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Abstract

In this article, a generalized version of the univariate Birnbaum—Saunders distribution based on the skew-z-normal dis-
tribution is introduced and its characterizations, properties are studied. Maximum likelihood estimation of the parameters
via the ECM algorithm evaluated by Monte Carlo simulations is also discussed. Finally, two real datasets are analyzed for

illustrative purposes.
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1 Introduction

The two-parameter Birnbaum—Saunders (BS) distribution
as a life distribution was originally introduced by Birn-
baum and Saunders (1969) as a failure model due to cracks.
A random variable U is said to have the BS distribution
with shape and scale parameters o« > 0, § > 0, respectively,
if its cumulative distribution function (cdf) and probability
density function (pdf) are given by

Fps(u;o, f) = ®(a(u; o, f)), u>0,
fBS(u; o, ﬁ) - 4)((1(”; o, ﬁ))A(u7 @, B)a

respectively, where ®(.) and ¢(.) denote the cdf and pdf of
the standard normal distribution, respectively, and

a(u;a,ﬁ)é(ﬁ@ and  Au; 0, f) = 4520 —

u >0,
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u+p . . . .

/N The stochastic representation of U is given by
ap :

U=y [ocZ +1/(02)* + 4} , (1)

where £ means equal in distribution, Z~ N(0,1) and

consequently Zéi (\/% — \/§>

The BS distribution as a skew distribution has been
frequently applied in the last few years to biological model
by Desmond (1985), to the medical field by Leiva et al.
(2007) and Barros et al. (2008) and to the forestry and
environmental sciences by Podaski (2008), Leiva et al.
(2010) and Vilca et al. (2011).

For more flexibility, several extensions of the BS dis-
tribution have been considered in the literature. For
example, one can refer to Diaz-Garcia and Leiva-Sanchez
(2005), Sanhueza et al. (2008), Leiva et al. (2008) and
Gomez et al. (2009).

The well-known skew-normal (SN) distribution intro-
duced by Azzalini (1985, 1986) could be used instead of
the usual normal distribution, whenever the data present
skewness. In this case, percentiles concentrated on the left-
tail or right-tail of the distribution should be predicted in a
better way.

A random variable Y is said to have the standard SN
distribution with shape parameter A € R, denoted by
Y~ SN(A), if its pdf is given by

................
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fsn(y;4) = 2¢(y)®(4y),

Vilca et al. (2011) considered the SN(A) for the random
variable Z in (1) and obtained the skew-normal Birnbaum—
Saunders (SN-BS) distribution with the pdf

fsn—ms(u; o, B, 2) = fon(alus o, B); A)A(u; o, B)
=2¢(a(u; o, B))(2a(u; o, B))A(u; o, ),
u,o, >0, €R.

yER.

The maximum likelihood estimations of the SN-BS
distribution parameters are usually obtained by ECM
algorithm. Vilca et al. (2011) have shown that the extreme
percentiles can be predicted with high accuracy by using
their proposed model.

Also Hashmi et al. (2015) considered SNT distribution
[see Nadarajah and Kotz (2003)] for the random variable Z
in (1) and obtained some better results. The proposed pdf is

font—ss(u; o, B, 2,0) = 2¢(a(u; o, B))
T(ia(u;mﬁ);,u)A(u;a,ﬂ), M,Ot,ﬁ7U>O,i€R,

where T(.;v) denotes the cdf of the Student’s t-distribution.

Gomez et al. (2007) introduced the class of distribu-
tions, called skew symmetric distribution including the
skew-t-normal (STN) distribution and showed that it fits
well to model data with heavy tail and strong asymmetry.
A Bayesian approach to the study of the scale mixtures log-
Birnbaum-Saunders regression models with censored data
is also proposed by Lachos et al. (2017).

In this paper, we extend the BS distribution based on the
skew-t-normal distribution, called skew-z-normal Birn-
baum-Saunders distribution (STN-BS), and show that
extreme percentiles can be better predicted rather than
some other extensions of the Birnbaum Saunders
distribution.

