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Abstract
In this article, a generalized version of the univariate Birnbaum–Saunders distribution based on the skew-t-normal dis-

tribution is introduced and its characterizations, properties are studied. Maximum likelihood estimation of the parameters

via the ECM algorithm evaluated by Monte Carlo simulations is also discussed. Finally, two real datasets are analyzed for

illustrative purposes.
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1 Introduction

The two-parameter Birnbaum–Saunders (BS) distribution

as a life distribution was originally introduced by Birn-

baum and Saunders (1969) as a failure model due to cracks.

A random variable U is said to have the BS distribution

with shape and scale parameters a[ 0; b[ 0; respectively,

if its cumulative distribution function (cdf) and probability

density function (pdf) are given by

FBSðu; a; bÞ ¼ Uðaðu; a; bÞÞ; u[ 0;

fBS u; a; bð Þ ¼ /ðaðu; a; bÞÞA u; a; bð Þ; u[ 0;

respectively, where Uð:Þ and /ð:Þ denote the cdf and pdf of

the standard normal distribution, respectively, and

aðu; a; bÞ ¼ 1
a

ffiffi

u
b

q

�
ffiffi

b
u

q

� �

and Aðu; a; bÞ ¼ daðu;a;bÞ
d u

¼

uþb

2a
ffiffi

b
p

ffiffiffiffi

u3
p : The stochastic representation of U is given by

U¼d b
4

aZ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaZÞ2 þ 4

q

� �2

; ð1Þ

where ¼d means equal in distribution, Zs Nð0; 1Þ and

consequently Z¼d 1
a

ffiffiffi

U
b

q

�
ffiffiffi

b
U

q

� �

.

The BS distribution as a skew distribution has been

frequently applied in the last few years to biological model

by Desmond (1985), to the medical field by Leiva et al.

(2007) and Barros et al. (2008) and to the forestry and

environmental sciences by Podaski (2008), Leiva et al.

(2010) and Vilca et al. (2011).

For more flexibility, several extensions of the BS dis-

tribution have been considered in the literature. For

example, one can refer to Diaz-Garcia and Leiva-Sanchez

(2005), Sanhueza et al. (2008), Leiva et al. (2008) and

Gomez et al. (2009).

The well-known skew-normal (SN) distribution intro-

duced by Azzalini (1985, 1986) could be used instead of

the usual normal distribution, whenever the data present

skewness. In this case, percentiles concentrated on the left-

tail or right-tail of the distribution should be predicted in a

better way.

A random variable Y is said to have the standard SN

distribution with shape parameter k 2 R, denoted by

Ys SNðkÞ; if its pdf is given by
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fSNðy ; kÞ ¼ 2/ðyÞUðkyÞ; y 2 R:

Vilca et al. (2011) considered the SNðkÞ for the random

variable Z in (1) and obtained the skew-normal Birnbaum–

Saunders (SN-BS) distribution with the pdf

fSN�BSðu; a; b; kÞ ¼ fSNðaðu; a; bÞ; kÞAðu; a; bÞ
¼ 2/ðaðu; a; bÞÞUðkaðu; a; bÞÞAðu; a; bÞ;
u; a; b[ 0; k 2 R:

The maximum likelihood estimations of the SN-BS

distribution parameters are usually obtained by ECM

algorithm. Vilca et al. (2011) have shown that the extreme

percentiles can be predicted with high accuracy by using

their proposed model.

Also Hashmi et al. (2015) considered SNT distribution

[see Nadarajah and Kotz (2003)] for the random variable Z

in (1) and obtained some better results. The proposed pdf is

fSNT�BSðu; a; b; k; tÞ ¼ 2/ðaðu; a; bÞÞ
Tðkaðu; a; bÞ; ; tÞAðu; a; bÞ; u; a; b; t[ 0; k 2 R;

where Tð:; tÞ denotes the cdf of the Student’s t-distribution.

Gomez et al. (2007) introduced the class of distribu-

tions, called skew symmetric distribution including the

skew-t-normal (STN) distribution and showed that it fits

well to model data with heavy tail and strong asymmetry.

A Bayesian approach to the study of the scale mixtures log-

Birnbaum–Saunders regression models with censored data

is also proposed by Lachos et al. (2017).

In this paper, we extend the BS distribution based on the

skew-t-normal distribution, called skew-t-normal Birn-

baum–Saunders distribution (STN-BS), and show that

extreme percentiles can be better predicted rather than

some other extensions of the Birnbaum Saunders

distribution.

The rest of this paper is organized as follows. Section 2

defines a new version of the BS distribution and presents a

useful stochastic representation, where several properties

for the proposed distribution are also given. Section 3

concerns with the estimation of the parameters by maxi-

mum likelihood method via the ECM algorithm, where the

Fisher information matrix is also calculated. Finally in

Sect. 4, we illustrate the proposed methodology by ana-

lyzing two real datasets.

2 The STN-BS model and some
characterizations

In this section, we consider the STN distribution to define

the BS distribution based on STN distribution and derive

some of its properties. Following Gomez et al. (2007),

recall that a random variable Y is said to have the STN

distribution with skewness parameter k 2 R and degree of

freedom t 2 ð0;1Þ, denoted by Ys STN ðk; tÞ; if its pdf

is given by

fSTNðy; k; tÞ ¼ 2tðy; tÞUðkyÞ; y 2 R; ð2Þ

where tðy; tÞ denotes the pdf of the Student’s t-distribution

with degree of freedom t. The density (2) reduces to the

tðy; tÞ distribution when k ¼ 0; to the truncated Student’s

t-distribution, whenj k j�! 1, and to the SN distribution,

when t �! 1: Now, a BS distribution based on STN

distribution is easily defined, as given in the following

definition.

