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Abstract
In Geometric Function Theory, there have been many interesting and fruitful usages of a wide variety of special functions

and special polynomials. Here, in this article, we propose to make use of the Horadam polynomials which are known to

include, as their particular cases, such potentially useful polynomials as (for example) the Fibonacci polynomials, the

Lucas polynomials, the Pell polynomials, the Pell–Lucas polynomials, and the Chebyshev polynomials of the second kind.

We aim first at introducing a new class of bi-univalent functions defined by means of the Horadam polynomials. For

functions belonging to this new bi-univalent function class, we then derive coefficient inequalities and consider the

celebrated Fekete–Szegö problem. We also provide relevant connections of our results with those considered in earlier

investigations.
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1 Introduction and Preliminaries

Recently, Hörçum and Gökçen Koçer (2009) considered

the Horadam polynomials hnðxÞ, which are given by the

following recurrence relation (see also Horadam and

Mahon 1985):

hnðxÞ ¼ pxhn�1ðxÞ þ qhn�2ðxÞ
ðn 2 N n f1; 2g; N :¼ f1; 2; 3; � � �gÞ; ð1:1Þ

with

h1ðxÞ ¼ a and h2ðxÞ ¼ bx ð1:2Þ

for some real constants a, b, p and q.

We first present some particular cases of the polyno-

mials hnðxÞ (see, for details, Horadam and Mahon 1985 and

Hörçum and Gökçen Koçer 2009):

1. For a ¼ b ¼ p ¼ q ¼ 1, we get the Fibonacci polyno-

mials FnðxÞ;
2. For a ¼ 2 and b ¼ p ¼ q ¼ 1, we get the Lucas

polynomials LnðxÞ;
3. If a ¼ q ¼ 1 and b ¼ p ¼ 2, then we get the Pell

polynomials PnðxÞ;
4. If a ¼ b ¼ p ¼ 2 and q ¼ 1; then we get the Pell–

Lucas polynomials QnðxÞ;
5. If a ¼ 1; b ¼ p ¼ 2 and q ¼ �1, then we get the

Chebyshev polynomials UnðxÞ of the second kind.

Such polynomials as (for example) the Fibonacci polyno-

mials, the Lucas polynomials, the Chebyshev polynomials,
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syalcin@uludag.edu.tr

1 Department of Mathematics and Statistics, University of

Victoria, Victoria, British Columbia V8W 3R4, Canada

2 Department of Medical Research, China Medical University

Hospital, China Medical University, Taichung 40402,

Taiwan, ROC

3 Department of Mathematics, Faculty of Arts and Science,

Bursa Uludag University, TR-16059 Bursa, Turkey

123

Iran J Sci Technol Trans Sci (2019) 43:1873–1879
https://doi.org/10.1007/s40995-018-0647-0(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-9277-8092
http://crossmark.crossref.org/dialog/?doi=10.1007/s40995-018-0647-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40995-018-0647-0&amp;domain=pdf
https://doi.org/10.1007/s40995-018-0647-0


the Pell polynomials, the Pell–Lucas polynomials, the

Lucas–Lehmer polynomials, and the families of orthogonal

polynomials and other special polynomials as well as their

generalizations are potentially important in a variety of

disciplines in the mathematical, physical, statistical, and

engineering sciences. These polynomials have been studied

in several papers from a theoretical point of view (see, e.g.,

Horadam and Mahon 1985; Lupaş 1999; Filipponi and

Horadam 1990, 1993; Vellucci and Bersani 2016 and

Wang and Zhang 2012).

Theorem 1 (see Hörçum and Gökçen Koçer 2009) Let

Pðx; zÞ be the generating function of the Horadam poly-

nomials hnðxÞ. Then,

Pðx; zÞ :¼
X1

n¼1

hnðxÞzn�1 ¼ aþ ðb� apÞxz
1 � pxz� qz2

: ð1:3Þ

Remark 1 Here, and in what follows, the argument x 2 R

is independent of the argument z 2 C; that is, x 6¼ RðzÞ.

Let A be the class of functions f of the form:

f ðzÞ ¼ zþ
X1

n¼2

anz
n ¼ zþ a2z

2 þ a3z
3 þ � � � ; ð1:4Þ

which are analytic in the open unit disk

U ¼ z : z 2 C and zj j\1f g

and normalized under the conditions given by

f ð0Þ ¼ 0 ¼ f 0ð0Þ � 1:

We denote by S the subclass of all functions in A which

are univalent in U.