The rest of this paper is organized as follows. Section 2
defines a new version of the BS distribution and presents a
useful stochastic representation, where several properties
for the proposed distribution are also given. Section 3
concerns with the estimation of the parameters by maxi-
mum likelihood method via the ECM algorithm, where the
Fisher information matrix is also calculated. Finally in
Sect. 4, we illustrate the proposed methodology by ana-
lyzing two real datasets.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2 The STN-BS model and some
characterizations

In this section, we consider the STN distribution to define
the BS distribution based on STN distribution and derive
some of its properties. Following Gomez et al. (2007),
recall that a random variable Y is said to have the STN
distribution with skewness parameter 4 € R and degree of
freedom v € (0, 00), denoted by Y~ STN (4,v), if its pdf

is given by
Jstn (s 4,0) = 2t(y; 0)D(Ly),

where #(y; v) denotes the pdf of the Student’s t-distribution
with degree of freedom v. The density (2) reduces to the
t(y;v) distribution when A = 0, to the truncated Student’s
t-distribution, when| A |— oo, and to the SN distribution,
when v — oo. Now, a BS distribution based on STN
distribution is easily defined, as given in the following
definition.

yER, (2)

Definition 2.1 A random variable U is said to have the
STN-BS distribution with parameter (o, f,4,v) and is
denoted by U ~ STN-BS (., 8, 4,v), if it has the following
stochastic representation

ﬁ 2
Uéz [ocY + 4/ (a¥)? + 4} ,

where Y~ STN(4,v). Then, the pdf of U can be easily

obtained as

fsrn—ss(u; o, B, 2,0) = fsrn(a(u; o, B); 2, 0)A(u; o, )
= 2t(a(u; o, B); 0)D(La(u; o, f))A(u; o, ), (3)
u,o,f,0>0,1€R.

2.1 Simple properties and moments

In this section, we present some simple properties and

expressions for the moments of STN-BS distributions.

1. For A = 0, the pdf in (3) reduces to the pdf of the T-BS
distribution which is an extension of BS distribution
obtained by replacing the random variable Z in (1) with
the Student’s t random variable with degree of freedom
v. In this case, the pdf is given by

Sfr-ss(u;v) = t(a(u; o, B); 0)A(u; 0, ).

2. The pdf in (3) tends to the pdf of the SN-BS

distribution, as b — +00
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3. If U~STN-BS(«,f,4,v), then U~'~STN-BS
(0, ', —4,0) and cU~STN-BS(x,cf,,v), for
c>0.

4. If U~STN-BS(a,§,4,0), then VZ

5=y

~ HT(v), where HT(v) denotes the Student’s half-z-

distribution with degree of freedom v.

5. If Up- ~T-BS(q, f,v) and T* ~¢(.;v), then the mean,
variance, coefficient of variation (CV), skewness (CS)
and kurtosis (CK) of Uy denoted by E[Ur:], V|Ur-],
y[Ur+], o3[Ur+] and o4[Ur+] are given by

E[Ur] = g [azET*2 ¥ 2] ,

ﬁzfxz 2 n 2 o2 +2
V[UTK]:T[oc (ET" — E*T*) + 4ET }

_ay/o2(2ET* — E’T*) + 4ET*

U] = 7
Ur] 2ET 12
1 3064
u3[Ur-] = ;ﬁT
[V[Ur]]
[ocz(4ET*6 — 6ET*ET" +2E°T")
+12ET — 12E2T*2],
1 ot
O(4[UT*} = ﬁ4—

viur]? 8
[a4(8ET*8 — 16ETET* + 12ET" E*T*> — 3E*T*?)

+ 02(32ET" — 48ET"ET*? + 24E°T*) + 16ET"".
respectively, where

ET*ZZL27 v > 2,

32

ET*=—" 4

L_2_4 """

1503

ET*® =

-2 -H—6 "~ °

4

ET*® = 105v v > 8.

(v=2)v—4)(v—6)(v—238)’

The moments of the STN-BS distribution can be
expressed in terms of the moments of T-BS distribution. In
the following proposition, we present the relationships
between the means, variances, coefficients of variation,

skewness and kurtosis of the STN-BS and T-BS
distributions.
Proposition 2.1 Ler U~STN-BS (o, f,4,0) and

Ur+ ~T-BS (a, ,v). Then, the mean, variance, coefficient
of variation, coefficient of skewness and the coefficient of
kurtosis denoted by E[U], V[U], y[U], a3[U], and o4[U], of
U in terms of Uy« are given by

afwy )

1+ 200,
062(2ET*4 _ E2T*2) 4 4ET*2 :|%

02(2ET* — E2T*2) + 4ET*? + o
’]

a3[U] = o3[Ur+] [
2[ap + ajo + axa
[2(2ET* — E2T*2) + 4ET*2 + o,
bo + bio + byt + b3
(02(2ET** — E2T*2) + 4ET*2)*
[2(2ET* — E2T*?) + 4ET*?)?
[02(2ET* — E2T*2) + 4ET*? + o>’

