green’s function method 
have been used to solve linear equations. For solving non-
linear equations, however, one has to resort to numerical/
iterative methods. Adomian decomposition method (ADM) 
has proved to be a useful tool for solving functional Eq. (18) 
(Adomian 1988, 1994; Daftardar-Gejji and Jafari 2005). 
Though the study of fractional differential equations (FDE) 
in general and BTE to be specified has been obstructed 
due to the absence of proficient and accurate techniques, 
the derivation of approximate solution of FDEs remains a 
hotspot and demands to attempt some dexterous and solid 
plans which are of interest. Daftardar-Gejji and Jafari pro-
posed an iterative method called the new iterative method 
(NIM) for finding the approximate solution of differential 
equations (Al-Luhaibi 2015; Samreen et al. 2018). NIM 
does not require the need for calculation of tedious Ado-
mian polynomials in nonlinear terms like ADM, the need for 
determination of a Lagrange multiplier in its algorithm like 
VIM and the need for discretization like numerical methods. 
The proposed method handles linear and nonlinear equations 
in an easy and straightforward way. Recently, the method 
has been extended for differential equations of the fractional 
order (Al-Luhaibi 2015; Kazem 2013; Podlubny 1999). This 
method yields solutions in the form of rapidly converging 
infinite series which can be effectively approximated by cal-
culating only first few terms.

(17)

y(t) = exp

�
x

3
√
a

��
1 +

t�

� (� + 1)
+

t2�

� (2� + 1)
+

t3�

� (3� + 1)
+⋯

�

= exp

�
x

3
√
a

�
E
�,1(t),

(18)y = N(y) + g,

In the present study, we have implemented NIM for find-
ing the approximate solution of the following fractional-order 
BTE. We generalized an algorithm in order to make it easier to 
solve BTE. To describe the idea of the new generalized algo-
rithm for the NIM, consider the following general Bagley–Tor-
vik (BTE) equation

then by isolating the fractional derivative term

where f1(t) =
f (t)

B
, A1 =

A

B
 and C1 =

C

B
 , and then

Suppose we divide this equation into two parts as follows

where

where N is usually the nonlinear operator in the Banach 
space B → B ; however, for the BTE it is applied to linear 
functions and g(t) is a known function defined as

where we are looking for a solution y(t) of Eq. (22) having 
the series form

The operator N can be decomposed into the following

from Eqs. (22), (24) and (25)

By getting different yi

(19)
{

y(i)(0) = �i, i = 0, 1, 2,… , r − 1, r ∈ ℕ

Ay(n)(t) + BD�

t
y(t) + Cy(t) = f (t),

(20)D�

t
y(t) = f1(t) − A1y

(n)(t) − C1y(t)

(21)y(t) = J�
[
f1(t) − A1y

(n)(t) − C1y(t)
]
+

r∑

i=0

y(i)(0)
ti

i!
.

(22)y(t) = N(y(t)) + g(t),

(23)N(y(t)) = J�
[
f1(t) − A1y

(n)(t) − C1y(t)
]
,

(24)g(t) =

r∑

i=0

y(i)(0)
ti

i!
,

(25)y(t) =

∞∑

i=0

yi(t).

(26)

N

(
∞∑

i=0

yi

)
= N

(
y0
)
+

∞∑

i=0

{
N

(
i∑

j=0

yj

)
− N

(
i−1∑

j=0

yj

)}

(27)

∞∑

i=0

yi = g(t) + N
(
y0
)
+

∞∑

i=0

{
N

(
i∑

j=0

yi

)
− N

(
i−1∑

j=0

yi

)}
.
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from this, we can deduce the following

then, the k-term series solution will be in the form

4 � Convergence and Error Analysis

In this section, we will prove that the method is convergent 
for the BTE and the error is almost neglectable as done by A. 
A. Hemeda (Enesiz et al. 2010). Using Eq. (27), we define the 
following recurrence relation

y0 = g(t) =

r∑

i=0

y(i)(0)
ti

i!
, r − 1 < 𝛼 ≤ r

y1 = J𝛼
[
f1(t) − A1y

(n)

0
− C1y0(t)

]

y2 = N
(
y0 + y1

)
− N

(
y0
)

= J𝛼
[
f1(t) − A1y

(n)

0
(t) − C1y0(t) − A1y

(n)

1
(t) − C1y1(t)

]

− J𝛼
[
f1(t) − A1y

(n)

0
(t) − C1y0(t)

]

= J𝛼
[
−A1y

(n)

1
(t) − C1y1(t)

]

y3 = N
(
y0 + y1 + y2

)
− N

(
y0 + y1

)

= J𝛼
[
f1(t) − A1y

(n)