Definition 1 In order to recall the principle of subordi-

nation between analytic functions, let the functions f and

g be analytic in U. Then, for functions f ; g 2 A, f is said to

be subordinate to g if there exists a Schwarz function w 2
K; where

K ¼ w : w 0ð Þ ¼ 0 and w zð Þj j\1 ðz 2 UÞf g;

such that

f zð Þ ¼ g w zð Þð Þ z 2 Uð Þ:

We denote this subordination by

f � g or f zð Þ � g zð Þ z 2 Uð Þ:

In particular, if the function g is univalent in U, the above

subordination is equivalent to

f ð0Þ ¼ gð0Þ and fðUÞ � gðUÞ:

We now turn to the Koebe One-Quarter Theorem (see

Duren 1983), which ensures that the image of U under

every function in the normalized univalent function class S

contains a disk of radius 1
4
. Thus, clearly, every such uni-

valent function has an inverse f�1 which satisfies the fol-

lowing conditions:

f�1 f zð Þð Þ ¼ z z 2 Uð Þ

and

f f�1 wð Þ
� �

¼ w wj j\r0 fð Þ; r0 fð Þ= 1

4

� �
;

where

f�1 wð Þ ¼ w� a2w
2 þ 2a2

2 � a3

� �
w3 � 5a3

2 � 5a2a3 þ a4

� �
w4 þ � � �

¼: gðwÞ:

ð1:5Þ

Definition 2 A function f 2 A is said to be bi-univalent in

U if both f and f�1 are univalent in U: We denote by R the

class of bi-univalent functions defined in the open unit disk

U:

For a brief historical account and for several interesting

examples of functions in the class R; see the pioneering

work on this subject by Srivastava et al. (2010), which

actually revived the study of bi-univalent functions in

recent years. From the work of Srivastava et al. (2010), we

choose to recall the following examples of functions in the

class R:

z

1 � z
; � logð1 � zÞ; 1

2
log

1 þ z

1 � z

� �
;

and so on. However, the familiar Koebe function is not a

member of the bi-univalent function class R: Such other

common examples of functions in S as

z� z2

2
and

z

1 � z2

are also not members of R (see, for details, Srivastava et al.

2010).

It may be of interest to recall that Lewin (1967) studied

the class of bi-univalent functions and derived the bound

1.51 for the modulus of the second coefficient a2j j: Sub-

sequently, Brannan and Clunie (1980) conjectured that

a2j j5
ffiffiffi
2

p
for f 2 R: Later on, Netanyahu (1969) showed

that

max a2j j ¼ 4

3

if f 2 R: Moreover, Brannan and Taha (1985) introduced

certain subclasses of the bi-univalent function class R

similar to the familiar subclasses SH að Þ and K að Þ of star-

like and convex functions of order a 05 a\1ð Þ in U;

respectively (see Netanyahu 1969). The classes SH

R að Þ and

KR að Þ of bi-starlike functions of order a in U and bi-
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convex functions of order a in U; corresponding to the

function classes SH að Þ and K að Þ; were also introduced

analogously. For each of the function classes SH

R að Þ and

KR að Þ; they found non-sharp estimates for the initial

Taylor–Maclaurin coefficients. Recently, motivated obvi-

ously by the aforementioned pioneering work on this

subject by Srivastava et al. (2010), many authors investi-

gated the coefficient bounds for various subclasses of the

bi-univalent function class R (see, e.g., Srivastava and

Bansal 2015; Çağlar et al. 2017; Srivastava et al. 2013a, b,

2017). However, not much is known about the bounds on

the general coefficient anj j for n= 4: In the literature, there

are only a few works determining the general coefficient

bounds for anj j for various classes of analytic and bi-uni-

valent functions (see, e.g., Altınkaya and Yalçın
2015, 2017b; Bulut 2014; Hamidi and Jahangiri 2016;

Srivastava et al. 2015, 2018). The coefficient estimate

problem for each of the coefficients anj j ðn 2 Nn 1; 2f gÞ is

still an open problem.

Our present investigation is motivated essentially by the

fact that, in Geometric Function Theory, one can find many

interesting and fruitful usages of a wide variety of special

functions and special polynomials. The main purpose of

this article is to make use of the Horadam polynomials

hnðxÞ, which are given by the recurrence relation (1.1) and

the generating function Pðx; zÞ in (1.3), in order to intro-

duce a new subclass of the bi-univalent function class R.