:'14[U] ==

as[Ur+] +

respectively, where

O = 20(w3 — a)lET*z) - w%,

ao a)? — 60 ET*? + 203,

a; = 3co%ET*2 — 3w w3,

ar = 2ws — 303ET*? — 30, ET™ + 3w, E*T*?,

by = —30] — 16w;03 + 240TET*,

by = 16ws — 16w3ET*? — 48w, ET*? + 48w, E*T*?
+ 120fw; — 120]ET*,

by = —16w w5 + 1207 ET™ — 18w E*T* + 24w 03 ET™,

by = 8w7 — 16w ET*S — 16wsET** 4+ 1203 E*T*?
+ 24w\ ET*ET™ — 120, E*T*,

o = E[Y*\/o2Y2 + 4],k = 1,3,5,7,

and Y ~STN(A,v), T* ~t(v). For calculating the values
for wy, the involved integrals must be solved by using some
numerical methods. We have applied the integrate function
in the statistical software R.

Table 1 provides values for the mean (), standard
deviation (SD), CS and CK of the STN-BS(z, 1, 4,9) for
different values of « and A.

We observe that, for both positive values of 4 and large
values of «, the distribution has very large kurtosis.

Figure 1 displays the graph of the densities, BS, SN-BS,
SNT-BS, T-BS and STN-BS, for some of the selected
values of parameters.

2.2 Some useful results

Here, we provide some useful results which will be used in
the estimation methods. Following Cabral et al. (2008) and

2, @) Springer
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Table 1 The values for the

mean (u), standard deviation g * # b s cK
(SD), CS and CK of the A ) 2 ) y ) A )
STN-BS(a, 1, 4,9)
.05 .05 1.0042 .9990 .0570 .0566 .3287 2166 4.5534 4.3089
.10 1.0116  1.0013 .1442 1137 .6168 4907 5.5913 4.8840
50 1.1900  1.1314 7406 .6891 3.5077 3.0403 76.7088 36.1312
1.00 1.7181 15676  2.1895 1.9704  6.2129 5.5251 223.1611 103.2840
1.50  2.5903 23025 4.5283 4.0253 7.4089 6.6907 304.7121 143.6374
.20 .05  1.0115 9917 .0568 .05513 4603 .0620 4.71245 4.0006
10 1.0264 .9865 1164 .1095 7471 31107 5.9762 4.1919
S50 1.2738  1.0477 71945 .6069 3.5971 2.3862 70.8695 17.6882
1.00  1.9316 1.3541 24222 1.6291 6.011 4.5057 181.8941 49.8618
1.50 29967 1.8962 50622  3.2431 7.0136 5.6109  238.0859 72.1601
.50 .05 1.0233 .9800 0542 .05092 6095  — .1424 4.8306 3.7370
.10 1.0499 9630 1126 .0994 .8729 0711 6.2268 3.6334
.50 1.4036 9178 .8260 4742 3.3987 1.6690 61.9214 8.8838
1.00 22523 1.0334  2.5901 1.1118 5.3482 3.4545 142.6597 25.5825
1.5 3.5949  1.2980 5.4609 2.0713 6.1233 4.6155 180.5355 41.3649
1.00 .05 1.0340 .9692 .0488 .04452 8230  — .3885 5.4579 3.8701
10 1.0715 9414 .1028 .0855 1.0759 - .1977 7.2391 3.5408
50 1.5187 .8027 .8046 .3486 3.4861 1.0900 66.9406 5.2713
1.00  2.5202 7656 2.5862 .6783 5.2311 2.5871 141.7391 14.6409
1.5 4.0730 .8198  5.4960 1.1191 5.9001 3.8660 174.3631 28.0149
1.50 .05  1.0389 .9644 .04434 0511 1.0745 — .6147 6.2723 4.2286
.10 1.0812 9317 .0959 0771 1.2998  — .4306 8.4625 3.7360
50 1.5690 71524 7804 2876 3.7123 7254 74.5579 3.9733
1.00  2.6308 .6549  2.5481 4929 5.3750 2.0036 149.4574 9.7846
1.50  4.2607 6321 5.4436 7306 5.9919 3.2492 180.3405 20.4836
2.00 .05 1.0413 9620 .0431 .0383 1.2251 - .7977 6.9558 4.5740
.10 1.0860 9269 .0919 0724 14817 — .6175 9.4543 3.9654
S50 1.5933 7280 7651 2554 3.8921 4591 80.1300 3.3315
1.00  2.6828 6029  2.5224 4028 5.4980 1.5691 155.1552 7.0311
1.50  4.3457 5471 5.4067 .5498 6.0795 2.6918 184.9133 14.9291

Ho et al. (2011), the following convenient stochastic rep-
resentation holds for Y~ STN(4,v),

2
v<L

Z | Z

\/‘c(r + ) Vit 22

where Z;, Z, are two independent N(0, 1) and 7 ~ I'(5,%)