0
(t) − C1y0(t) − A1y

(n)

1
(t) − C1y1(t)

−A1y
(n)

2
(t) − C1y2(t)

]

− J𝛼
[
f1(t) − A1y

(n)

0
(t) − C1y0(t) − A1y

(n)

1
(t) − C1y1(t)

]

= J𝛼
[
−A1y

(n)

2
(t) − C1y2(t)

]

⋮

(28)

y0 = g(t) =

r∑

i=0

y(i)(0)
ti

i!

y1 = J�
[
f1(t) − A1y

(n)

0
(t) − C1y0(t)

]

y2 = J�
[
−A1y

(n)

1
(t) − C1y1(t)

]

y3 = J�
[
−A1y

(n)

2
(t) − C1y2(t)

]

⋮

ym = J�
[
−A1y

(n)

m−1
(t) − C1ym−1(t)

]
;

(29)y(t) = y0 + y1 + y2 +⋯ + yk−1.

(30)

y0 = g(t),

y1 = N
(
y0
)
,

yn+1 = N
(
y0 + y1 +⋯ + yn

)

− N
(
y0 + y1 +⋯ + yn−1

)
, n = 1, 2,…

Let e = u∗ − u , where u∗ is the exact solution, u is the 
approximate solution and e is the error in the solution of 
Eq. (22); obviously, e satisfies Eq. (22); that is,

the recurrence relation in Eq. (30) becomes

If

Thus, en+1 → 0 as n → ∞, which proves the convergence of 
the new iterative method for solving the general functional 
Eq. (22).

5 � Illustrating Examples

In this section, we apply the present algorithm which is pre-
sented in Sect. 4 to some special types of linear and non-
linear fractional differential equations. Numerical outcomes 
show that the method is very convenient and efficient.

Example 5.1  Consider the following BTE (Abu and Maayah 
2018)

subject to

where the exact solution is y(t) = 1 + t. By using Eq. (28), 
we get

e(x) = g(x) + N(e(x));

e0 = g(t),

e1 = N
(
e0
)
,

en+1 = N
(
e0 + e1 +⋯ + en

)

− N
(
e0 + e1 +⋯ + en−1

)
, n = 1, 2,…

‖N(x) − N(y)‖ < k‖x − y‖, 0 < k < 1, then

e0 = g(t),

‖‖e1‖‖ =
‖‖‖N

(
e0
)‖‖‖ ≤ k‖‖e0‖‖,

‖‖e2‖‖ =
‖‖‖N

(
e0 + e1

)
− N

(
e0
)‖‖‖ ≤ k‖‖e1‖‖ ≤ k2‖‖e0‖‖,

‖‖e3‖‖ =
‖‖‖N

(
e0 + e1 + e2

)
− N

(
e0 + e1

)‖‖‖ ≤ k‖‖e2‖‖ ≤ k3‖‖e0‖‖
‖‖en+1‖‖ =

‖‖‖N
(
e0 + e1 +⋯ + en

)
− N

(
e0 + e1 +⋯ + en−1

)‖‖‖
≤ k‖‖en‖‖ ≤ kn+1‖‖e0‖‖, n = 1, 2,…

(31)y��(t) + D
3

2

t y(t) + y(t) = 1 + t

(32)y(0) = y�(0) = 1,

(33)

y0 = 1 + t

y1 = J
3

2 [1 + t − 1 − t] = 0

y2 = J
3

2 [− 0 − 0] = 0;
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then, we can find out easily that the exact solution will take 
the form

It worth mentioning that A. A. Hemeda in 2013 (Raja 
et  al. 2011) solved the same problem but with a slight 
change. He took different y0 which led him to an approxi-
mate solution. The 6-term approximation took the form

However, here we get the exact solution after this slight 
modification.

Example 5.2  Consider the following BTE (Abu and Maayah 
2018)

subject to

where the exact solution is y(t) = t2. By using Eq. (28), we 
get

(34)y(t) = y0 + y1 + y2 +⋯ = 1 + t.

y(t) =

5�

i=0

yi

= 1 + x −
x6

144
−

5x7

5040
−

x9

36288
−

x10

362880
−

x12

479001600

−
x13

6227020800
−

32x4.5

945
√
�

−
64x5.5

10395
√
�

−
512x7.5

405405
√
�

−
1024x8.5

6891885
√
�

−
512x10.5

687465529
√
�

−
128x11.5

1976463395
√
�

.