Definition 2.1 A random variable U is said to have the

STN-BS distribution with parameter ða; b; k; tÞ and is

denoted by U� STN-BS ða; b; k; tÞ, if it has the following

stochastic representation

U¼d b
4

aY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaYÞ2 þ 4

q

� �2

;

where Ys STNðk; tÞ. Then, the pdf of U can be easily

obtained as

fSTN�BSðu; a; b; k; tÞ ¼ fSTNðaðu; a; bÞ; k; tÞAðu; a; bÞ
¼ 2tðaðu; a;bÞ; tÞUðkaðu; a; bÞÞAðu; a; bÞ;
u; a; b; t[ 0; k 2 R:

ð3Þ

2.1 Simple properties and moments

In this section, we present some simple properties and

expressions for the moments of STN-BS distributions.

1. For k ¼ 0, the pdf in (3) reduces to the pdf of the T-BS

distribution which is an extension of BS distribution

obtained by replacing the random variable Z in (1) with

the Student’s t random variable with degree of freedom

t. In this case, the pdf is given by

fT�BSðu; tÞ ¼ tðaðu; a; bÞ; tÞAðu; a; bÞÞ:

2. The pdf in (3) tends to the pdf of the SN-BS

distribution, as t �! þ1
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3. If U� STN-BSða; b; k; tÞ, then U�1 � STN-BS

ða; b�1;�k; tÞ and cU� STN-BSða; cb; k; tÞ, for

c[ 0.

4. If U� STN-BSða; b; k; tÞ, then V¼d 1
a ð

ffiffiffi

U
b

q

�
ffiffiffi

b
U

q

Þ
�

�

�

�

�

�

�

�

s HT tð Þ, where HT tð Þ denotes the Student’s half-t-

distribution with degree of freedom t.

5. If UT� �T-BSða; b; tÞ and T� � tð:; tÞ, then the mean,

variance, coefficient of variation (CV), skewness (CS)

and kurtosis (CK) of UT� denoted by E½UT� �; V ½UT� �;
c½UT� �; a3½UT� � and a4½UT� � are given by

E½UT� � ¼ b
2

a2ET�2 þ 2
h i

;

V ½UT� � ¼ b2a2

4
a2ð2ET�4 � E2T�2Þ þ 4ET�2
h i

;

c½UT� � ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ð2ET�4 � E2T�2Þ þ 4ET�2
p

a2ET�2 þ 2½ � ;

a3½UT� � ¼ 1

V ½UT� �½ �
3
2

b3a4

8

a2ð4ET�6 � 6ET�4

ET�2 þ 2E3T�2Þ
h

þ12ET�4 � 12E2T�2
i

;

a4½UT� � ¼ 1

V ½UT� �½ �2
b4a4

8
:

a4ð8ET�8 � 16ET�2ET�6 þ 12ET�4

E2T�2 � 3E4T�2Þ
h

þ a2ð32ET�6 � 48ET�4

ET�2 þ 24E3T�3Þ þ 16ET�4 �:

respectively, where

ET�2 ¼ t
t� 2

; t[ 2;

ET�4 ¼ 3t2

ðt� 2Þðt� 4Þ ; t[ 4;

ET�6 ¼ 15t3

ðt� 2Þðt� 4Þðt� 6Þ ; t[ 6;

ET�8 ¼ 105t4

ðt� 2Þðt� 4Þðt� 6Þðt� 8Þ ; t[ 8:

The moments of the STN-BS distribution can be

expressed in terms of the moments of T-BS distribution. In

the following proposition, we present the relationships

between the means, variances, coefficients of variation,

skewness and kurtosis of the STN-BS and T-BS

distributions.

Proposition 2.1 Let U� STN-BS ða; b; k; tÞ and

UT� �T-BS ða; b; tÞ: Then, the mean, variance, coefficient

of variation, coefficient of skewness and the coefficient of

kurtosis denoted by E[U], V[U], c½U�; a3½U�; and a4½U�; of
U in terms of UT� are given by

E½U� ¼ E½UT� � þ ab
2
x1;

V ½U� ¼ V½UT� � þ ab
2

� �2

ax;

c½U� ¼ c½UT� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ a2b2ax
Vð2UT� Þ

q

1 þ abx1

E½2UT� �
;

a3½U� ¼ a3½UT� � a2ð2ET�4 � E2T�2Þ þ 4ET�2

a2ð2ET�4 � E2T�2Þ þ 4ET�2 þ ax

� �

3
2

þ 2½a0 þ a1aþ a2a2�
½a2ð2ET�4 � E2T�2Þ þ 4ET�2 þ ax�

3
2

;

a4½U� ¼ a4½UT� � þ b0 þ b1aþ b2a2 þ b3a3

ða2ð2ET�4 � E2T�2Þ þ 4ET�2Þ2

" #

½a2ð2ET�4 � E2T�2Þ þ 4ET�2�2

½a2ð2ET�4 � E2T�2Þ þ 4ET�2 þ ax�2
;

respectively, where

ax ¼ 2aðx3 � x1ET
�2Þ � x2

1;

a0 ¼ x3
1 � 6x1ET

�2 þ 2x3;

a1 ¼ 3x2
1ET

�2 � 3x1x3;

a2 ¼ 2x5 � 3x3ET
�2 � 3x1ET

�4 þ 3x1E
2T�2;

b0 ¼ �3x4
1 � 16x1x3 þ 24x2

1ET
�2;

b1 ¼ 16x5 � 16x3ET
�2 � 48x1ET

�2 þ 48x1E
2T�2

þ 12x2
1x3 � 12x3

1ET
�2;

b2 ¼ �16x1x5 þ 12x2
1ET

�4 � 18x2
1E

2T�2 þ 24x1x3ET
�2;

b3 ¼ 8x7 � 16x1ET
�6 � 16x5ET

�2 þ 12x3E
2T�2

þ 24x1ET
�2ET�4 � 12x1E

3T�2;

xk ¼ E½Yk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2Y2 þ 4
p

�; k ¼ 1; 3; 5; 7;

and Y � STNðk; tÞ; T� � tðtÞ: For calculating the values

for xk; the involved integrals must be solved by using some

numerical methods. We have applied the integrate function

in the statistical software R.