For functions belonging to this newly introduced bi-uni-

valent function class, we derive Taylor–Maclaurin coeffi-

cient inequalities in Sect. 2. Furthermore, in Sect. 3, we

consider the celebrated Fekete–Szegö problem. We also

provide relevant connections of our results with those

considered in earlier investigations. Finally, in the con-

cluding section (Sect. 4), we present our remarks and

observations.

Definition 3 A function f 2 R is said to be in the class

WR l; xð Þ ð0\l5 1; z;w 2 UÞ

if the following subordination conditions are satisfied:

1

2

zf 0ðzÞ
f ðzÞ þ zf 0ðzÞ

f ðzÞ

� �1
l

" #
� Pðx; zÞ þ 1 � a ð1:6Þ

and

1

2

wg0ðwÞ
gðwÞ þ wg0ðwÞ

gðwÞ

� �1
l

" #
� Pðx;wÞ þ 1 � a; ð1:7Þ

where the real constants a and b are as in (1.2) and the

function g is given by (1.5).

Remark 2 Upon setting l ¼ 1; it is readily seen that a

function f 2 R is in the class

WR xð Þ ðz;w 2 UÞ

if the following subordination conditions are satisfied:

zf 0ðzÞ
f ðzÞ � Pðx; zÞ þ 1 � a ð1:8Þ

and

wg0ðwÞ
gðwÞ � Pðx;wÞ þ 1 � a; ð1:9Þ

where the real constants a and b are as in (1.2) and the

function g is given by (1.5).

Remark 3 In its special case when

a ¼ 1; b ¼ p ¼ 2; q ¼ �1 and x 7! t;

the generating function in Eq. (1.3) reduces to that of the

Chebyshev polynomials UnðtÞ of the second kind, which is

given explicitly by (see, for details, Szegö 1975)

UnðtÞ ¼ ðnþ 1Þ 2F1 �n; nþ 2
3

2

1 � t

2

� �

¼ sinðnþ 1Þu
sinu

ðt ¼ cosuÞ

in terms of the celebrated Gauss hypergeometric function

2F1. In this special case, the bi-univalent function class

WR l; xð Þ would become the class SR l; tð Þ; which was

studied earlier by Altınkaya and Yalçın (2017a).

2 Inequalities for the Taylor–Maclaurin
Coefficients

In this section, we propose to find the estimates on the

Taylor–Maclaurin coefficients a2j j and a3j j for functions in

the class WR l; xð Þ, which we introduced in Definition 3.

We first state Theorem 2.

Theorem 2 Let the function f given by (1.4) be in the class

WR l; xð Þ: Then,

a2j j5 2l bxj j
ffiffiffiffiffiffiffiffi
bxj j

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l2 þ lþ 1ð Þb� ðlþ 1Þ2
p

h i
bx2 � ðlþ 1Þ2

qa
���

���
r

ð2:1Þ

and

a3j j5 4l2b2x2

ðlþ 1Þ2
þ l bxj j
lþ 1

: ð2:2Þ

Proof Let f 2 WR l; xð Þ be given by the Taylor–Maclau-

rin expansion (1.4). Then, by Definition 3, for some ana-

lytic functions H and U such that
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Hð0Þ ¼ Uð0Þ ¼ 0; HðzÞj j\1 and UðwÞj j\1

ð8 z;w 2 UÞ;