(35)y��(t) + D
3

2

t y(t) + y(t) = 2 + 4

√
t

�
+ t2

(36)y(0) = y�(0) = 0,

y0 = 0

y1 = J
3

2

�
2 + 4

�
t

�
+ t2

�
=

8t
3

2

3
√
�

+ t2 +
32t

7

2

105
√
�

y2 = J
3

2

�
− y��

1
(t) − y1(t)

�
= −2t −

8t
3

2

3
√
�

−
2t3

3

−
32t

7

2

105
√
�

−
t5

60

y3 = J
3

2

�
− y��

2
(t) − y2(t)

�
= 2t +

16t
5

2

5
√
�

+
2t3

3

+
64t

9

2

315
√
�

+
t5

60
+

256t
13

2

135135
√
�

⋮

By getting the higher-order terms, we notice that there are 
a lot of noise terms that appear. After canceling those noise 
terms, then we can find out easily that the exact solution will 
take the form

Example 5.3  Consider the following BTE (Abu and Maayah 
2018)

subject to

where the exact solution is y(t) = t2 + 1. By using Eq. (28), 
we get

By getting the higher-order terms, we notice that there are 
a lot of noise terms that appear. After canceling those noise 
terms, then we can find out easily that the exact solution will 
take the form

Example 5.4  Consider the following BTE (Hemeda 2013)

subject to

the second condition is only applied when 𝛼 > 1. In this 
problem, A1 = f1(t) = 0. By using Eq. (28), we get

(37)y(t) = y0 + y1 + y2 +⋯ = t2.

(38)y��(t) +
1

2
D

1

2

t y(t) + y(t) = 3 + t2
(

1

� (2.5)
t−0.5 + 1

)

(39)y(0) = 1, y�(0) = 0,

y0 = 1

y1 = J
1

2

�
4 +

2

� (2.5)
t
3

2 + t2
�
=

8
√
t

√
�

+ t2 +
32t

5

2

15
√
�

y2 = J
1

2

�
−2y��

1
(t) − 2y1(t)

�
= −16t −

8
√
t

√
�

−
4t3

3
−

32t
5

2

15
√
�

y3 = J
1

2

�
−2y��

2
(t) − 2y2(t)

�
= 16t +

4t3

3
+

64t
3

2

√
�

+
256t

7

2

105
√
�

⋮

(40)y(t) = y0 + y1 + y2 +⋯ = t2 + 1

(41)D�

t
y(t) + y(t) = 0

(42)y(0) = 1, y��(0) = 0,
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and so on. We continue getting the higher-order terms. We 
find out that the series continues in the same pattern. We 
then deduce that

which is the exact solution.

Example 5.5  Consider the following BTE (Hemeda 2013)

subject to

the second condition is only applied when 𝛼 > 1. In this 
problem, A1 = 0. By using Eq. (28), we get

y0 = 1

y1 = J�
[
− y0

]
= J�[−1] =

−t�

� (� + 1)

y2 = J�
[
− y1

]
= J�

[
t�

� (� + 1)

]
=

t2�

� (2� + 1)

y3 = J�
[
− y2

]
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[
t2�

� (2� + 1)

]
=
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y4 = J�
[
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]
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[
t3�

� (3� + 1)

]
=

t4�

� (4� + 1)

⋮

y(t) = y0 + y1 + y2 +⋯

= 1 +
(− t)�

� (� + 1)
+

(− t)2�

� (2� + 1)
+

(− t)3�

� (3� + 1)
+

(− t)4�

� (4� + 1)
+⋯

=

∞∑

n=0

(− t)n

� (n� + 1)
= E

�
(− t)�

(43)D�

t
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+ t2 − t
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y
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y
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f
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0
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[
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⋮

By getting the higher-order terms, we notice that there are 
a lot of noise terms that appear in a certain pattern. After 
canceling those noise terms, then we can find out easily that 
the exact solution will take the form

Example 5.6  Consider the following nonlinear initial value 
problem (Torvik and Bagley 1984)

Isolating the unknown function and using Eq. (27)

by using Eq. (28), we get

By getting the higher-order terms, we notice that they all 
vanish due to using the one-step NIM. We can find out easily 
that the exact solution will take the form

We must also point that we tried the usual NIM, but we 
get only an approximate solution to the same problem tak-
ing the form

the graph of this solution.
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[
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⋮

(48)y(t) = y0 + y1 + y2 +⋯ = t2.

(49)

y(t) = t2 −
1

30
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t
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6 � Conclusion

The aim of this article is to modify the NIM is to provide a 
basic concept on obtaining an exact solution of Bagley–Tor-
vik equation. The suggested modification is called a one-
step new iterative method. Therefore, through this article, 
we have presented a successful algorithm to solve BTE. The 
introduced algorithm gave the exact solution in all examples 
studied in this paper. This indicates that the method is effi-
cient, accurate and reliable when it is used to solve linear and 
nonlinear fractional differential equation or namely the BTE.
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