Table 1 provides values for the mean ðlÞ, standard

deviation (SD), CS and CK of the STN-BSða; 1; k; 9Þ for

different values of a and k:
We observe that, for both positive values of k and large

values of a; the distribution has very large kurtosis.

Figure 1 displays the graph of the densities, BS, SN-BS,

SNT-BS, T-BS and STN-BS, for some of the selected

values of parameters.

2.2 Some useful results

Here, we provide some useful results which will be used in

the estimation methods. Following Cabral et al. (2008) and
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Ho et al. (2011), the following convenient stochastic rep-

resentation holds for Ys STNðk; tÞ;

Y¼d k j Z1 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ k2Þ
q þ Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

2

6

4

3

7

5

; ð4Þ

where Z1, Z2 are two independent N(0, 1) and s s Cðt
2
; t

2
Þ

(the gamma distribution with shape parameter t
2

and scale

parameter t
2
Þ is independent of Z1 and Z2: Set c ¼

ffiffiffiffiffiffiffiffi

sþk2

s

q

jZ1j; then (4) becomes

Y¼d kc

ðsþ k2Þ
þ Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

" #

: ð5Þ

So the following representation for STN-BS random

variable U holds,

U¼d b
4

a
kc

ðsþ k2Þ
þ Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

( )"

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
kc

ðsþ k2Þ
þ Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

 !( )2

þ4

v

u

u

t �2:

The following two propositions are useful for the ML

estimation of the STN-BS distribution parameters via ECM

algorithm discussed in the next section. The proofs are

collected in ‘‘Appendix.’’

Table 1 The values for the

mean ðlÞ, standard deviation

(SD), CS and CK of the

STN-BSða; 1; k; 9Þ

jkj a l SD CS CK

k � k k � k k � k k � k

.05 .05 1.0042 .9990 .0570 .0566 .3287 .2166 4.5534 4.3089

.10 1.0116 1.0013 .1442 .1137 .6168 .4907 5.5913 4.8840

.50 1.1900 1.1314 .7406 .6891 3.5077 3.0403 76.7088 36.1312

1.00 1.7181 1.5676 2.1895 1.9704 6.2129 5.5251 223.1611 103.2840

1.50 2.5903 2.3025 4.5283 4.0253 7.4089 6.6907 304.7121 143.6374

.20 .05 1.0115 .9917 .0568 .05513 .4603 .0620 4.71245 4.0006

.10 1.0264 .9865 .1164 .1095 .7471 .31107 5.9762 4.1919

.50 1.2738 1.0477 .7945 .6069 3.5971 2.3862 70.8695 17.6882

1.00 1.9316 1.3541 2.4222 1.6291 6.011 4.5057 181.8941 49.8618

1.50 2.9967 1.8962 5.0622 3.2431 7.0136 5.6109 238.0859 72.1601

.50 .05 1.0233 .9800 .0542 .05092 .6095 � .1424 4.8306 3.7370

.10 1.0499 .9630 .1126 .0994 .8729 .0711 6.2268 3.6334

.50 1.4036 .9178 .8260 .4742 3.3987 1.6690 61.9214 8.8838

1.00 2.2523 1.0334 2.5901 1.1118 5.3482 3.4545 142.6597 25.5825

1.5 3.5949 1.2980 5.4609 2.0713 6.1233 4.6155 180.5355 41.3649

1.00 .05 1.0340 .9692 .0488 .04452 .8230 � .3885 5.4579 3.8701

.10 1.0715 .9414 .1028 .0855 1.0759 � .1977 7.2391 3.5408

.50 1.5187 .8027 .8046 .3486 3.4861 1.0900 66.9406 5.2713

1.00 2.5202 .7656 2.5862 .6783 5.2311 2.5871 141.7391 14.6409

1.5 4.0730 .8198 5.4960 1.1191 5.9001 3.8660 174.3631 28.0149

1.50 .05 1.0389 .9644 .04434 .0511 1.0745 � .6147 6.2723 4.2286

.10 1.0812 .9317 .0959 .0771 1.2998 � .4306 8.4625 3.7360

.50 1.5690 .7524 .7804 .2876 3.7123 .7254 74.5579 3.9733

1.00 2.6308 .6549 2.5481 .4929 5.3750 2.0036 149.4574 9.7846

1.50 4.2607 .6321 5.4436 .7306 5.9919 3.2492 180.3405 20.4836

2.00 .05 1.0413 .9620 .0431 .0383 1.2251 � .7977 6.9558 4.5740

.10 1.0860 .9269 .0919 .0724 1.4817 � .6175 9.4543 3.9654

.50 1.5933 .7280 .7651 .2554 3.8921 .4591 80.1300 3.3315

1.00 2.6828 .6029 2.5224 .4028 5.4980 1.5691 155.1552 7.0311

1.50 4.3457 .5471 5.4067 .5498 6.0795 2.6918 184.9133 14.9291
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Proposition 2.2 Let U� STN-BS and c ¼
ffiffiffiffiffiffiffiffi

sþk2

s

q

jZ1j and
s s Cðt

2
; t

2
Þ, then the distributions of Ujðc; sÞ and cjs are

given by

U j c; sð Þ�EBS
a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p ; b; 2;

�kc
ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

 !