we can write

1

2

zf 0ðzÞ
f ðzÞ þ zf 0ðzÞ

f ðzÞ

� �1
l

" #
¼ P x;HðzÞð Þ þ 1 � a

and

1

2

wg0ðwÞ
gðwÞ þ wg0ðwÞ

gðwÞ

� �1
l

" #
¼ P x;UðwÞð Þ þ 1 � a

or, equivalently,

1

2

zf 0ðzÞ
f ðzÞ þ zf 0ðzÞ

f ðzÞ

� �1
l

" #
¼ 1 þ h1ðxÞ � aþ h2ðxÞHðzÞ þ h3ðxÞ½HðzÞ�2 þ � � �

ð2:3Þ

and

1

2

wg0ðwÞ
gðwÞ þ wg0ðwÞ

gðwÞ

� �1
l

" #

¼ 1 þ h1ðxÞ � aþ h2ðxÞUðwÞ þ h3ðxÞ½UðwÞ�2 þ � � � :
ð2:4Þ

From these last Eqs. (2.3) and (2.4), we obtain

1

2

zf 0ðzÞ
f ðzÞ þ zf 0ðzÞ

f ðzÞ

� �1
l

" #
¼ 1 þ h2ðxÞn1zþ h2ðxÞn2 þ h3ðxÞn2

1

� 	
z2 þ � � �

ð2:5Þ

and

1

2

wg0ðwÞ
gðwÞ þ wg0ðwÞ

gðwÞ

� �1
l

" #

¼ 1 þ h2ðxÞs1wþ h2ðxÞs2 þ h3ðxÞs2
1

� 	
w2 þ � � � : ð2:6Þ

It is fairly well known that if

HðzÞj j ¼ n1zþ n2z
2 þ n3z

3 þ � � �
�� ��\1 ðz 2 UÞ

and

UðwÞj j ¼ s1wþ s2w
2 þ s3w

3 þ � � �
�� ��\1 ðw 2 UÞ;

then

nkj j5 1 and skj j5 1 ðk 2 NÞ:

Thus, upon comparing the corresponding coefficients in

(2.5) and (2.6), we have

lþ 1

2l
a2 ¼ h2ðxÞn1; ð2:7Þ

lþ 1

2l
2a3 � a2

2

� �
þ 1 � l

4l2
a2

2 ¼ h2ðxÞn2 þ h3ðxÞn2
1;

ð2:8Þ

� lþ 1

2l
a2 ¼ h2ðxÞs1 ð2:9Þ

and

lþ 1

2l
3a2

2 � 2a3

� �
þ 1 � l

4l2
a2

2 ¼ h2ðxÞs2 þ h3ðxÞs2
1:

ð2:10Þ

From Eqs. (2.7) and (2.9), we can easily see that

n1 ¼ �s1 ð2:11Þ

and

lþ 1ð Þ2

2l2
a2

2 ¼ ½h2ðxÞ�2 n2
1 þ s2

1

� �
: ð2:12Þ

If we add (2.8) to (2.10), we get

2l2 þ lþ 1

2l2
a2

2 ¼ h2ðxÞ n2 þ s2ð Þ þ h3ðxÞ n2
1 þ s2

1

� �
:

ð2:13Þ

By using (2.12) in Eq. (2.13), we have

2l2 þ lþ 1
� �

½h2ðxÞ�2 � lþ 1ð Þ2
h3ðxÞ

h i
a2

2

¼ 2l2½h2ðxÞ�3 n2 þ s2ð Þ; ð2:14Þ

which yields

a2j j5 2l bxj j
ffiffiffiffiffiffiffiffi
bxj j

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l2 þ lþ 1ð Þb� ðlþ 1Þ2
p

h i
bx2 � ðlþ 1Þ2

qa
���

���
r :

Moreover, if we subtract (2.10) from (2.8), we obtain

2 lþ 1ð Þ
l

ða3 � a2
2Þ ¼ h2ðxÞ n2 � s2ð Þ þ h3ðxÞ n2

1 � s2
1

� �
:

ð2:15Þ

In view of (2.11) and (2.12), Eq. (2.15) becomes

a3 ¼ 2l2½h2ðxÞ�2

lþ 1ð Þ2
n2

1 þ s2
1

� �
þ lh2ðxÞ

2 lþ 1ð Þ n2 � s2ð Þ:

Finally, with the help of Eq. (1.1), we deduce that

a3j j5 4l2b2x2

ðlþ 1Þ2
þ l bxj j
lþ 1

:

The proof of Theorem 2 is thus completed. h

In its special case when l ¼ 1, Theorem 2 leads us to

Corollary 1.
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Corollary 1 Let the function f given by (1.4) be in the class

WR xð Þ: Then,

a2j j5 bxj j
ffiffiffiffiffiffiffiffi
bxj j

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� pÞbx2 � qaj j

p

and

a3j j5 b2x2 þ bxj j
2

:

In light of Remark 3, Theorem 2 would yield the fol-

lowing known result.

