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Abstract

In this article, the recurrence relations and differential equation for the 3-variable Hermite—Sheffer polynomials are derived
by using the properties of the Pascal functional and Wronskian matrices. The corresponding results for certain members
belonging to the Hermite—Sheffer polynomials are also obtained.
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1 Introduction

The Sheffer sequences (Sheffer 1939) arise in numerous
problems of applied mathematics, theoretical physics,
approximation theory and several other mathematical
branches. Properties of Sheffer sequences are naturally
handled within the framework of modern classical umbral
calculus by Roman (1984). We recall the following defi-
nition of the Sheffer sequences (Roman 1984).

Let f(r) be a delta series and let g(¢) be an invertible
series. Then there exists a unique sequence s,(x) of poly-
nomials satisfying the orthogonality conditions

(@O () su(x)) = nldng,  Vn,k>0. (1)

We say that the sequence s, (x) is the Sheffer for the pair
(9(7),f(¢)). The Sheffer sequence for the pair (g(¢),t)
reduces to the Appell sequence for g(z) (Roman 1984, p.
27).
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The exponential generating function of s,(x) is given by
Roman (1984, p.18):

g(f_ll(l )CXp )Cf an '7 C, (2)

where f~1(t) is the compositional inverse of f(7).

The Sheffer class contains important sequences such as
the Hermite, Laguerre, Bessel, Poisson—Charlier and fac-
torial polynomials (Rainville 1971). These polynomials are
important from the viewpoint of applications in physics
and number theory.

For f(z) = ¢, the Sheffer sequence becomes the Appell
sequence A,(x) (Roman 1984) defined by the following
generating function:

—ex (xt) Ay (x)—. 3
o &P ) Z p (3)

The function g(¢) may be called the determining function
for the Appell polynomials A,(x). By properly choosing
g(7), several classical polynomials can be obtained from
the Hermite to the Euler ones.

Operational methods are useful to derive the properties
of special functions of mathematical physics. Combining
operational methods, integral transforms and the theory of
special functions and orthogonal polynomials, even more
powerful instrument is obtained for solving a wide spec-
trum of differential equations and physical problems rele-
vant to them. By using operational techniques, many
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properties of ordinary and multi-variable special functions
are simply derived and framed in a more general context,
see for example Cesarano (2017) and Dattoli et al. (2006).
Dattoli et al. (2004) introduced a family of hybrid poly-
nomials exhibiting a nature lying between the Hermite and
the Laguerre polynomials and studied their properties by
means of appropriate operational rules. Certain new fami-
lies of hybrid special polynomials related to the Sheffer
sequences are introduced and studied by Khan et al. (2010)
and Khan and Raza (2012).

We recall the generating function of the Hermite—Sh-
effer polynomials gs,(x,y,z) (Khan et al. 2010) in the
following form:

g(f11 [))e"p(xf () + 30 0) + 27 (1))

0
ZHSHva .' (4)

n=0

/—\

For f(r) = ¢, the Hermite-Sheffer polynomials reduce to
the Hermite—Appell polynomials yA,(x,y,z) (Khan et al.
2009), which are defined by the following generating
function:

1 l,n
—exp(xt+ytz+zt3) :ZHAn(xayaz)_la (5)
9(r) pr
which for g(¢) = =y 71 Land g(1) = t2+1), i.e., corresponding

to the Bernoulli and Euler polynomials B,(x) and E,(x),
respectively, yields the following generating functions for
the Hermite-Bernoulli polynomials yB,(x,y,z) and Her-
mite-Euler polynomials yE,(x,y,z):

! 2
,_1exp(xt+yt +21°) ;HB X,¥,2 .a (6)
and
o0 tﬂ
2 3) _
el+1exp(xt+yt +z21°) —;HEn(X,y,Z)H, (7)
respectively.

The concepts and formalism associated with the
monomiality treatment (Dattoli 1999) can be exploited in
different ways. They can be used to introduce new families
of special polynomials as well as to establish rules of
operational nature, framing the special polynomials within
the context of particular solutions of generalized forms of
partial differential equations of evolution type. The study
of differential equations is a wide field in pure and applied
mathematics, physics, and engineering. The problems
arising in different areas of science and engineering are
usually expressed in terms of differential equations, which

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

in most of the cases have special functions as their solu-
tions. Srivastava et al. (2014) established the differential,
integro-differential and partial differential equations for the
Hermite—Appell polynomials family. The recurrence rela-
tions, differential equations and other results of these
mixed type special polynomials can be used to solve the
existing as well as new emerging problems in certain
branches of science. To establish the determinantal forms
for the mixed special polynomials is a new and recent
investigation which can be helpful for computation
purposes.