;

and

c j s�TN 0;
sþ k2

s
; ð0;þ1Þ

� �

;

respectively, where EBSða; b; r; kÞ denotes the extended BS

distribution discussed by Leiva et al. (2010) and

TNðl; r2; ða; bÞÞ denotes the truncated normal distribution

for Nðl; r2Þ lying within the truncated interval (a, b).

Proposition 2.3 (a) The conditional expectation of s given
U ¼ u is

Eðs j U ¼ uÞ ¼ tþ 1

tþ a2ðu; a; bÞ :

(b) The conditional expectation of log s given U ¼ u is

Eðlog s j U ¼ uÞ ¼ DG
tþ 1

2

� �

� log
tþ a2ðu; a; bÞ

2

� �

;

where DGðxÞ ¼ d

d x
logCðxÞ is the digamma function.

(c) The conditional expectation of c given U ¼ u is

Eðc j U ¼ uÞ ¼ kaðu; a; bÞ þ /ðkaðu; a; bÞÞ
Uðkaðu; a; bÞÞ :

3 Maximum likelihood estimation

The EM-based algorithms are a multi-step optimization

method to build a sequence of easier maximization prob-

lems whose limit is the answer to the original problem.

Each iteration of the EM-algorithm contains two steps: the

Expectation step or the E-step and the Maximization step

or the M-step. The literature on EM-based algorithms and

their applications is quite rich. For a comprehensive listing

of the important references, details and more information,

we refer the readers to Dempster et al. (1977), Meng and

Rubin (1993) and McLachlan and Krishnan (2008) and

references therein. In this part, we derive the ML estima-

tion of the STN-BS distribution parameters via modifica-

tion of the EM-algorithm [Expectation/Conditional

Maximization (ECM) algorithm].

3.1 Estimation via ECM algorithm

Let U ¼ ½U1; . . .;Un�> be a random sample of size n from

STN-BSða; b; k; tÞ: From Proposition 2.2, we set the

observed data by u ¼ ½u1; . . .; un�>, the missing data by

s ¼ ½s1; . . .; sn�> and c ¼ ½c1; . . .; cn�>; and the complete

data by uðcÞ ¼ ½u>; s>; c>�>.
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Fig. 1 The graph of the densities; BS, SN-BS, T-BS, SNT-BS and STN-BS for selected values of parameters
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Then, we construct the complete data log-likelihood

function of h ¼ ða; b; k; tÞ given uðcÞ; ignoring additive

constant terms, as follows:

‘ðcÞðhjuðcÞÞ ¼
X

n

i¼1

‘
ðcÞ
i ðhjðui; si; ciÞÞ

¼ k
a

X

n

i¼1

cieðui; bÞ �
1

2

k2

a2

X

n

i¼1

e2ðui; bÞ

� 1

2a2

X

n

i¼1

sie
2ðui; bÞ �

t
2

X

n

i¼1

si

þ
X

n

i¼1

log
ui þ b
ffiffiffi

b
p � n logðaÞ

þ nt
2

log
t
2

� 	

� n logC
t
2

� 	

þ t� 1

2

X

n

i¼1

log si:

Suppose bhðrÞ ¼ ðbaðrÞ; bbðrÞ; bkðrÞ;btðrÞÞ is the current esti-

mate (in the rth iteration) of h. Based on the ECM algo-

rithm principle, in the E-step, we should first form the

following conditional expectation

QðhjbhðrÞÞ ¼ Eð‘ðcÞðhjuðcÞÞÞ

¼ k
a

X

n

i¼1

bS
ðrÞ
3i eðui; bÞ �

1

2

k2

a2

X

n

i¼1

e2ðui; bÞ

� 1

2a2

X

n

i¼1

bS
ðrÞ
1i e

2ðui; bÞ �
t
2

X

n

i¼1

bS
ðrÞ
1i

þ
X

n

i¼1

log
ui þ b
ffiffiffi

b
p � n logðaÞ þ nt

2
log

t
2

� 	

� n logC
t
2

� 	

þ t� 1

2

X

n

i¼1

bS
ðrÞ
2i ; ð6Þ

where

bS
ðrÞ
1i ¼ Eðsi j ui; bhðrÞÞ ¼

btðrÞ þ 1

btðrÞ þ a2ðui; baðrÞ; bbðrÞÞ
; ð7Þ

bS
ðrÞ
2i ¼ Eðlog si j ui; bhðrÞÞ ¼ DG

btðrÞ þ 1

2

� �

� log
btðrÞ þ a2ðui; baðrÞ; bbðrÞÞ

2
;

ð8Þ

bS
ðrÞ
3i ¼ Eðci j ui; bhðrÞÞ ¼ bkðrÞaðui; baðrÞ; bbðrÞÞ

þ /ðbkðrÞaðui; baðrÞ; bbðrÞÞÞ
UðbkðrÞaðui; baðrÞ; bbðrÞÞÞ

:
ð9Þ

Then, the corresponding ECM algorithm is done as

follows:

E-step Given h ¼ bhðrÞ, compute bS
ðrÞ
1i ;
bS
ðrÞ
2i ;
bS
ðrÞ
3i , using

Eqs. (7), (8) and (9) for i ¼ 1; . . .; n:

CM-step1 Fix b ¼ bbðrÞ and update baðrÞ; bkðrÞ by maxi-

mizing (6) over a and k, which leads to

bkðrþ1Þ ¼ ba
ðrþ1ÞPn

i¼1 eðui; bb
ðrÞÞbSðrÞ3i

P

e2ðui; bÞ
;

ba2ðrþ1Þ ¼ 1

n

X

n

i¼1

e2ðui; bbðrÞÞbSðrÞ1i :

CM-step 2 Fix a ¼ baðrþ1Þ; k ¼ bkðrþ1Þ; b ¼ bbðrÞ and update

btðrÞ by maximizing (6) over t, which leads to solve the root

of the following equation

n

2
log

t
2
þ 1 � DG

t
2

� 	

þ 1

n

X

n

i¼1

ðbSðrÞ2i � bSðrÞ1i Þ
 !

¼ 0:

CM-step 3 Fix a ¼ baðrþ1Þ; k ¼ bkðrþ1Þ; t ¼ btðrþ1Þ and

update bbðrÞ using

bbðrþ1Þ ¼ arg maxQðbaðrþ1Þ; b; bkðrþ1Þ;btðrþ1Þ j bhðrÞÞ:

Note that the CM-steps 2 and 3 require a one-dimensional

search for the root of t and optimization with respect to b;
which can be easily obtained by using the uniroot and the

optimize functions in the R statistical language package

version 3.3.1 (R Development Core Team 2016).

Remark 3.1 (i) In the representation (4), when s ¼ 1,

random variable T reduces to a random variable with SN-

BS distribution. See Vilca et al. (2011).

(ii) For ensuring that the true ML estimates are obtained,

we recommend running the ECM algorithm using a range

of different starting values and checking whether all of

them result in the same estimates. Also, the initial

estimates are obtained using numerical methods, such as

procedure DEoptim in the statistical software R for

maximizing the corresponding likelihood function.

3.2 The information matrix

Under some regularity conditions, the covariance matrix of

ML estimates bh; can be approximated by the inverse of the

observed information matrix, i.e., I0ðbhjuÞ ¼ �o2‘ðhjuÞ
ohoh>

j
h¼bh

,

‘ðhjuÞ ¼
X

n

i¼1

‘iðhjuiÞ ¼ n log 2 þ
X

n

i¼1

log tðaðui; a; bÞ; tÞ

þ
X

n

i¼1

logUðkaðui; a; bÞÞ þ logðAðui; a; bÞÞ:

Now we use Basford et al. (1997) to obtain

I0ðbhjuÞ ¼
X

n

i¼1

bSi
bS>
i ;

where
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bSi ¼
o‘iðhjuiÞ

oh
j
h¼bh

¼ ðbSi;a; bSi;b; bSi;k; bSi;tÞ>:

The elements of bSi are obtained by

bSi;a ¼ � bt þ 1

bt

� �

1 þ a2ðui; ba; bbÞ
bt

 !�1

aðui; ba; bbÞ
o

oa
aðui; ba; bbÞ

þ
bk/ðbkaðui; ba; bbÞÞ

UðbkðrÞaðui; baðrÞ; bbðrÞÞÞ
o

oa
aðui; ba; bbÞ þ

o
oaAðui; ba; bbÞ
Aðui; ba; bbÞ

;

bSi;b ¼ � bt þ 1

bt

� �

1 þ a2ðui; ba; bbÞ
bt

 !�1

aðui; ba; bbÞ
o

ob
aðui; ba; bbÞ

þ
bk/ðbkaðui; ; ba; bbÞÞ
Uðbkaðui; ba; bbÞÞ

o

ob
aðui; ba; bbÞ þ

o
obAðui; ba; bbÞ
Aðui; ba; bbÞ

;

bSi;k ¼
/ðbkaðui; ba; bbÞÞ
Uðbkaðui; ba; bbÞÞ

aðui; ba; bbÞ;

bSi;t ¼
o
ot tðaðui; ba; bbÞ;btÞ
tðaðui; ba; bbÞ;btÞ

:

The covariance matrix can be useful for studying the

asymptotic behavior of bh ¼ ðba; bb; bk;btÞ by the asymptotic

normality of this ML estimator. Thus, we can form

hypothesis tests and confidence regions for a; b; k; t by

using the multivariate normality of bh:

4 Simulation study and illustrative
examples

4.1 Simulation study

We use simulations to evaluate the finite-sample perfor-

mance of the ML estimates of STN-BS distribution

parameters from the ECM algorithm described in Sect. 3.

The sample sizes and true values of the parameters are

n ¼ 50; 100 and 500, a ¼ :1; :5; :75; 1:0, k ¼ :1; :2; :5 and

t ¼ 2. The scale parameter is also taken as b ¼ 1: In order

to examine the performance of the ML estimates, for each

sample size and for each estimate bhi, we compute the mean

E½bhi�, the relative bias (RB) in absolute value given by

RBi ¼j fE½bhi� � hig=hi j and the root mean square

error
ffiffiffiffiffiffiffiffiffiffi

MSE
p

 �

given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½bhi � hi�2
q

; for i ¼ 1; 2; 3; 4:

The results for the ML estimates of the parameters a; b; k
and t are given in Tables 2, 3 and 4.

It is observed that, as we expect, the values of RB and

RMSE of the ML estimators of the parameters decrease as

the sample size increases.