Corollary 2 (see Altınkaya and Yalçın 2017a) Let the

function f given by (1.4) be in the class SR l; tð Þ: Then,

a2j j5 4lt
ffiffiffiffi
2t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 l2 � lð Þt2 þ ðlþ 1Þ2

q

and

a3j j5 16l2t2

lþ 1ð Þ2
þ 2lt
lþ 1

:

3 The Fekete–Szegö Problem for the Class
WR l;xð Þ

The following classical Fekete–Szegö inequality, which is

investigated by means of Loewner’s chain method,

involves the Taylor–Maclaurin coefficients of f 2 S given

by (1.4):

a3 � #a2
2

�� ��5 1 þ 2 exp � 2#

1 � #

� �
05#\1ð Þ: ð3:1Þ

In its limit as # ! 1�, we have an elementary inequality

given by

a3 � a2
2

�� ��5 1:

In fact, the coefficient functional W#ðf Þ, where

W#ðf Þ ¼ a3 � #a2
2;

for the normalized analytic functions f in the unit disk U

plays an important rôle in function theory. The problem of

maximizing the modulus of the functional W#ðf Þ is called

the Fekete–Szegö problem (see Fekete and Szegö 1933).

In this section, we derive the Fekete–Szegö inequalities

for functions in the class WR l; xð Þ, which is introduced by

Definition 3. These inequalities are asserted by Theorem 3.

Theorem 3 Let the function f given by (1.4) be in the class

WR l; xð Þ. Suppose also that # 2 R: Then

a3 � #a2
2

�� ��5

l bxj j
lþ 1

#� 1j j5 1

4lðlþ 1Þ 2l2 þ lþ 1 � ðlþ 1Þ2 pbx2 þ qa

b2x2


 �����

����
� �

4l2 1 � #j j bxj j3

2l2 þ lþ 1ð Þb� ðlþ 1Þ2
p

h i
bx2 � ðlþ 1Þ2

qa
���

���

#� 1j j= 1

4lðlþ 1Þ 2l2 þ lþ 1 � ðlþ 1Þ2 pbx2 þ qa

b2x2


 �����

����
� �

:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð3:2Þ

Proof From (2.14) and (2.15), we find that

a3 � #a2
2 ¼ 2l2½h2ðxÞ�3 1 � #ð Þ n2 þ s2ð Þ

2l2 þ lþ 1ð Þ½h2ðxÞ�2 � lþ 1ð Þ2
h3ðxÞ

þ lh2ðxÞ n2 � s2ð Þ
2ðlþ 1Þ

¼ h2ðxÞ X #; xð Þ þ l
2ðlþ 1Þ

� �
n2




þ X #; xð Þ � l
2ðlþ 1Þ

� �
s2

�
;

where

X #; xð Þ ¼ 2l2½h2ðxÞ�2 1 � #ð Þ
2l2 þ lþ 1ð Þ½h2ðxÞ�2 � lþ 1ð Þ2

h3ðxÞ
:

Hence, in view of (1.1), we conclude that

a3 � #a2
2

�� ��5

l h2ðxÞj j
lþ 1

05 X #; xð Þj j5 l
2ðlþ 1Þ

� �

2 h2ðxÞj j � X #; xð Þj j X #; xð Þj j= l
2ðlþ 1Þ

� �
;

8
>>><

>>>:

which evidently completes the proof of Theorem 3. h

An immediate consequence of Theorem 3 when l ¼ 1

is asserted by Corollary 3.

Corollary 3 Let the function f given by (1.4) be in the class

WR xð Þ. Suppose also that # 2 R: Then,

a3 � #a2
2

�� ��5

bxj j
2

1 � #j j5
ðb� pÞbx2 � qa
�� ��

2b2x2

� �

1 � #j j � bxj j3

ðb� pÞbx2 � qaj j 1 � #j j=
ðb� pÞbx2 � qa
�� ��

2b2x2

� �
:

8
>>>><

>>>>:

ð3:3Þ

In view of Remark 3, Theorem 3 can be shown to yield

the following known result.

Corollary 4 (see Altınkaya and Yalçın 2017a) Let the

function f given by (1.4) be in the class SR l; tð Þ: Suppose
also that # 2 R: Then,
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a3 � #a2
2

�� ��

5

2lt
lþ 1

1 � #j j5 1

4l lþ 1ð Þ l2 � lþ lþ 1ð Þ2

4t2

�����

�����

 !