(4)

(the gamma distribution with shape parameter 5 and scale

parameter 5) is independent of Z; and Z,. Set y=

\/Lf|zl|7 then (4) becomes

d Ay Z
4 + . 5
D T P ®)

2

@ Springer

So the following representation for STN-BS random
variable U holds,
ap

vl
4

o 47 + 2
(t+2) Vit 22

2
Ay 2 2
+ o + +4]".
{ ((TJF/IZ) \/t-l—lz)}
The following two propositions are useful for the ML
estimation of the STN-BS distribution parameters via ECM

algorithm discussed in the next section. The proofs are
collected in “Appendix.”
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Fig. 1 The graph of the densities; BS, SN-BS, T-BS, SNT-BS and STN-BS for selected values of parameters

Proposition 2.2 Let U~ STN-BS and y = /™£|Z,| and
© ~ I'(§,5), then the distributions of U|(y,t) and y|t are
given by
—2
U120~ EBS | =5 p.2——=
VT V42
and

respectively, where EBS(a, 3, 0, 1) denotes the extended BS
distribution discussed by Leiva etal. (2010) and
TN(u, 6%; (a, b)) denotes the truncated normal distribution
for N(u,c?) lying within the truncated interval (a, b).

Proposition 2.3  (a) The conditional expectation of T given
U=uis
v+1

B U =) =

(b) The conditional expectation of logt given U = u is

where DG(x) = %log I'(x) is the digamma function.
(c) The conditional expectation of y given U = u is

d(2a(u; 2, f))
®(Za(u; o, B))-

3 Maximum likelihood estimation

E(y|U=u)=2a(u;o, p) +

The EM-based algorithms are a multi-step optimization
method to build a sequence of easier maximization prob-
lems whose limit is the answer to the original problem.
Each iteration of the EM-algorithm contains two steps: the
Expectation step or the E-step and the Maximization step
or the M-step. The literature on EM-based algorithms and
their applications is quite rich. For a comprehensive listing
of the important references, details and more information,
we refer the readers to Dempster et al. (1977), Meng and
Rubin (1993) and McLachlan and Krishnan (2008) and
references therein. In this part, we derive the ML estima-
tion of the STN-BS distribution parameters via modifica-
tion of the EM-algorithm [Expectation/Conditional
Maximization (ECM) algorithm].

3.1 Estimation via ECM algorithm

Let U=[U,,...,U,]" be a random sample of size n from
STN-BS(«, 8, 2,v). From Proposition 2.2, we set the

observed data by u = [u,...,u,] , the missing data by
t=[t,...,7,] and y=[y;,...,7,]", and the complete
data by u® = [u’, 7z, y7]".

% @ Springer
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Then, we construct the complete data log-likelihood
function of @ = («, f,7,v) given ul, ignoring additive
constant terms, as follows:

I (0]u') Zﬁ (0|(ui, 7, 7))
2 n
:_Z% e(us: B 1/1

82(“i§ﬁ)
=1
_ﬁ;ﬁgz(ui;ﬁ) %;'Ei
+§logu’}ﬁ (or)
-l—%]og(%) —nlogr< )

Suppose 0" = (@, /ﬁ(’),//{ " 5 is the current esti-
mate (in the rth iteration) of . Based on the ECM algo-
rithm principle, in the E-step, we should first form the
following conditional expectation

Q(0]0") = E(£)(0}u'))
12 n
_ZS o2

=

b g g0

20(2 ZS (i _E;S”
u, no )
+ ; log (o) + ?log (5)

—nlogr()

52(ui; B)

where

) 1
0) + a2 (uy; a0, B(r))

—~ ~ o) 11
SV = E(logt; | u;, 0) = DG(D 2+ >

1) = E(ti | w;, 01)) =

B0+ a(uis 30, B)

— 1
0og ) )
8 = E(, | wi,0) = 2V a(uz 3", B)
L ¢ a(uz 7, p) ®)

(7 a(u; 3", B

Then, the corresponding ECM algorithm is done as
follows:

E-step Given 0= 0"), compute Sﬁ?ﬁéﬁ),@gi),

Egs. (7), (8) and (9) fori=1,...,n

using

72, €\ Springer

CM-step] Fix B = B and update 2, 1) by maxi-
mizing (6) over o and A, which leads to
20+ G > i el [fm)Sg;)
> & (u;; ﬁ) ’

2(r+1) ZF M,,ﬁ

CM-step 2 Fix o= a0, ) = 20+ g = B and update
9" by maximizing (6) over v, which leads to solve the root
of the following equation

7 (oe? 1 LIS g0 gy )
2<log2+l—DG(2) +23 3 -3 ) =o.

i=1

CM-step 3 Fix oc:a(rﬂ)’/l:Z(V‘H)’U:T)\(HI) and

update /ﬁ(’) using

B\(r+1) —aIgmaxQ( (r+1) ﬂ /Lr+l) p(r+1) |0 )

Note that the CM-steps 2 and 3 require a one-dimensional
search for the root of v and optimization with respect to f3,
which can be easily obtained by using the uniroot and the
optimize functions in the R statistical language package
version 3.3.1 (R Development Core Team 2016).