A unifying tool for studying polynomial sequences,
namely the representation of Appell polynomials in matrix
form has been studied in Aceto et al. (2015). Recently, a
unified matrix representation for the Sheffer polynomials is
proposed (Aceto and Cagao 2017). The recurrence relations
and differential equations for the Appell and Sheffer
sequences are derived in Yang and Youn (2009) and Youn
and Yang (2011), respectively, by using the generalized
Pascal functional matrix of an analytic function and
Wronskian matrix of several analytic functions. This
approach is further used by Kim and Kim (2015) to find
some identities of the Sheffer polynomials.

In this article, the method adopted in Youn and Yang
(2011) and Kim and Kim (2015) is extended to derive
certain properties of the Hermite—Sheffer polynomials
usn(x,y,z). In Sect. 2, properties of the generalized Pascal
functional and Wronskian matrices are recalled. Hermite—
Sheffer vectors are introduced. In Sect. 3, certain recur-
rence relations and differential equations satisfied by these
polynomials are derived. The corresponding results for
certain members belonging to the Hermite—Sheffer family
are obtained in Sect. 4.

2 Preliminaries

We review certain definitions and concepts related to the
Pascal and Wronskian matrices, which will be used in Sect.
3.

Let F = {h(t) => 12, ak%|ak € C} be the C-algebra
of formal power series.

For h(t) € F, the generalized Pascal functional matrix
(Yang and Micek 2007) of an analytic function Ah(f) de-
noted by P,[h(t)] is a square matrix of order (n+ 1)
defined as:

i\, s .
)R (), ifi>ji, j=0,1,2,..,n
o, = | ()00 iz

0, otherwise.
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It should be noted that /%) denotes the kth order derivative
of h and h* denotes the kth power of & throughout the
article.

Also, the nth order Wronskian matrix of analytic func-
tions Ay (1), ha (1), h3(1), ..., hy(f) is an (n+ 1) X m matrix
and is defined as:

Whilhi (£), ha(2), ha(2), . . ., By (2)]
h() () B0 )
hi(t)  hy(t)  hy(t) -+ h,(1)

= : : : . : : ©)
W) B K@) ()

It is important to note that ¢ is considered as working
variable and x as a parameter in the expressions
Pa [h(xv t)]r:O and W, [h(x’ I)L:O'

We recall that for a,b € C and any analytic functions
h(z),1(r) € F, the following properties hold true (Youn and
Yang 2011):

Pulah(t) + bl(1)] = aP,[h(1)] + bPA[I(1)]; (10)
Wlah(z) + bl(1)] = aWu[h(1)] + bW, [I(1)]; (11)
Pull(0)]Pu[h(1)] = Py [ OIPu[l(1)] = Pulh(D)(1)],  (12)
Pull()Walh(2)] = Palh(O)IW,[I(1)] = Walh(D)I(1)],  (13)

Wall(h(£)],—g = Wall, h(1), 1 (1),
(1), B (O] oA Wall(1)] o, (14)

where A, = diag[0!,1!,2! ... n!]
H(0) #£ 0.

Further, for any analytic functions I(f) and
hi(2), ha(2), . . ., hy(2), the following property holds true:

Pull()Wall (1), (), - m(t)]
= Wl (1), () (1), . (tha) (1), (15)

In order to utilize the Wronskian matrices, the vector form
of the Hermite—Sheffer sequence is required. The Hermite—
Sheffer vector denoted by gS,(x,y,z) is defined as

and h(0) =0 and

[Hso(xay7z)7l-lsl (X,)GZ),
HSZ(X,y,Z),...,Hs,,(X,y,Z)]T, (16)

where {ps,(x,y,z)} is the Hermite-Sheffer sequence
defined by Eq. (4).
Since

e CAUE O O

Bn()@ya Z) =

is analytic, therefore by Taylor’s theorem, it follows that

1609
(k)
ask(x,y,2) = <%>
1 _ _ - 3
< (g (00 0P +2070)) ) e
(17)

In view of Eq. (17), the Hermite—Sheffer vector (16) can be
expressed as

Sy (x,y,2)
_ 1 _ _ 2 - 3
e (v a0 0P v 0F)]
(18)
It should be noted that in expression

Walso(x,v,2), 151 (%, 9, 2), - - - sn(x,9,2)])7, the partial
derivatives of gs(x,y,2), k=0,1,2,...,n are taken w.r.t.
x, keeping y and z as constants.

In order to establish the properties of the Hermite—Sh-
effer polynomials, the following Lemma is required.

