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Abstract
In this paper, we apply an efficient hybrid method for solving the fractional Volterra integro-differential equations. The

method is based upon hybrid approach consisting a coupling of variational iteration method and Laplace transform. This

work extends and applied a novel and simple method to obtain rigorously reliable and accurate results. The stability and

convergence of presented method are analyzed by some theorems. Also, several numerical examples are carried out to

confirm the validity and efficiency of proposed approach. Moreover, the fractional Volterra population growth model is

considered by our method as an application.

Keywords Fractional Volterra integro-differential equations � Reconstruction of variational iteration method �
Stability � Convergence

1 Introduction

Fractional differential equations (FDEs) and fractional

integro-differential equations (FIDEs) have gained popu-

larity because of their important applications in science and

engineering (Sun et al. 2010; Yuzbasi 2013; Rossikhin and

Shitikova 2010; Magin 2008). Although fractional calculus

has been introduced three centuries ago, it started to

flourish recently. It is important to mention that the frac-

tional derivatives are nonlocal, it means that it is globally

defined by an integral over the whole domain, while the

integer derivatives are locally defined on the epsilon

neighborhood of a chosen point. So, it has been demon-

strated that the fractional calculus is more accurate than the

integer calculus to describe a lot of phenomena in

mechanics, physics, biology, chemistry, and other sciences.

Moreover, many mathematical formulations of physical

phenomena lead to fractional integro-differential equations

(FIDEs), such as heat conduction in materials with mem-

ory, fluid dynamics, convection and radiation problems,

and chemical kinetics (Larsson et al. 2014; Magin 2008;

Podlubny 1999; Rossikhin and Shitikova 2010). Since

FIDEs have gained much interest in different research

areas and engineering applications, finding accurate

methods for solving these equations seems necessary. In

recent years, there are several numerical and analytical

methods which have been developed to obtain the solution

of linear and nonlinear FIDEs. For example in Ma and

Huang (2014), proposed and analyzed a spectral Jacobi-

collocation method for the numerical solution of linear

fractional integro-differential equations. Parand and

Nikarya (2014) introduced a new numerical algorithm

based on the first kind of Bessel functions collocation

method to solve the fractional differential and integro-

differential equations. They reduced the solution of a

nonlinear fractional problem to the solution of a system of

the nonlinear algebraic equations. Tang and Xu (2015)

applied the pseudospectral integration matrices for solving

fractional differential, integral, and integro-differential

equations. Furthermore, Mingxu et al. (2015) obtained the

numerical solution of fractional integro-differential equa-

tions with weakly singular kernel by the Legendre wavelets

method. Eslahchi et al. (2014) studied the collocation

method to solve nonlinear FIDEs and also, they investi-

gated the convergence and the stability analysis of this

method. Mashayekhi and Razzaghi (2015) presented a new

numerical method for solving nonlinear FIDEs based on
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the hybrid functions approximation which consists of

block-pulse functions and Bernoulli polynomials. Dehghan

and Shahini (2015) developed the pseudospectral approach

based on the rational Legendre and rational Chebyshev

functions to solve the nonlinear integro-differential Vol-

terra’s population model.

In this paper, we are going to provide a convergent

technique for the solutions of FIDEs of the form:

DayðxÞ ¼ gðxÞyðxÞ þ f ðxÞ þ
Z x

0

kðx; tÞyðtÞdt; x 2 ½0; 1�; ð1Þ

with the initial conditions

yðiÞð0Þ ¼ ci; i ¼ 0; 1; . . .; n � 1; n � 1\a� n; ð2Þ

where f and g are given continuous functions, the kernel

k(x, t) is given smooth function, y(x) is unknown function

and Da is the Caputo fractional derivative of order a
defined as (Oldham and Spanier 1974):

DayðxÞ ¼ In�aDnyðxÞ ¼ 1

Cðn � aÞ

Z x

0

ðx � sÞn�a�1
DnyðsÞds;

and Ia denotes the Riemann–Liouville fractional integral

operator of order a, defined by Kilbas et al. (2006)

IayðxÞ ¼
1

CðaÞ

Z x

0

ðx � sÞa�1
f ðsÞds; a[ 0;

yðxÞ; a ¼ 0:

8<
:

For the Riemann–Liouville fractional integral and Caputo

fractional derivative, we have the following properties:

Iaðx � aÞb ¼ Cðbþ 1Þ
Cðbþ aþ 1Þ ðx � aÞbþa;

IaIbf ðxÞ ¼ IbIaf ðxÞ ¼ Iaþbf ðxÞ;

IaDaf ðxÞ ¼ f ðxÞ �
Xn

k¼0

f ðkÞð0Þ xk

k!
:

In 2015, we successfully introduced and applied a new

scheme based on a hybrid approach consisting of the

variational iteration method and Laplace transform for

solving multi-order fractional differential equations and

fractional partial differential equations which was named

the reconstruction of variational iteration method (RVIM)

(Hesameddini and Rahimi 2015; Hesameddini et al. 2016).

In this work, we present the RVIM for solving FIDEs (1)

subject to (2). Moreover, the convergence and stability of

the proposed method will be investigated by some theo-

rems. Our aim is to provide an accurate scheme which is

easy to implement numerically without any special

assumptions and also, be efficient and reliable. It is to be

noted that in comparison with some other numerical

methods, the proposed method is more accurate and need

less computational cost. This paper is organized as follows.

In Sect. 2, the RVIM is developed to solve the FIDEs. The

stability and the convergence analysis in the infinity norm

will be described in Sect. 3. In Sect. 4, we applied the

proposed method to solve several numerical experiments to

demonstrate the accuracy and efficiency of our method. In

Sect. 5, we consider the fractional Volterra population

growth model as an application. Finally, the conclusion is

summarized in Sect. 6.

2 The Basic Concept of the Reconstruction
of Variational Iteration Method (RVIM)

To represent the basic idea of our technique, we derive the

reconstruction of variational iteration method(RVIM) and

describe its implementation for the problem (1), (2). Unlike

the variational iteration method(VIM), in which the

Lagrange multiplier must be identified optimally via the

variational theory, we can derive an iterative relation by the

RVIM without any knowledge of variational theory and

any restrictive assumptions.

To describe the RVIM, at first, by taking the Laplace

transform from both sides of (1) and using the zero artifi-

cial initial conditions, the following relation resulted

sa‘fyðxÞg ¼ ‘ gðxÞyðxÞ þ f ðxÞ þ
Z x

0

kðx; tÞyðtÞdt

� �
: ð3Þ

For convenient in writing, suppose that

NðyðxÞÞ ¼ gðxÞyðxÞ þ f ðxÞ þ
R x

0
kðx; tÞyðtÞdt. So,

‘fyðxÞg ¼ 1

sa
‘fNðyðxÞÞg: ð4Þ

Then, by applying the inverse Laplace transform to both

sides of (4) and using the convolution theorem, we have

yðxÞ ¼ 1

CðaÞ

Z x

0

ðx � sÞa�1
NðyðsÞÞds: ð5Þ

Therefore, the following iteration formulation is obtained.

ykþ1ðxÞ ¼ y0ðxÞ þ
1

CðaÞ

Z x

0

ðx � sÞa�1
NðykðsÞÞds; ð6Þ

where ykðxÞ is the k-th approximate solution of y(x), i.e.

yðxÞ � ykðxÞ. Since, we must impose the actual conditions

(2) to obtain y0ðxÞ, so it is obtained by Taylor series of

actual conditions (2). Noting the definition of Riemann–

Liouville fractional integral operator, the relation (6) can

be written as:

ykþ1ðxÞ ¼ y0ðxÞ þ IaNðykðxÞÞ; ð7Þ

Finally, the exact solution y(x) is obtained by yðxÞ ¼
limk!1 ykðxÞ: In the next section, we prove the stability

and convergence properties of this method for solving (1).
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3 Stability and Convergence of the RVIM

In this section, we will show the stability and convergence

properties of the reconstruction of variational iteration

method for the following Volterra fractional integro-dif-

ferential equation:

DayðxÞ ¼ gðxÞyðxÞ þ f ðxÞ þ
R x

0
kðx; tÞyðtÞdt; x 2 ½0; 1�;

yðiÞð0Þ ¼ ci; i ¼ 0; 1; . . .; n � 1; n � 1\a� n:

(

ð8Þ

3.1 The Stability of Fractional Volterra Integro-
Differential Equations

To show the stability of (8), it is sufficient to prove that a

small change in initial conditions cause only a small

change in the obtained solution. So, we prove the following

theorem.