Remark 3.1 (i) In the representation (4), when 7 =1,
random variable T reduces to a random variable with SN-
BS distribution. See Vilca et al. (2011).

(i1) For ensuring that the true ML estimates are obtained,
we recommend running the ECM algorithm using a range
of different starting values and checking whether all of
them result in the same estimates. Also, the initial
estimates are obtained using numerical methods, such as
procedure DEoptim in the statistical software R for
maximizing the corresponding likelihood function.

3.2 The information matrix

Under some regularity conditions, the covariance matrix of

ML estimates 5, can be approximated by the inverse of the
—0%0(8|u) |

observed information matrix, i.e., Io(0[u) = ==~

0=0’

£(0lu) = Z/ (0]u;) —n10g2+Zlogt alui, o, f);0)

+ Z log ®(La(u;, o, B)) 4 log(A(u;, o, B)).

i=1

Now we use Basford et al. (1997) to obtain
0|u Z S; §

where
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- 6£,(0|u,) (] = P~ P~ T
- T |0:’0\ - (Si,a(7 Si.ﬁ7 Si,;n Si,v) .

The elements of §i are obtained by

S

oo
igpQia(usa, p) 0 o SAwP)
+q>(7<r a(u; 30, 1)) 0 a(ui; @, ) + A, 5, B)
~ 5 2005 Y\ -~ d N
Sip= 7()—’:}_ 1) (1 +4 (Ml% ’ﬁ)> alu; o, ﬂ)@a(u,,&\,[)’)
pCalus 3. B) 2 o HAWE B)
(a7, B)) OB i) Al @, B)
5, = Qa2 D) 5 ),
- O(La(u; o, B))
5. _ %t(a(u,,&,AA);ﬁ).

The covariance matrix can be useful for studying the
asymptotic behavior of 0 = (a, B, /A:,’v\) by the asymptotic
normality of this ML estimator. Thus, we can form
hypothesis tests and confidence regions for o, f, 1,v by

using the multivariate normality of 0.

4 Simulation study and illustrative
examples

4.1 Simulation study

We use simulations to evaluate the finite-sample perfor-
mance of the ML estimates of STN-BS distribution
parameters from the ECM algorithm described in Sect. 3.
The sample sizes and true values of the parameters are
n = 50,100 and 500, «=.1,.5,.75,1.0, A =.1,.2,.5 and
v = 2. The scale parameter is also taken as § = 1. In order
to examine the performance of the ML estimates, for each

sample size and for each estimate @,-, we compute the mean
E[@i], the relative bias (RB) in absolute value given by
RB; =| {E[@,-]—@,»}/GJ and the root mean square

error(vVMSE) given by \/E[@i— 0%, for i=1,2,3,4.
The results for the ML estimates of the parameters o, 5, 4
and v are given in Tables 2, 3 and 4.

It is observed that, as we expect, the values of RB and
RMSE of the ML estimators of the parameters decrease as
the sample size increases.

4.2 Real data

In this section, two real datasets are applied in order to
illustrate the applicability of the STN-BS model. For each
dataset, we first obtain the ML estimations of the param-
eters via ECM algorithm described in Sect. 3. Then to
compare competitions models, we use the maximized log-

~

likelihood ¢(0), and model selection criteria based on loss
of information, such as the Akaike information criteria
(AIC) and the Bayesian information criteria (BIC). Fol-
lowing Kass and Raftery (1995), we also use the Bayes
factor (BF) to show more differences between the BIC
values. Assuming that the data D have arisen from one of
two hypothetical models, thus H; (model with a smaller
BIC value) is contrasted to H, (model compared to H;),
according to P(D | Hy) and P(D | H,). This factor can be
obtained by using the following approximation proposed
by Raftery (1995),

2log(By2) ~ 2|log(P(D | 01, H,)) — log(P(D | 02, H))
— [di — da]log(n),

where P(D | 51,H1) = P(D | H;), with 0, being the ML
estimate of 0, under the model in H,, d, is the dimension of
0,, for r = 1,2, and n is the sample size; see Vilca et al.
(2011). An interpretation of the BF is given in Table 5.