Lemma 2.1 Let {,sc(x,y,z)} be the Hermite—Sheffer
polynomials sequence. Then,

(Wn[HSO(xvyvz)’Hsl(x y,Z )’HSZ(X Y,z )7" ,HS,,()C y’z)])TA;1
=Wa[LF 0.6 O T )] AP
exp(yr® + z°)
[g(,)]  Pufexn(a)]
(19)

Proof Use of property (14) in the r.h.s. of (18), gives

T

[HSO(X Y, < )aHSl(x Y, 2 )aHSZ(x Y, 2 )a"'vHsn(xvva)}

W e+ o0 0 el o))
=W [L @, 0 WP )] AT
exp(xt + y* + zt%)
< 20)

Again using property (13) and in view of the fact that

Whlexp(xt)],_o = [1xx?..
the form

.x"]T, the above equation takes

[50(x,v,2), m81(%,¥,2), 52 (%, y,2), - - .,Hsn(x,y,z)]r
=W | L0, P 0] AP
exp(y® +20)] o
R I ey

Taking the kth order partial derivative with respect to x on

2, @) Springer



1610

Iran J Sci Technol Trans Sci (2019) 43:1607-1618

both sides of Eq. (21) and then dividing the resulting
equation by k!, we find

1 1o k k T
E [WHSO(xvyvz)akasl(xvy’z)' . 'akasn(xvyvz):|
=W L@ WP )] AP

Joor( (12 ()]

The Lh.s. of Eq. (22) is the kth column of

(22)

(Wn[HSO(x7y7x)aHsl ('xayvz)aHSZ(xayvz)v .. -Hsn(x:yaz)])TA;I
and the r.h.s. of Eq. (21) is the kth column of

Wa[LF 0. P (7 )] AP
exp(y® + z°) .
2] Pfesplon

Consequently, assertion (19) follows. O

In the next section, recurrence relations and differential
equation for the Hermite—Sheffer polynomials are derived.

3 Recurrence Relations and Differential
Equations

First, we derive a differential recurrence relation for the
Hermite—Sheffer polynomials gsi(x,y,z) by proving the
following result.

Theorem 3.1 For the Hermite=Sheffer polynomials
usn(x,y,2), the following differential recurrence relation
holds true:

Her-l(xvyaZ)

B Z (xAy + 2yBy + 3zC; + Dy) O

2 Xl @Hsn(x»)’ﬂ% (23)
1
l’lZO, Hso(x,y,Z):—,
9(0)
where
1 \® PN
A = By = C
‘ </'<t>) =0 </'<t>) 0 ¢

g'(r)

- Q%) ) o (‘g(r) '(r>><k)

Proof In view of definition (9), it follows that

t:O.

22, Q) Springer

a (e (10 +y( @) + 2 (0))

" |de 9~ (0)

=0
= [Hsl (XJ” Z)HSZ(xv Y, Z)HS3 ()C, Vs Z)' - -HSn+1 (X, Vs Z)]T'
(24)

Performing the differentiation in expression
o [ (el @0 0 42 0))
" |dr 9(r~" (1) .
=

and using properties (12)—(14) in a suitable manner, we
find

W [d (exp(xfl ) +y(FH(n))* + Z(fl(t)f))}
=0

dr [a)
=WalLf 71O, 10 () o,

. oy 90 exp(xr + y* +2°)
(2w 3y - S )]
WL, P ()] oA
exp(yr* + z°)
7’{ G ]

K(x + 2yt + 32%) — gl;E,z)))]%} o

Pulexp(xt)]—oWa

(25)
Further, in view of Lemma 2.1, we have
o [ (Rl 050 0P 42 o))
"\ de a(f(1)
=0
= Waluso(x,y,2), 151(x,%,2), 152(x,,2), - -, msu(x,9,2)) T A,
x 2yt 3z g'(1) ]
X W, + + -
") @ O 90 (1))
[ mso(x,y,2) 0 0 0
us1(x,y,2) ﬁaﬂh(%%z) 0 0
19 1 9
= HSZ(X,y,Z) ﬁ&HSZ(vasz) E@HSZOQY-,Z) 0
10 1o 1o
_uSu(qu,Z) iau%(&)’,l) i@[ﬂn(%}‘-l) E@usn(x,y-, Z)_
xAo + 2yBy + 3z2Co + Do
XAy + 2yB) + 3zCy + D,
x| XAz +2yBy +3z2C + D5 |
xA, +2yB, + 3zC, + D,
(26)

Equating the last rows of Eqgs. (24) and (26), assertion (23)
follows.