4.2 Real data

In this section, two real datasets are applied in order to

illustrate the applicability of the STN-BS model. For each

dataset, we first obtain the ML estimations of the param-

eters via ECM algorithm described in Sect. 3. Then to

compare competitions models, we use the maximized log-

likelihood ‘ðbhÞ, and model selection criteria based on loss

of information, such as the Akaike information criteria

(AIC) and the Bayesian information criteria (BIC). Fol-

lowing Kass and Raftery (1995), we also use the Bayes

factor (BF) to show more differences between the BIC

values. Assuming that the data D have arisen from one of

two hypothetical models, thus H1 (model with a smaller

BIC value) is contrasted to H2 (model compared to H1Þ;
according to PðD j H1Þ and PðD j H2Þ: This factor can be

obtained by using the following approximation proposed

by Raftery (1995),

2 logðB12Þ � 2 logðPðD j bh1;H1ÞÞ � logðPðD j bh2;H2ÞÞ
h i

� d1 � d2½ � logðnÞ;

where PðD j bh1;H1Þ ¼ PðD j H1Þ; with bhr being the ML

estimate of hr under the model in Hr; dr is the dimension of

hr, for r ¼ 1; 2; and n is the sample size; see Vilca et al.

(2011). An interpretation of the BF is given in Table 5.

4.2.1 Ozone data

Table 6 presents a descriptive summary of Ozone data

studied by Vilca et al. (2011), which are assumed to be

uncorrelated and independent, including sample median,

mean, standard deviation (SD), CV, CS and CK. As it is

observed, the data come from a positively skewed distri-

bution with a kurtosis greater than three. Thus, the STN-BS

model can be suitable for these data.

Vilca et al. (2011) showed that the SN-BS distribution

provides a better fit than the usual BS distribution. Now,

we show that the proposed STN-BS distribution performs

better than some other extensions of the Birnbaum Saun-

ders distribution to fit on this dataset.

Estimation and model checking are provided in Table 7,

which consists of the ML estimates and value of ‘ðbhÞ; AIC

and BIC. Considering these values, we find that the STN-

BS model provides a better fit than the other models. For

these data, we also use the BF (approximated by the BIC)

to contrast two following hypothesis testing:

(i) H
ð1Þ
0 : STN-BS model versus H

ð1Þ
1 : BS model,

which gives the value 2 logB
ð1Þ
12 ¼ 7:491:
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(ii) H
ð2Þ
0 : STN-BS model versus H

ð2Þ
1 : SN-BS model

which gives the value 2 logB
ð2Þ
12 ¼ 5:262:

(iii) H
ð3Þ
0 : STN-BS model versus H

ð3Þ
1 : SNT-BS

model which gives the value 2 logB
ð3Þ
12 ¼ 1:1564:

(iv) H
ð4Þ
0 : STN-BS model versus H

ð3Þ
1 : T-BS model

which gives the value 2 logB
ð4Þ
12 ¼ :838:

According to Table 5, the above values of 2 logB12

indicate ‘‘strong,’’ ‘‘positive,’’ ‘‘weak’’ and ‘‘weak’’ evi-

dence in favor of H
ð1Þ
0 , H

ð2Þ
0 ; H

ð3Þ
0 and H

ð4Þ
0 .

The estimated density functions of the ozone data

including the respected histograms, plotted in Fig. 2, and

the PP plots and empirical and theoretical cdf plots given in

Figs. 3, 4, 5, 6 and 7 confirm again the appropriateness of

the STN-BS distribution.

4.2.2 Fatigue data

These data correspond to the fatigue life of 6061-T6 alu-

minum coupons cut parallel to the direction of rolling and

oscillated at 18 cycles per second, were provided by

Birnbaum and Saunders (1969). Table 8 presents a

descriptive summary of fatigue data, which indicate that

STN-BS model can be suitable in modeling this dataset.

We fit the STN-BS distribution to fatigue data and

compare it to BS, SN-BS, SNT-BS and T-BS distributions.

Estimation and model checking are provided in Table 9,

which has the same configuration as given in Table 7.

Considering the values of the ‘ðbhÞ; AIC and BIC given in

this table, we find that the STN-BS model, once again

provides a better fit than other models. Similarly to ozone

data, we use the BF to highlight the differences between

the values of the criteria presented in Table 9. We obtain

Table 2 Parameter estimates when k ¼ :1 and b ¼ 1:0, t ¼ 2

n a Mean Estimates of a Mean Estimates of b Mean Estimates of k Mean Estimates of t

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

50 .10 .1065 .0654 .0201 1.0065 .0064 .0365 .0617 .3831 .3170 2.5624 .2812 1.4308

.50 .4627 .0746 .1180 1.0241 .0241 .2238 .4485 3.4845 .9566 1.8828 .0586 .6765

.75 .8945 .1927 .3012 .8857 .1143 .3055 .5500 4.4999 .9271 2.9523 .4761 3.6270

1.0 1.0588 .0588 .2082 1.0688 .0688 .4330 .3463 2.4630 .6621 2.5353 .2677 1.0915

100 .10 .1020 .0201 .0148 1.0013 .0013 .0206 .0919 .0806 .1211 2.3870 .1935 1.2867

.50 .5167 .0333 .0938 .9782 .0218 .1313 .1709 .7085 .2902 2.2528 .1264 .9352

.75 .7794 .0393 .1619 .9632 .0368 .2088 .2066 1.0656 .3969 2.1459 .0723 .6427

1.0 1.0354 .0354 .1862 .9786 .0214 .2848 .1972 .9717 .3118 1.9400 .0300 .5141

500 .10 .1002 .0017 .0064 .9994 .0006 .0077 .1069 .0696 1.3642 2.0317 .0159 .7862