Theorem 3.1 Let y(t) and ~yðtÞ be the solutions of the

following problems.

DayðxÞ ¼ gðxÞyðxÞ þ f ðxÞ þ
R x

0
kðx; tÞyðtÞdt; x 2 ½0; 1�;

yðiÞð0Þ ¼ ci; i ¼ 0; 1; . . .; n � 1; n � 1\a� n;

(

ð9Þ

and

Da~yðxÞ ¼ gðxÞ~yðxÞ þ f ðxÞ þ
R x

0
kðx; tÞ~yðtÞdt; x 2 ½0; 1�;

~yðiÞð0Þ ¼ bi; i ¼ 0; 1; . . .; n � 1; n � 1\a� n;

8><
>: ð10Þ

where jbi � cij � ei i ¼ 0; 1; . . .; n � 1 and suppose that

there exist constants M and N such that

jkðx; tÞj �M; jgðxÞj �N; 8x 2 ½0; 1�; 8t 2 ½0; T�: ð11Þ

Then, we have

jyðxÞ � ~yðxÞj �
Xn�1

i¼0

eix
iEa;iþ1 Nxa þ M

xaþ1

aþ 1

� �
; ð12Þ

where, Ea;iþ1ðNxa þ M xaþ1

aþ1
Þ is the two parameter Mittag–

Leffler function that for any argument z 2 C and two

parameters a; b 2 C, with RelðaÞ[ 0, is defined as:

Ea;bðzÞ ¼
X1
k¼0

zk

Cðak þ bÞ:

Proof According to our method, we know that ykðxÞ and
~ykðxÞ (k-th approximate solutions of (9) and (10), respec-

tively) satisfy in the following iteration relations.

ykþ1ðxÞ ¼ y0ðxÞ þ IagðxÞykðxÞ þ Iaf ðxÞ þ Ia
R x

0
kðx; tÞykðtÞdt;

y0ðxÞ ¼
Pn�1

i¼0 ci

xi

i!
;

8<
:

ð13Þ

and

~ykþ1ðxÞ ¼ ~y0ðxÞ þ IagðxÞ~ykðxÞ þ Iaf ðxÞ þ Ia
R x

0
kðx; tÞ~ykðtÞdt;

~y0ðxÞ ¼
Pn�1

i¼0 bi

xi

i!
:

8<
:

ð14Þ

Equations (13) and (14) imply that

y0ðxÞ � ~y0ðxÞj j ¼
Xn�1

i¼0

ci

xi

i!
�
Xn�1

i¼0

bi

xi

i!

�����
����� ¼

Xn�1

i¼0

ðci � biÞ
xi

i!

�����
�����

�
Xn�1

i¼0

jci � bij
xi

i!
�
Xn�1

i¼0

ei

xi

i!
:

ð15Þ

Using (13), (14) and (15), one obtains

jy1ðxÞ � ~y1ðxÞj � jy0ðxÞ � ~y0ðxÞj þ IajgðxÞjjy0ðxÞ � ~y0ðxÞj

þ Ia
R x

0
jkðx; tÞjjy0ðxÞ � ~y0ðxÞjdt�

Pn�1
i¼0 ei

xi

i!

þNIa
Pn�1

i¼0 ei

xi

i!
þ MIa

R x

0

Pn�1
i¼0 ei

ti

i!
dt ¼

Pn�1
i¼0 ei

xi

i!

þ
Pn�1

i¼0 eiN
xiþa

Cði þ aþ 1Þ þ
Pn�1

i¼0 eiM
xiþaþ1

Cði þ aþ 2Þ

¼
Pn�1

i¼0 ei

xi

i!
þ 1

Cði þ aþ 1Þ Nxa þ M
xaþ1

i þ aþ 1

� �
xi

� �

¼
Pn�1

i¼0 ei

P1
j¼0

1

Cðjaþ i þ 1Þ ðNxa þ M
xaþ1

aj þ i þ 1
Þj

xi:

ð16Þ

Similarly, using (13), (14), (15) and (16), we have

jy2ðxÞ � ~y2ðxÞj � jy0ðxÞ � ~y0ðxÞj þ IajgðxÞjjy1ðxÞ � ~y1ðxÞj

þ Ia
Z x

0

jkðx; tÞjjy1ðxÞ � ~y1ðxÞjdt�
Xn�1

i¼0

ei

xi

i!