Remark 3.1 Since f(t) =t= Ag=1, A, =0 (k+#0),
Bi=1,B,=0(k#1),C, =2, C; =0 (k # 2), therefore
for f(z) = ¢, the following consequence of Theorem 3.1 is
obtained.
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Corollary 3.1 For the Hermite-Appell polynomials W [ d (expG () £y (@) 4 2 ()
HAL (X, Y, 2), the following differential recurrence relation "_f<f (t))$< O)) )}70
holds true: _p, {% (exp(x(f"(l)) +y(;f:l'((t;)))° +z(f"(f))3))} Walf' (F ()]0
a g =0
HAn+1(X,9,2) = X pAn(%,y,2) + 2y 5 5An(x,3,2) [ as1(x3.2) 0 0 0
2 x H52(X,Y,2) Hs1(x,,2) 0 oy 0 Ey
E
+6Z@HA,,(X,}7,Z) _ ns3(x,y,2) (?)HSZ(waaZ) m1(x,,2) 0 E; ‘
—I—zn:DlakA( )1 0sp Ao )_1 : : : : :
L Th g MO P2 =T B0 Y2 = g ) et (}Jsera (5 )wmaten) - wsitana)| L
(27) (29)

Next, a pure recurrence relation for gs,(x,y,z) is
derived by proving the following result.

Theorem 3.2 For the Hermite=Sheffer polynomials
usn(X,y,2), the following pure recurrence relation holds
true:

EOHsn+l(x7y7Z) = stn(xayaz)

" /n
+ ; (k) (2yFy + 32Gy + Hy)asn—i(x, v, 2)

n 1
_ kz:: (Z)Ekﬂsnﬂk(x,y, 2),n >0y so(x,y,2) = m,
(28)
where
(1)) ® 1 *)
Ey = (f (f (t))) =0 - ((fl(t))/ t:O;Fk
_ (1 (k) ) . NG
(o) G = (¢0)) B
/(£—1 (k)
H, = <— 9 (f_] (t))> .
g(f (1)) =0
Proof Using property (13) in expression

vt 4 (expGe(F () +y(F () + 251 (0)))
Wn{f(f (0)&( g(ffl(t)) >:|IO,

it follows that

On the other hand, performing the differentiation in the
same expression and using properties (11) and (13), it
follows that

. d [exp(f=1 (1) + y(F~(1))* + 2(F (1))
Wn[f(f (’))g,< a(f1(1) )Lo

o [0 O 30 0P + 2 0))
" o (0)

exp(f (1) +y(F (1) + Z(f"(t))B)}
=0

)
P o 1(1))
< W, {zyf*‘ (1) + 37 (1) —
Hso(x,y,2)
as1(x,,2)

= x 92X, ¥, 2)

Q'U”(t))]
a(f () |

HSn (xvyv Z)
[ 1so(x,y,2) 0 0 e 0
HS1(%,y,2) ms0(x,,2) 0 e 0

Hs2(%,,2) <?>H51(x~,yﬁz) HS0(%, ¥, 2) 0

e (Dot (Dsusrs

_ . a2
2yFy + 3zGy + Hy
2yF, +3zG, + H,
% | 29F2 +32G, + Hy |
2yF, + 3zG, + H,
(30)
O

Equating the last rows of Egs. (29) and (30), we get
assertion (28).

Remark 3.2 Since f(t) =t= Ey=1, Et =0 (k #0),
Fi=1,F.=0(k#1),Gy=2,G, =0 (k # 2), therefore
for f(¢) =t , the following consequence of Theorem 3.2 is
obtained.

Corollary 3.2 For the Hermite—Appell polynomials
HAW (X, Y, 2), the following pure recurrence relation holds
true:

72, €\ Springer
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HAn+1(x7y7 Z) = xHAn(x7y7 Z)
+ 2nyHAn I(X Y2 ) + Sn(n - 1)ZHAn72(xay7 Z)

+Z< )DkHAn k(x,y,2), ”ZoéﬂAo(x,y,Z)Zwa

(31)

Finally, we derive a pure recurrence relation, which
provides a representation of gs,.1(x,y,z) in terms of
ase(x,y,z) (k=0,1,2,...n), by proving the following
result.

Theorem 3.3 For the Hermite=Sheffer polynomials
usn(X,y,2), the following pure recurrence relation holds
true:

n

HSn+1 (x7y,z) = Z(Z) (xlk + zyjk + 3ZL/<
k=0

+1Mk)Hsn—k(x, ¥,2),1 > 05 50(x,y,2)
— 5
(32)
where
1 ®) o\
& ’(fl(t))) o= ’(fl(t))) o
EPNC AN
()
FiF1()) o
(g0t 1 Y
Mk‘( (1) f(fl(z)))

Proof Performing the differentiation in expression

a (&p(3 0+ 30 W) + 2071 0))
" o ()

t=0

and then using property (13), we have

22, Q) Springer

exp (3 (1) + (7 () + 27 (1))
o ()
[( x+ 217 (1) + 321 (9)°)
_g(f o) 1
ol () F ()
o [ O 6 0 12 0))
o 9~ (1))
A o [
2 HSl()C,y,Z)
_ | <1>/11 2o R ) i

on (’;)infl (;)irkZ e o _Hsn(.x7y7 Z)_
= (.XIk + Zka —|— 3ZLk —|— Mk)

(33)

Equating the last rows of equations (24) and (33), we get

assertion (32). l

Remark 3.3 Since f(r)=r= Ih=1, =0 (k#0),
Ji=1L, 0 =0 (k#1), L, =2, L =0 (k # 2), therefore
for f(¢) =t , the following consequence of Theorem 3.3 is
obtained.