.50 .5001 .0002 .0321 .9968 .0032 .0415 .1077 .0773 .0463 2.0230 .0115 .2429

.75 .7505 .0006 .0477 .9937 .0063 .0662 .1091 .0911 .0025 2.0257 .0128 .2424

1.0 1.0076 .0076 .0732 .9931 .0069 .0654 .1082 .0820 .0783 2.0217 .0109 .2015

Table 3 Parameter estimates when k ¼ :2 and b ¼ 1:0, t ¼ 2

n a Mean Estimates of a Mean Estimates of b Mean Estimates of k Mean Estimates of t

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

50 .10 .1447 .4469 .0447 .9356 .0644 .0644 .6210 2.1049 .4210 3.1932 .5966 1.1932

.50 .5407 .0807 .1773 .9335 .0665 .1900 .5204 1.6025 .7950 2.7051 .3525 4.5663

.75 .8715 .1620 .3949 .8961 .1039 .3738 .6840 2.4202 1.0886 2.4617 .2309 1.4109

1.0 1.2547 .2547 .5899 .8427 .1573 .4997 .9495 3.7474 1.4972 1.9819 .0090 .8686

100 .10 .1133 .1330 .0138 .9826 .0174 .0188 .3260 .6295 .1320 2.6255 .3128 .6294

.50 .5250 .0501 .1156 .9491 .0509 .1472 .3984 .9922 .5084 2.2230 .1115 .9186

.75 .8394 .1192 .2026 .9203 .0797 .2465 .4794 1.3972 .7520 2.3515 .1757 .8740

1.0 1.0907 .0907 .3253 .9271 .0729 .3460 .4917 1.4587 .7566 2.1862 .0931 .6390

500 .10 .1011 .0110 .0081 .9975 .0025 .0092 .2239 .1193 .0593 2.0380 .0190 .3012

.50 .5022 .0043 .9186 .9952 .0048 .0482 .2137 .0685 .0725 2.0306 .0153 .4946

.75 .7544 .0058 .0518 .9885 .0115 .0817 .2201 .10068 .0883 2.0241 .0121 .2405

1.0 1.0089 .0089 .0791 .9850 .0150 .1253 .2270 .1351 .1295 2.0224 .0112 .2438
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values of 2 logB
ð1Þ
12 ¼ 2:206, 2 logB

ð2Þ
12 ¼ 6:471,

2 logB
ð3Þ
12 ¼ 1:584 and 2 logB

ð4Þ
12 ¼ 2:432 according to

contrast hypothesis testing (i), (ii), (iii) and (iv) given

above, indicating ‘‘positive,’’ ‘‘strong,’’ ‘‘weak’’ and

‘‘positive’’ evidence in accepted STN-BS distribution

hypothesis; see Table 5.

Similar to ozone data, the estimated density functions of

the fatigue data including the respected histograms, plotted

in Fig. 8, and the PP plots and empirical and theoretical cdf

plots given in Figs. 9, 10, 11, 12 and 13 confirm again the

appropriateness of the STN-BS distribution.

5 Concluding remarks

In this paper, a flexible class of distributions, called the

skew-t-normal Birnbaum–Saunders distributions, based on

the Birnbaum–Saunders models is introduced and its sev-

eral properties are obtained. This skewed distribution

extends the skew-normal Birnbaum–Saunders distribution,

allowing a better prediction of the extreme percentiles. The

parameters estimation via ECM algorithm is proposed, and

their performances are evaluated by the Monte Carlo

method. The simulation study shows the good performance

of these estimators. The utility of this class is illustrated by

Table 4 Parameter estimates when k ¼ :5 and b ¼ 1:0, t ¼ 2

n a Mean Estimates of a Mean Estimates of b Mean Estimates of k Mean Estimates of t

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

RB
ffiffiffiffiffiffiffiffiffiffi

MSE
p

50 .10 .0724 .2764 .0284 1.0320 .0320 .0340 .1313 .7374 .3707 2.4365 .2182 1.3155

.50 .6680 .3359 .2833 .8471 .1529 .2531 1.5442 2.0883 1.6313 2.9906 .4953 1.6793

.75 1.0210 .3613 .5018 .8787 .1213 .4537 1.7190 2.4379 2.0502 3.0518 .5259 2.3117

1.0 1.4144 .4144 .7394 .5712 .4288 .4642 2.6313 4.2625 3.1817 1.6706 .1647 .2084

100 .10 .1270 .2696 .0270 1.0295 .0295 .0295 .4691 .0618 .0309 2.0545 .0273 .0545

.50 .6661 .3322 .2601 .8906 .1094 .2296 1.2593 1.5187 1.3043 2.5027 .2513 1.1034

.75 .8991 .1988 .2670 .8579 .1421 .2856 1.4025 1.8050 1.6011 2.1824 .0912 .4047

1.0 1.1423 .1423 .1294 1.1380 .1380 .6761 .8606 .7213 1.3464 2.3285 .1643 1.1818

500 .10 .0911 .0886 .0089 1.0031 .0031 .0031 .4754 .0492 .0246 2.0253 .0127 .0253

.50 .5134 .0268 .0556 .9859 .0141 .0747 .5720 .1440 .2481 2.0554 .0277 .2670

.75 .7837 .0450 .1182 .9642 .0358 .1316 .6270 .2540 .3251 2.0866 .0433 .2380

1.0 1.0569 .0568 .0334 .9618 .0382 .0390 .6497 .2993 .2059 2.0535 .0268 .0719

Table 5 Interpretation of the Bayes factor (B12)

B12 2 logB12 Evidence in favor of H1

\ 1 \ 0 Negative (H2 is accepted)