4.2.1 Ozone data

Table 6 presents a descriptive summary of Ozone data
studied by Vilca et al. (2011), which are assumed to be
uncorrelated and independent, including sample median,
mean, standard deviation (SD), CV, CS and CK. As it is
observed, the data come from a positively skewed distri-
bution with a kurtosis greater than three. Thus, the STN-BS
model can be suitable for these data.

Vilca et al. (2011) showed that the SN-BS distribution
provides a better fit than the usual BS distribution. Now,
we show that the proposed STN-BS distribution performs
better than some other extensions of the Birnbaum Saun-
ders distribution to fit on this dataset.

Estimation and model checking are provided in Table 7,

-~

which consists of the ML estimates and value of £(0), AIC
and BIC. Considering these values, we find that the STN-
BS model provides a better fit than the other models. For
these data, we also use the BF (approximated by the BIC)
to contrast two following hypothesis testing:

1) H(gl) : STN-BS model versus Hfl) : BS model,
which gives the value 2 log Bglz) = 7.491.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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Table 2 Parameter estimates when A = .1 and f =1.0, v =2

n o Mean Estimates of o Mean Estimates of f§ Mean Estimates of 4 Mean Estimates of v
RB MSE RB MSE RB MSE RB MSE
50 .10 .1065 .0654 .0201 1.0065 .0064 .0365 .0617 .3831 3170 2.5624 2812 1.4308
.50 4627 .0746 .1180 1.0241 .0241 2238 4485 3.4845 9566 1.8828 .0586 6765
75 .8945 .1927 3012 .8857 .1143 .3055 5500 4.4999 9271 2.9523 4761 3.6270
1.0 1.0588 .0588 .2082 1.0688 .0688 4330 .3463 2.4630 .6621 2.5353 2677 1.0915
100 .10 .1020 .0201 .0148 1.0013 .0013 .0206 .0919 .0806 1211 2.3870 .1935 1.2867
.50 5167 .0333 .0938 9782 .0218 1313 .1709 .7085 2902 2.2528 1264 9352
75 7794 .0393 1619 9632 .0368 .2088 .2066 1.0656 .3969 2.1459 .0723 .6427
1.0 1.0354 .0354 1862 9786 .0214 .2848 1972 9717 3118 1.9400 .0300 5141
500 .10 .1002 .0017 .0064 .9994 .0006 .0077 .1069 .0696 1.3642 2.0317 0159 7862
.50 .5001 .0002 .0321 .9968 .0032 .0415 1077 .0773 .0463 2.0230 .0115 .2429
75 7505 .0006 .0477 .9937 .0063 .0662 .1091 .0911 .0025 2.0257 .0128 2424
1.0 1.0076 .0076 .0732 9931 .0069 .0654 .1082 .0820 .0783 2.0217 .0109 2015

Table 3 Parameter estimates when A =.2 and f =1.0, v =2

n o Mean Estimates of o Mean Estimates of f§ Mean Estimates of 1 Mean Estimates of v
RB MSE RB MSE RB MSE RB MSE
50 .10 .1447 4469 .0447 .9356 .0644 .0644 .6210 2.1049 4210 3.1932 .5966 1.1932
.50 .5407 .0807 1773 9335 .0665 .1900 .5204 1.6025 7950 2.7051 3525 4.5663
5 .8715 1620 .3949 .8961 .1039 3738 .6840 2.4202 1.0886 2.4617 .2309 1.4109
1.0 1.2547 2547 .5899 .8427 1573 4997 .9495 3.7474 1.4972 1.9819 .0090 .8686
100 .10 1133 1330 0138 .9826 0174 0188 .3260 .6295 1320 2.6255 3128 .6294
.50 .5250 .0501 1156 9491 .0509 1472 .3984 9922 .5084 2.2230 1115 9186
5 .8394 1192 2026 .9203 .0797 .2465 4794 1.3972 7520 2.3515 1757 .8740
1.0 1.0907 .0907 3253 9271 .0729 .3460 4917 1.4587 7566 2.1862 .0931 .6390
500 .10 1011 .0110 .0081 9975 .0025 .0092 .2239 1193 .0593 2.0380 .0190 3012
.50 5022 .0043 9186 .9952 .0048 .0482 2137 .0685 .0725 2.0306 .0153 4946
5 7544 .0058 .0518 .9885 0115 .0817 .2201 .10068 .0883 2.0241 0121 .2405
1.0 1.0089 .0089 .0791 .9850 .0150 1253 2270 1351 1295 2.0224 0112 2438

(i) H” : STN-BS model versus H\* : SN-BS model

4.2.2 Fatigue data

which gives the value 2log B%) = 5.262.