Corollary 3.3 For the Hermite-Appell polynomials
HAL(X,Y,2), the following pure recurrence relation holds
true:

HAR+1 (x,y, Z) = xgA, (x7y7 Z) + 2nyHAnfl (—xa Vs Z)
+3n(n — 1)zgA,—2(x,v,2)

1
+Z< )DkHAn KX, ¥, 2 ) l’lZO;HA()(X,y,Z) =

OB
(34)

In order to derive the differential equation for the Her-
mite-Sheffer polynomial sequence gs,(x,y,z), we prove
the following result.

Theorem 34 The  Hermite—Sheffer  polynomials
usa(x,y,2) satisfy the following differential equation:

zn: (ka + 2y0Or + 3zRi + Tk) 6"

_Hsn(xvya Z)
e k! Oxk
- ann(xay7 Z)
=0, (35)
where

)
t=0

)’,_0; O = Gjé;;)(k)
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k
(N oY exp(x/1(1) +>(f )2 (1))
Ry = Tk = ——= 7 .
7)o g (1)) o W)
Proof 1In view of property (13), the expression rlaso(x.7,2), ”?(le a
us2(x,y, ) Hsn<x ¥ Z)] A,
_ 12 13
w |4 (exp0d () + 310" +of (1)) o, [ L 04 ’zf“—g—”@]
[t - TW 050
dr gif~'(n) -0 Hso(x,y,) 0 0 0
can be written as #1(60,2) 1'a a0 0 0
= | ws2(x,¥,2) 12 $2(%x,y,2) ia—zv()c'z) 0
{ d (eXP(Xfl()er(fl(t))2+z(f'(t))3)>} = |l qgpanlnn) ggansthnt
Wn r— 3 :
dr (1) L L
=0 10 19
H3(X,7,2) an(x ¥:2) mrazas(6,y,2) o == usa(X,y, 7) |
—1 2 —1 3 L 1'6 2! 0x2 n! ox
— exp xf y(f‘ (1) +2('(1)) ) g
= dr a(f'(1) o XPy 4 2yQ) + 3zR + T
(0 0 0 o 0 0 0] ) : ‘
1 0 0 0 0 0 O[T wsi(x,0.2) L3P, + 250, + 32R, + T,
0 2 0 O 0 00 s2(x,y,2) (38)
0 0 3 0 0 0 0 us3(x,y,2) . .
=1. . . . Equating last two rows of (36) and (38), assertion (35)
follows. U]
18 (X, ¥, 2) )
00 0 0 n—1 0 0| Lusi(oy,2) Remark 3.4 Since f(t) =t= Py=1, P,=0 (k #0),
0 0 0 o 0 a0 01=1,0t=0(k#1),R, =2, R, =0 (k # 2), therefore

(36)

On the other hand, performing the differentiation in the
same expression and using properties (12)-(14) in a suit-
able manner, we find

a (exp(x 0+ 30 @) + 27 (0))
W [t—
dr o7 (1) ~

= W[ L0, OF - (7 O) | A, Py
2L fexpla
t=0

9(r)
[ 9@ f@)
XW'1|:( + 2yt + 3z6%) 090 (t)

WL 0. @OF e (6 )] A
[M} Palexp(xt)],_,
t=0

g(r)
1) ﬁﬂﬂ_d@f@] .
=0

£()
o 0T 0 el
(37)

X W,l[ + 2y

Again, in view of Lemma 2.1, we have

for f(¢) = ¢, the following consequence of Theorem 3.4 is
obtained.

Corollary 3.4 The  Hermite—-Appell  polynomials
oA (X, y, 2) satisfy the following differential equation:

0
ﬂHAn(X,y,Z) == xaHAn(xaya Z)

2 3

o 0
+ 47 3 (X, 2) + 92 55 (.3, 2) (39)

n 1 ak
+ kZ;Tk H@HAn(xayvz)a

where

In the next section, the recurrence relations and differ-
ential equations for some members belonging to the Her-
mite—Sheffer family are derived.

4 Examples

We derive the recurrence relations and differential equa-
tions for some members belonging to the Hermite—Sheffer
family by applying Theorems 3.1-3.4.