1; 3½ � 0; 2½ � Weak

3; 20½ � 2; 6½ � Positive

20; 150½ � 6; 10½ � Strong

[ 150 [ 10 Very strong

Table 6 Descriptive statistics

for ozone data
Median Mean SD CV CS CK Range Min. Max. n

31.5 42.13 32.99 78.30% 1.21 4.11 167 1 168 116

Table 7 The ML estimates and

information criteria based on the

BS, SN-BS, SNT-BS, T-BS and

STN-BS distributions for the

ozone data

Model ba bb bk bt ‘ðbhÞ AIC BIC

BS .982 28.023 � 549.097 1102.194 1107.701

SN-BS 1.270 14.835 1.067 � 545.606 1097.211 1105.472

SNT-BS 1.521 11.318 4.372 1.543 � 541.1762 1090.352 1101.367

T-BS .807 30.905 7 � 543.394 1092.788 1101.049

STN-BS 1.661 106.899 � 5.956 7.472 � 540.598 1089.196 1100.210
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means of two real data sets, allowing a better prediction of

the extreme percentiles rather than another extensions of

the Birnbaum Saunders distribution.

Appendix

This appendix presents the proof of Propositions 2.2

and 2.3.

Ozone level
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0
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SNT−BS
T−BS
SN−BS
BS

Fig. 2 Histograms with density

estimates for ozone data

Fig. 3 PP plot (left) and

empirical versus theoretical cdf

(right) for the BS model of

ozone data

Fig. 4 PP plot (left) and

empirical versus theoretical cdf

(right) for the SN-BS model of

ozone data
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Fig. 5 PP plot (left) and

empirical versus theoretical cdf

(right) for the SNT-BS model of

ozone data

Fig. 6 PP plot (left) and

empirical versus theoretical cdf

(right) for the T-BS model of

ozone data

Fig. 7 PP plot (left) and

empirical versus theoretical cdf

(right) for the STN-BS model of

ozone data

Table 8 Descriptive statistics

for fatigue data
Median Mean SD CV CS CK Range Min. Max. n

1416 1401 391.32 .28 .14 2.71 2070 370 2440 101
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Proof of Proposition 2.2 By using Eq.(5) the cdf of T j
c; sð Þ is

FðT � t j c; sÞ ¼ PðY � aðt; a; bÞ j c; sÞ

¼ P Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

aðt; a; bÞ � kc
ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p j c; s

 !

;

then the pdf of T j c; s is

f ðt j c; sÞ ¼ /
ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

aðt; a; bÞ � kc
ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ k2
p

Aðt; a; bÞ:

The conditional distribution of c j s can be easily

obtained from the definitions. h

Proof of Proposition 2.2 From Proposition 2.2, the joint

pdf of T; c and s is given by

Table 9 The ML estimates and

information criteria based on the

BS, SN-BS, SNT-BS, T BS;
STN-BS distribution for the

fatigue data

Model ba bb bk bt ‘ðbhÞ AIC BIC

BS .3110 1335.491 � 751.552 1507.105 1512.335

SN-BS .320 1239.313 .310 � 751.377 1510.753 1516.598

SNT-BS .494 1937.772 � 3.515 50 � 746.626 1501.252 1512.266

T-BS .279 1356.07 13 � 749.263 1504.526 1512.371

STN-BS .408 1848.170 � 2.298 10.149 � 745.834 1499.669 1510.129

Fatigue lifetime
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Fig. 8 Histograms with density

estimates for fatigue data

Fig. 9 PP plot (left) and

empirical versus theoretical cdf

(right) for the BS model of

fatigue data
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Fig. 11 PP plot (left) and

empirical versus theoretical cdf

(right) for the SNT-BS model of

fatigue data

Fig. 12 PP plot (left) and

empirical versus theoretical cdf

(right) for the T-BS model of

fatigue data

Fig. 10 PP plot (left) and

empirical versus theoretical cdf

(right) for the SN-BS model of

fatigue data
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f ðt; c; sÞ ¼ 1

p
exp

� 1

2
c� k

a
eðt; bÞ

� �2

þ s
a2

e2ðt; bÞ þ ts

 !( )

Aðt; a; bÞ
t
2


 �t
2

C t
2


 � s
t�1

2 :

ð6Þ

where eðt; bÞ ¼
ffiffi

t
b

q

�
ffiffi

b
t

q

:
By integrating on c in (6), we get

f ðt; sÞ ¼
ffiffiffi

2

p

r

t
2


 �t
2

C t
2


 � s
t�1

2 Aðt; a; bÞ exp

�
tþ e2ðt;bÞ

a2

2

 !

s

( )

U k
eðt; bÞ
a

� �

:

ð7Þ

Dividing (7) by (3) gives

f ðs j tÞ ¼
tþa2ðt;a;bÞ

2

� 	
tþ1

2

C tþ1
2


 � s
tþ1

2
�1 exp � tþ a2ðt; a; bÞ

2

� �

s;

so

s j T ¼ tð Þ�C
tþ 1

2
;
tþ a2ðt; a; bÞ

2

� �

;

which concludes parts (a) and (b), and dividing (6) by (7),

gives

f ðc j t; sÞ ¼ 1

U k eðt;bÞ
a

� 	

1
ffiffiffiffiffiffi

2p
p exp

� 1

2
c� k

a
eðt; bÞ

� �2
( )

Ið0;þ1Þ ¼ f ðc j tÞ;

so c and s are conditionally independent given T ¼ t and

the conditional distribution of c given t is

c j T ¼ tð Þ� TNðkaðt; a; bÞ; 1; ð0;1ÞÞ;

which concludes the part (c). h
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