(i) HSY:STN-BS model versus H\’ : SNT-BS
model which gives the value 2log B(132> = 1.1564.
@iv) H(()4> : STN-BS model versus Hf) : T-BS model

S (4
which gives the value 2log BIZ) = .838.

According to Table 5, the above values of 2logB;
indicate “strong,” “‘positive, and “weak” evi-
dence in favor of Hél) s H(()z), H(()3)and Hé4).

The estimated density functions of the ozone data
including the respected histograms, plotted in Fig. 2, and
the PP plots and empirical and theoretical cdf plots given in

Figs. 3, 4, 5, 6 and 7 confirm again the appropriateness of
the STN-BS distribution.

2
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These data correspond to the fatigue life of 6061-T6 alu-
minum coupons cut parallel to the direction of rolling and
oscillated at 18 cycles per second, were provided by
Birnbaum and Saunders (1969). Table 8§ presents a
descriptive summary of fatigue data, which indicate that
STN-BS model can be suitable in modeling this dataset.
We fit the STN-BS distribution to fatigue data and
compare it to BS, SN-BS, SNT-BS and T-BS distributions.
Estimation and model checking are provided in Table 9,
which has the same configuration as given in Table 7.

~

Considering the values of the £(0), AIC and BIC given in
this table, we find that the STN-BS model, once again
provides a better fit than other models. Similarly to ozone
data, we use the BF to highlight the differences between
the values of the criteria presented in Table 9. We obtain
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Table 4 Parameter estimates when A = .5 and f =1.0,v =2

n o Mean Estimates of o Mean Estimates of f Mean Estimates of 4 Mean Estimates of v
RB MSE RB MSE RB MSE RB MSE
50 .10 0724 2764  .0284 1.0320  .0320  .0340 1313 7374 3707 2.4365 2182 1.3155
.50 6680  .3359 2833 .8471 1529 2531 1.5442  2.0883 1.6313 29906  .4953 1.6793
75 1.0210  .3613 5018 8787 1213 4537 1.7190 24379  2.0502 3.0518 5259 23117
1.0 1.4144 4144 7394 5712 4288 4642 2.6313  4.2625 3.1817 1.6706  .1647 .2084
100 .10 1270 2696 .0270 1.0295 .0295 .0295 4691 .0618 .0309 2.0545 .0273 .0545
.50 .6661 3322 2601 8906  .1094  .2296 1.2593 1.5187 1.3043 2.5027 2513 1.1034
5 .8991 .1988 2670 8579 .1421 .2856 1.4025 1.8050 1.6011 2.1824  .0912 4047
1.0 1.1423 1423 1294 1.1380  .1380  .6761 .8606 7213 1.3464 2.3285 1643 1.1818
500 .10 .0911 .0886  .0089 1.0031 .0031 .0031 A754 .0492 .0246 2.0253 0127 .0253
.50 5134 .0268 .0556 9859  .0141 0747 5720 .1440 .2481 2.0554  .0277 2670
75 7837 .0450  .1182 9642 .0358 1316 .6270 2540 3251 2.0866  .0433 .2380
1.0 1.0569  .0568 .0334 9618 .0382  .0390 .6497 .2993 .2059 2.0535 .0268 .0719

Table 5 Interpretation of the Bayes factor (B))

B> 2log B> Evidence in favor of H,;
<1 <0 Negative (H, is accepted)
(1,3] [0,2] Weak

3,20] [2,6] Positive

[20,150] [6,10] Strong

> 150 > 10 Very strong

210gBlY =2206, 2logB{Y) = 6.471,

2log3232> =1.584 and 210ng) =2.432 according to
contrast hypothesis testing (i), (ii), (iii)) and (iv) given
above, indicating “positive,” “strong,” “weak” and
“positive” evidence in accepted STN-BS distribution
hypothesis; see Table 5.

values of

Similar to ozone data, the estimated density functions of
the fatigue data including the respected histograms, plotted
in Fig. 8, and the PP plots and empirical and theoretical cdf
plots given in Figs. 9, 10, 11, 12 and 13 confirm again the
appropriateness of the STN-BS distribution.