Example 4.1 For g(1) = e, f(r) = Land f~'(1) = vt, the
Sheffer polynomials become the generalized Hermite

72, €\ Springer
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polynomials H, ,,(x). Therefore, for these values of g(z),
f(t), the Hermite—Sheffer polynomials become the Her-
mite-generalized Hermite polynomials gH, . (x,y,2)
defined by the following generating function:

%0 p

exp (vt + vy + vz — ") = ;HHn,m,v(x7yaZ> 5
(40)

From Theorem 3.1, it follows that

A)=Vv;A;, =0 (k#0),B; =v;B, =0 (k£ 1),C, =2v;

Ci=0(k#2),Dyp = _vf—L;Dk =0k#£m—1).
(41)

Substituting the values from Eq. (41) in Eq. (23), the fol-
lowing differential recurrence relation for the Hermite-
generalized Hermite polynomials yH,,,(x,y,2) is
obtained:

0
HHn+1.m,v(xay7Z) = vaHn.,m,v(-LYaZ) + Zyvay Hn,m,v(xvyaz)

2
a2
m ol
vmfl axmle
HH(),m‘v(xayvz) =1. (42)

+ 3zv Hn,m,v(x>y7z)

Hy o (x,y,2),n>0;

From Theorem 3.2, it follows that

1
Eo=—E, =0 (k#0),F =v;F, =0 (k#1),Gy = 2v*%;
v

Gk =0 (k7é2),Hm,1 = —mT!;Hk =0 (k;ém— 1)
(43)

Substituting the values from Eq. (43) in Eq. (28), the fol-
lowing pure recurrence relation for the Hermite-general-
ized Hermite polynomials yH, (X, y,z) is obtained:

HHn+1.,m7v(X,Y»Z) = XVHHnm,v(xayaZ) + 2ynV12-1Hn71,m,v(x7y7Z)

n(n—1
+ 3ZV3 %H Hn727m,v ()C, Y, Z)

—m! < " ) Hn—m+2,m<v(x7 Vs Z)v n Z 0.
m—1/y '
(44)
From Theorem 3.3, it follows that

Iy =il = 0(k # 0),Jy =v*; Jk = O(k # 1), L, = 20%;
Lk = O(k 7é 2),Mm,1 = —m!;Mk = O(k 75 m — 1)
(45)

Substituting the values from Eq. (45) in Eq. (32), the
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following pure recurrence relation for the Hermite-gener-
alized Hermite polynomials yH, »(x,y,z) is obtained:

HHn+l,m,v(xayaZ) :vaHn,m,v(xayaZ) +2ynv12'-1H"—lvm¢" (x,y,z)
+ 3ZV3I’Z(}’l — l)Hanzm,v (x,y,z)

n
—m'<m 1) Hn—m-o—lﬁm,v(xayvz)a
- H

n>0. (46)
Further from Theorem 3.4, it follows that
Pi=1P=0(k#1),0, =4y; 0 =0 (k #2),
mlm

V—m;Mk =0 (k #m).
(47)

R3 = 18Z;Rk =0 (k# 3),Tm = —

Substituting the values from Eq. (47) in Eq. (35), we find
the following differential equation for the Hermite-gener-
alized Hermite polynomials yH, »(x,y,z):

d o
nHHn,mJ' ()C, v, Z) =X &H Hmm," (X7 » Z) ’ 4y2 @H Hn,m‘v (xa Y, Z)
PR m "
2
+ 9z @H Hn‘m‘v(xayv Z) - Wax_mH H"‘m‘v(x’y’ Z)'
(48)

—o—1
Example 4.2 For g(t)=(1-1)"", f(t)=;5 and
f~'(t) = — {5, the Sheffer polynomials become the gen-

eralized Laguerre polynomials LY (x). Therefore, for these
values of g(¢), f(r), the Hermite—Sheffer polynomials
become the Hermite-generalized Laguerre polynomials

HL,(f) (x,y,z) defined by the following generating function:

1 . X yt? e
v (o B
T i W T AN TR R TR

oo l”
- ZHle)(x7y7Z)_|' (49)
n!
n=0
From Theorem 3.1, it follows that
AO = —1,A1 = 2,A2 = —Z,Ak =0 (kZZ),B] = —17
B, =4,B;=—-6,B, =0 (k#1,2,3)
C,=-2,C3=12,C4 = -24,C, =0 (k #2,3,4);
Dy=a+1,0,D1=—a—1,D; =0 (k>1).
(50)