32l2 1 � #j jt3

4t2ðl2 � lÞ þ lþ 1ð Þ2
1 � #j j= 1

4l lþ 1ð Þ l2 � lþ lþ 1ð Þ2

4t2

�����

�����

 !
:

8
>>>>><

>>>>>:

ð3:4Þ

If we set # ¼ 1; we get the following corollaries.

Corollary 5 If the function f given by (1.4) is in the class

WR l; xð Þ; then

a3 � a2
2

�� ��5 l bxj j
lþ 1

: ð3:5Þ

Corollary 6 (see Altınkaya and Yalçın 2017a) If the

function f given by (1.4) is in the class SR l; tð Þ; then

a3 � a2
2

�� ��5 2lt
lþ 1

: ð3:6Þ

In our next section (Sect. 4), we choose to present

several remarks and observations concerning our main

results (Theorems 2 and 3) as well as their known or new

corollaries and consequences which are stated above as

Corollaries 1 and 2 and Corollaries 3 to 6, respectively.

4 Concluding Remarks and Observations

Our investigation in this article drew its motivation

essentially by the fact that, in Geometric Function Theory,

we can find many interesting and fruitful usages of a wide

variety of special functions and special polynomials. The

main purpose was to make use of the Horadam polyno-

mials hnðxÞ, which are given by the recurrence relation

(1.1) and the generating function Pðx; zÞ in (1.3), with a

view to introducing a new subclass WR l; xð Þ of the bi-

univalent function class R (see Definition 3). For functions

belonging to this newly introduced bi-univalent function

class WR l; xð Þ, we have derived Taylor–Maclaurin coef-

ficient inequalities in Sect. 2 and we have considered the

celebrated Fekete–Szegö problem in Sect. 3. We have also

provided relevant connections of our results with those

considered in earlier investigations.

The geometric properties of the function class WR l; xð Þ
vary according to the values assigned to the parameters

involved. Nevertheless, some results for the special cases

of the parameters involved could be presented as illustra-

tive examples. If l ¼ 1; a ¼ p ¼ x ¼ 1; b ¼ 2; and q ¼ 0;

then we have

zf 0ðzÞ
f ðzÞ � 1 þ z

1 � z
ðz 2 UÞ:

In this case, the function f maps the open unit disk U onto

the half-plane given by

R
þ z

� z

� �
[ 0;

since the following expression:

zf 0ðzÞ
f ðzÞ

takes on values in the half-plane. If, on the other hand, we

restrict our considerations for a given univalent function

pðzÞ in U, we can investigate the corresponding mapping

problems for other regions of the complex z-plane instead

of the half-plane RðzÞ[ 0. In this way, one can introduce

many other subclasses of the function class WR l; xð Þ
which we have studied in this paper.
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Funktionen. J Lond Math Soc 89:85–89

Filipponi P, Horadam AF (1990) Derivative sequences of Fibonacci

and Lucas polynomials. In: Bergum GE, Philippou AN,

Horadam AF (eds) Applications of Fibonacci Numbers, vol 4,

pp 99–108, Proceedings of the fourth international conference on

Fibonacci numbers and their applications, Wake Forest Univer-

sity, Winston-Salem, North Carolina; Springer (Kluwer

1878 Iran J Sci Technol Trans Sci (2019) 43:1873–1879

123



Academic Publishers), Dordrecht, Boston and London, 1991. 4

(1991) 99–108

Filipponi P, Horadam AF (1993) Second derivative sequences of

Fibonacci and Lucas polynomials. Fibonacci Quart. 31:194–204

Hamidi SG, Jahangiri JM (2016) Faber polynomial coefficients of bi-

subordinate functions. C R Acad Sci Paris Sér I(354):365–370

Horadam AF, Mahon JM (1985) Pell and Pell–Lucas polynomials.

Fibonacci Quart 23:7–20
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estimates for a general subclass of analytic and bi-univalent

functions. Filomat 27:831–842

Srivastava HM, Gaboury S, Ghanim F (2017) Coefficient estimates

for some general subclasses of analytic and bi-univalent

functions. Afrika Mat 28:693–706

Srivastava HM, Murugusundaramoorthy G, Magesh N (2013) Certain

subclasses of bi-univalent functions associated with the Hohlov

operator. Global J Math Anal 1(2):67–73

Srivastava HM, Mishra AK, Gochhayat P (2010) Certain subclasses

of analytic and bi-univalent functions. Appl Math Lett

23:1188–1192
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