5 Concluding remarks

In this paper, a flexible class of distributions, called the
skew-t-normal Birnbaum—Saunders distributions, based on
the Birnbaum—Saunders models is introduced and its sev-
eral properties are obtained. This skewed distribution
extends the skew-normal Birnbaum—-Saunders distribution,
allowing a better prediction of the extreme percentiles. The
parameters estimation via ECM algorithm is proposed, and
their performances are evaluated by the Monte Carlo
method. The simulation study shows the good performance
of these estimators. The utility of this class is illustrated by

Table 6 Descriptive statistics

Median Mean SD (&A% CS CK Range Min. Max. n
for ozone data
31.5 42.13 32.99 78.30% 1.21 4.11 167 1 168 116
Table 7 The ML estimates and ~ ~ =~ = =
information criteria based on the Model * B z v £(0) AlC BIC
BS, SN-BS, SNT-BS, T-BS and
STN-BS distributions for the BS 982 28.023 — 549.097 1102.194 1107.701
ozone data SN-BS 1.270 14.835 1.067 — 545.606 1097.211 1105.472
SNT-BS 1.521 11.318 4.372 1.543 — 541.1762 1090.352 1101.367
T-BS .807 30.905 7 — 543.394 1092.788 1101.049
STN-BS 1.661 106.899 — 5.956 7.472 — 540.598 1089.196 1100.210

2
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means of two real data sets, allowing a better prediction of Appendix
the extreme percentiles rather than another extensions of
the Birnbaum Saunders distribution. This appendix presents the proof of Propositions 2.2

and 2.3.
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Fig. 5 PP plot (left) and Q
empirical versus theoretical cdf -
(right) for the SNT-BS model of
ozone data © _|
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Fig. 6 PP plot (left) and
empirical versus theoretical cdf
(right) for the T-BS model of
ozone data

Fitted percentile
Distribution function

00 02 04 06 08 1.0 0 50 100 150 200
Observed percentile Ozone level
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Table 8 Descriptive statistics Median Mean SD (6\% CS CK Range Min. Max. n
for fatigue data
1416 1401 391.32 28 .14 2.71 2070 370 2440 101
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Table 9 The ML estimates and PN —

information criteria based on the Model * B z v €(0) AlC BIC
BS, SN-BS, SNT-BS, T_BS,
STN-BS distribution for the BS 3110 1335.491 — 751.552 1507.105 1512.335
fatigue data SN-BS .320 1239.313 310 — 751.377 1510.753 1516.598
SNT-BS 494 1937.772 — 3.515 50 — 746.626 1501.252 1512.266
T-BS 279 1356.07 13 — 749.263 1504.526 1512.371
STN-BS 408 1848.170 — 2.298 10.149 — 745.834 1499.669 1510.129
Fig. 8 Histograms with density o
estimates for fatigue data 8
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Proof of Proposition 2.2 By using Eq.(5) the cdf of T |

(y,7) is ft]y,7) = ¢<vf+/12a(t;oc,/3) _\/%7>
F(T<t|y,1)=PY<a(t;a,p)]|7,1)

) T+ A5, ).
— V7 + Ralr __
o P<Z2 < Vet Lals o, f) /- 12 | V’T>’ The conditional distribution of 7y |t can be easily
T+ 4 . ..
obtained from the definitions. O

then the pdf of T i
en the pdf of '] 7, 7 is Proof of Proposition 2.2 From Proposition 2.2, the joint

pdf of T,y and t is given by
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Fig. 10 PP plot (left) and
empirical versus theoretical cdf
(right) for the SN-BS model of
fatigue data

Fig. 11 PP plot (left) and
empirical versus theoretical cdf
(right) for the SNT-BS model of
fatigue data

Fig. 12 PP plot (left) and
empirical versus theoretical cdf
(right) for the T-BS model of
fatigue data
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Distribution function
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Fig. 13 PP plot (left) and Q]
empirical versus theoretical cdf =
(right) for the STN-BS model of ©
fatigue data o]
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2\ \ 7T oz N (6)
(%)% v—1
A(t; o, ) T2,
v
r(3)

where &(1; f) = | /5 — é

By integrating on 7 in (6), we get

flo,7) = \/%%r"z‘w;a,ﬁ) exp

? (7)

2(+4.
_v—i—‘gi%ﬂ) Ao ;Le(t,ﬁ)
2 a )

Dividing (7) by (3) gives

v+l

(r)—%az(t;oc./i))T )
v+ t;
61 ) =gy — o= ewp )

ey 2
SO
1 2(¢:
T|(T:t)~1"(0_|2— ,U+a§’a’ﬁ))7

which concludes parts (a) and (b), and dividing (6) by (7),
gives
1 1
——exp

fr 61 = _(DO s(f;m) V2

o

_% (y - ga(r; ﬁ)) 1(0,+00) = f(7 | 1),

so 7 and 7 are conditionally independent given T = ¢ and
the conditional distribution of y given f is

7 | (T = t) ~ TN(;“a(t; O‘vﬂ)a 1, (0, OO)),

which concludes the part (c¢). O
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