Substituting the values from Eq. (50) in Eq. (23), the fol-

lowing differential recurrence relation for the Hermite-

generalized Laguerre polynomials HL,(JX) (x,y,z) is obtained:
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Y = (- 1), L% 0
H n+l(xvyvz) ( X+ o+ ) (X »Z ) nHLl(f)()Qy,Z):(x—a_l)af
6 XH
+(2x—2y—a—1)=— L (xy,2) i
( GXH Lﬁza)(xmyaz) + (—X—|—4y2)—2 Lﬁza)(xayaz)
2 (“)( ) ox?m \
_.x+4y_3Z A Ln ‘xﬂy7z 63 a
( ) X% ( 4y + 9Z )_ L(%) ('x7ya ) 9Z A4 L(J) (-x7ya Z)'
63 6 a)CA
+ (=25 = 62) 5 LY (x,y,2) (57)
N Example 4.3 For g(1) = (1—1)"", f(t) =In(1 —¢) and

ot .
—355 L (x,y,2)m Ly (x,y,2) = 1.
(51)

Similarly, from Theorem 3.2, the following pure recurrence
relation for the Hermite-generalized Laguerre polynomials

sl (x,y,z) is obtained:

oL (0,y,2) = (2n+ o+ 1 —2),LP (x,y,2)

_Z(k) (2yFi + 3xGy) L, k(x ¥,2) (52)
k=0

— (n(n = 1) + o+ D)LY, (x,y,2),n >0,

where

(k)
t\® 2

Fo=(—) "] iGi=[—— , (53)
‘ (t—l) o ((r—1)2> o

Again, from Theorem 3.3, the following recurrence relation
for the Hermite-generalized Laguerre polynomials

HLY (x,y,z) is obtained:

" /n
HLfﬁl(%yaZ) = Z(’C)(ﬂk + 20+ 32l + My

k=0
LY, (x,y,2),n >0, (54)
where

k
= (- 1>2><k>][k0;fk = (~-17)"] )
L= (—r(- 1)*4)( ) M= (- 1e-1") .

(55)

Further, from Theorem 3.4, it follows that
Py =1,P,=-2;P,=0(k # 1,2); 0, = 4y,
03 = —12y; 0 = 0(k # 2,3), (56)

Ry = 182,Ry = —T72z; Ry = O(k # 3,4),
Ty = —o— 1;T, = 0(k # 1).

Substituting the values from Eq. (56) in Eq. (35), the fol-

lowing differential equation for the Hermite-generalized

Laguerre polynomials ;L\ (x,y,7) is obtained:

f~Y(t) =1—¢', the Sheffer polynomials become the
(B)

Actuarial polynomials a;; "’ (x). Therefore, for these values
of g(t), A1), the Hermite—Sheffer polynomials become the

Hermite—Actuarial polynomials Haﬁlﬁ ) (x,y,z) defined by the
following generating function:

exp(x(l — )+ y(1—e)4z(1 =) + [ft)
> r" (58)

Haﬂ Xy7
=0

From Theorem 3.1, it follows that

Ag=—1,A, = 1;A, =0(k #£0,1),B; = —1

Bz = Z;B]( = O(k 7'é 1,2),

C2 = —2, C3 = 6;Ck = O(k 7'é 273),D0 = ﬁ;Dk = O(k 7& 0)
(59)

)

Substituting the values from Eq. (59) in Eq. (23), the fol-

lowing differential recurrence relation for the Hermite—

Actuarial polynomials Has,ﬁ ) (x,y,2) is obtained:

(_x + ﬁ)Haﬁzﬁ) (X, Ys Z)

d
+(x=2y) = alP(x,y,2)

Hafftr)l (x7y7 Z) =

OxH
62
+ (2y — 32) aln aflm (x,¥,2)

3

0
+335, af) (x,y,2),n>0;
wal (x,y,2) = 1. (60)

Similarly, from Theorem 3.2, the following recurrence
relation for the Hermite—Actuarial polynomials

Hag,ﬁ) (x,y,z) is obtained:

" /n
Hafllj-)l<xaya )——.XHLZ( )(x Y,z ) Z( )
o \k
(2yFy + 3zGy + Hk)Ha,(ﬁ)k(x,y, 2)
+Z( JEiHal) fxv2hnz0. (61

where

2, @) Springer
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o= (1= exp(0)®

G = ((1 - exp))?) "

Ep = (—exp(~1))"

(62)

Again, from Theorem 3.3, the following recurrence relation

for the Hermite—Actuarial polynomials Hay} >(x, y,2) is

obtained:
" /n
Haili)l(xvyaz) = Z(k)
k=0
(xli + 205 + 32Le) gal, (%, 3,2) + Bral) (x,y,2),n > 0.
(63)

where

I = (—exp(r))® 70;Jk = (exp(2r) —exp(1)) " =0’

1=

L = (2exp(21) — exp(31) —exp(t)) V| M= ()"

=0
(64)

Finally, from Theorem 3.4, the following differential
equation satisfied by the Hermite—Actuarial polynomials

nal (x,y,z) is obtained:

" (xPy + 2yQy + 32Ry + Ty) O
> o, W (6 2)

k=0 K (65)
—nyall) (x,y,2) = 0,
where
Py = ((t—1)In(1 — )W %= (2y(2 — 1) In(1 — t))uc) .
Re= (320 = )1 =0)Y| _i1i= (pm(1—)®)| .
(66)

It is to be noted that the differential equations and
recurrence relations for other members belonging to the
Hermite—Sheffer family can also be obtained in a similar
manner by making suitable substitutions. Also, the recur-
rence relations and differential equations for the members
belonging to the Hermite—Appell family can be obtained by
applying Corollaries 3.1-3.4.

5 Concluding Remarks
In order to further stress the importance of the approach

adopted in previous sections, we establish the following
result connecting two different Sheffer sequences.

22, Q) Springer

Theorem 5.1 Let ys!(x,y,z) and ys2(x,y,z) be the Her-
mite—Sheffer polynomial sequences with generating functions

s (0002 + )
oo n (67)
= ZHS,i(X,y, Z)%

n=0

and

e (7 0 50 02 +20))
> n (68)
= ZHSi(xayaz)%a

n=0

respectively. Then

N/ n
) = 3 (1 ) Ot ), (9
k=0
—1
where h(t) = gf(&,lggg.
Proof Rewriting the vector form of pys!(x,y,z) as:
_ 1 o '®)
i 2
HS x,y,Z)=Wn[ = — 0 CXP
ol RO 70)

(') + 3¢~ 0P + 207 0))1os

which on using Eq. (13) gives

1S, (%,7,2) = Py {%} =0
1 -1 -1 -
W, {mexp@‘ O +y(¢ )+ (t)f)Lo

(71)

Again, using vector form of ps?(x,y,z) in the r.h.s. of
Eq. (71), so that we have

—1 L)
HS (X,yaZ) :Pn |:7 HS, (x7y7Z)7 (72)
" 9t M) "
which on simplification becomes
Hs(l)<x1y1z)
HS{(x,y.,z)
HS;(XJ)',Z)
Hsll(xayvz)
[ 1(0) 0 0 e 00T
h(0) (0) 0 o0 | [ass(ey,2)
2 HS%()C,}HZ)
@ O
o (e wo O || asiera) |

2

h(”):(O) <?>h;nl)(0) (Z)h;“)(o) h(:()) H‘Yn(x:‘ryﬂz)
' NCE
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Equating the last rows of Eq. (73), assertion (69) follows.
O

As an illustration of Theorem 5.1, we consider the fol-
lowing example.

Example 5.1 The Poisson—Charlier polynomials c,(x;a)
belong to the Sheffer sequence for

g(r) =",
£ = ale' = 1)

for a # 0 (Roman 1984). These polynomials are important
from the fact that, for a # 0, they are orthogonal w.r.t. the
Poisson distribution:

o0

> j(K)en(k; a)en(kia) = a " nld, m,

k=0

where j(k) is the Poisson density

J(k) = (d fk)e

fork=0,1,2,....

With these values of g(r), f(t), the Hermite—Sheffer
polynomials become the Hermite—Poisson—Charlier poly-
nomials gc,(x,y,z;a), defined by the following generating
function:

e’exp<xln(1 +£) +y(ln<1 +2))2+Z<ln(l +£>)3>
— Zﬂcn X,y,2;a

n=0
(74)

Here we consider the Hermite—Poisson—Charlier polyno-
mials for @ = 1, which are defined by the following gen-
erating function:

e Texp (xln(l +1) +y(In(1 + 1)) *+z(In(1 + t))3>

:0 }’l.

Further, for g(f) =< and f(t) =¢' — 1, the Sheffer
polynomials become the related polynomials r,(x) (Jordan
1965). For these values of g(¢) and f{(¢), the Hermite—Sh-
effer polynomials become the Hermite-related polynomials
ura(x,y,2), defined by the following generating function:

2+ﬁm@mu+n+ﬂmu+mﬂama+mﬂ

o0

Z aya

n=0

Now applying Theorem 5.1 to generating functions (75)
and (76), we obtain the following connection formula
between the Hermite—Poisson—Charlier polynomials
mcn(x,y,z; 1) and Hermite-related polynomials gr,(x,y,z):

aCn(x,y,7;1) = i(n)hwk) (0)gra(x,y,z), (77)

k=0 k

where h(t) = zz—jtt

This article is first attempt in the direction of using
matrix approach to a hybrid family of special polynomials.
This approach is general and may be used to study the
properties of other hybrid polynomial sequences.
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