þ N
Xn�1

i¼0

eiI
a

�
xi

i!
þ N

xiþa

Cði þ aþ 1Þ þ M
xiþaþ1

Cði þ aþ 2Þ

�

þ M
Xn�1

i¼0

eiI
a
Z x

0

�
ti

i!
þ N

tiþa

Cði þ aþ 1Þ þ M
tiþaþ1

Cði þ aþ 2Þ

�
dt

¼
Xn�1

i¼0

ei

�
xi

i!
þ N

xiþa

Cði þ aþ 1Þ þ M
xiþaþ1

Cði þ aþ 2Þ þ N2 xiþ2a

Cði þ 2aþ 1Þ

þ 2MN
xiþ2aþ1

Cði þ 2aþ 2Þ þ M2 xiþ2aþ2

Cði þ 2aþ 3Þ

�

�
Xn�1

i¼0

ei

�
xi

i!
þ xi

Cði þ aþ 1Þ

�
Nxa þ M

xaþ1

aþ 1

�

þ xi

Cði þ 2aþ 1Þ N2x2a þ 2MN
x2aþ1

aþ 1
þ M2 x2aþ2

ðaþ 1Þ2

 !�
:

ð17Þ

Therefore, we obtain
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jy2ðxÞ � ~y2ðxÞj�
Xn�1

i¼0

ei

X2
j¼0

1

Cðjaþ i þ 1Þ

�
�

Nxa þ M
xaþ1

aþ 1

�j

xi:

ð18Þ

Consequently, by continuing the above procedure, we can

conclude that

jykðxÞ � ~ykðxÞj �
Xn�1

i¼0

ei

Xk

j¼0

1

Cðjaþ i þ 1Þ Nxa þ M
xaþ1

aþ 1

� �j

xi:

ð19Þ

As we know, if k ! 1, then ykðxÞ ! yðxÞ and

~ykðxÞ ! ~yðxÞ. So, if k ! 1, then using (19), one obtains

jyðxÞ � ~yðxÞj �
Xn�1

i¼0

eix
i
X1
j¼0

1

Cðjaþ i þ 1Þ

�
Nxa þ M

xaþ1

aþ 1

�j

¼
Xn�1

i¼0

eix
iEa;iþ1

�
Nxa þ M

xaþ1

aþ 1

�
:

ð20Þ

Since, the Mittag–Leffler function is a convergent series

and x 2 ½0; 1�, therefore, (20) indicates that the small

change in initial conditions will cause the small change in

the obtained solution. So the proof is completed. h

3.2 The Convergence of RVIM for the Fractional
Volterra Integro-Differential Equations

In this section, we investigate the convergence analysis of

the proposed method based on the error estimate. The main

result is presented in the following theorem.

Theorem 3.2 Consider the fractional Volterra integro-

differential Eq. (8), the sequence (7) with y0ðxÞ ¼Pn�1
i¼0 ci

xi

i! will converge to y(x) whenever

k1 ¼ kgðxÞk1\1; k2 ¼ kkðx; tÞk1\1: ð21Þ

Also, the error estimate resulted by the following relation.

kEkþ1k1 �kE0k1
ð2LXaþ1Þkþ1

Cðaðk þ 1Þ þ 1Þ ;
ð22Þ

where L ¼ maxfk1; k2g and EkðxÞ ¼ ykðxÞ � yðxÞ is a k-th

error estimate for all k ¼ 1; 2; . . ..

Proof Evidently, by applying the fractional integral

operator to both sides of (8), we have

yðxÞ ¼
Xn�1

i¼0

ci

xi

i!
þ IagðxÞyðxÞ þ Iaf ðxÞ þ Ia

Z x

0

kðx; tÞyðtÞdt:

ð23Þ

Subtracting (7) from (23) yields

Ekþ1ðxÞ ¼ IagðxÞðykðxÞ � yðxÞÞ þ Ia
Z x

0

kðx; tÞðykðtÞ � yðtÞÞdt:

Then, we can write

jEkþ1ðxÞj � IajgðxÞjjykðxÞ � yðxÞj

þIa
Z x

0

jkðx; tÞjjykðtÞ � yðtÞjdt� k1IajykðxÞ � yðxÞj

þ k2I
a
Z x

0

jykðtÞ � yðtÞjdt ¼ k1IajEkðxÞj þ k2I
aþ1jEkðxÞj:

ð24Þ

Also,

jEkðxÞj � IajgðxÞjjyk�1ðxÞ � yðxÞj

þ Ia
Z x

0

jkðx; tÞjjyk�1ðtÞ � yðtÞjdt� k1Iajyk�1ðxÞ � yðxÞj

þ k2I
aþ1jyk�1ðxÞ � yðxÞj ¼ ðk1Ia þ k2I

aþ1ÞjEk�1ðxÞj:
ð25Þ

Consequently, we arrive at

jEkþ1ðxÞj � ðk1Ia þ k2I
aþ1ÞjEkðxÞj

� ðk1Ia þ k2I
aþ1Þ2jEk�1ðxÞj

..

.

�ðk1Ia þ k2I
aþ1Þkþ1jE0ðxÞj

� ðLIa þ LIaþ1Þkþ1jE0ðxÞj
� Lkþ1ðIa þ Iaþ1Þkþ1

max
x2½0;X�

jE0ðxÞj:

ð26Þ

Besides, we know that

ðIa þ Iaþ1Þkþ1

¼ Iaðkþ1Þð1þ IÞkþ1 ¼ Iaðkþ1Þ
Xkþ1

j¼0

ðkþ1
j ÞIj

¼
Xkþ1

j¼0

ðkþ1
j ÞIaðkþ1Þþj ¼ ðkþ1

0 ÞIaðkþ1Þ þ ðkþ1
1 ÞIaðkþ1Þþ1

þ � � � þ ðkþ1
kþ1ÞIðaþ1Þðkþ1Þ ¼ ðkþ1

0 Þ
R x

0
ðx � sÞaðkþ1Þ�1

Cðaðk þ 1ÞÞ

þ ðkþ1
1 Þ

R x

0
ðx � sÞaðkþ1Þ

Cðaðk þ 1Þ þ 1Þ þ � � � þ ðkþ1
kþ1Þ

R x

0
ðx � sÞðaþ1Þðkþ1Þ�1

Cððaþ 1Þðk þ 1ÞÞ

� ðkþ1
0 Þ

R x

0
ðx � sÞðaþ1Þðkþ1Þ�1

Cðaðk þ 1ÞÞ þ ðkþ1
1 Þ

R x

0
ðx � sÞðaþ1Þðkþ1Þ�1

Cðaðk þ 1ÞÞ

þ � � � þ ðkþ1
kþ1Þ

R x

0
ðx � sÞðaþ1Þðkþ1Þ�1

Cðaðk þ 1ÞÞ ¼
R x

0
ðx � sÞðaþ1Þðkþ1Þ�1

Cðaðk þ 1ÞÞ
Xkþ1

j¼0

ðkþ1
j Þ

¼ 2kþ1

R x

0
ðx � sÞðaþ1Þðkþ1Þ�1

Cðaðk þ 1ÞÞ ¼ 2kþ1 xðaþ1Þðkþ1Þ

ðaþ 1Þðk þ 1ÞCðaðk þ 1ÞÞ

� 2kþ1 xðaþ1Þðkþ1Þ

aðk þ 1ÞCðaðk þ 1ÞÞ � 2kþ1 Xðaþ1Þðkþ1Þ

Cðaðk þ 1Þ þ 1Þ :

ð27Þ

Considering (26) and (27), one can conclude that
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jEkþ1ðxÞj � Lkþ1 max
x2½0;X�

jE0ðxÞj
ð2Xaþ1Þkþ1

Cðaðk þ 1Þ þ 1Þ :
ð28Þ

Therefore,

kEkþ1k1 �kE0k1
ð2LXaþ1Þkþ1

Cðaðk þ 1Þ þ 1Þ :
ð29Þ

Since,
P1

j¼0
ð2LXaþ1Þ j

Cðajþ1Þ ¼ Eað2LXaþ1Þ is the convergent Mit-

tag–Leffler function Podlubny (1999), so

lim
j!1

ð2LXaþ1Þ j

Cðaj þ 1Þ ¼ 0: ð30Þ

Therefore, if k ! 1 then kE0k1
ð2LXaþ1Þkþ1

Cðaðkþ1Þþ1Þ ! 0 and this

completes the proof. h

4 Numerical Experiments

In this section, we present some examples to illustrate the

applicability, efficiency and accuracy of our method. All

test problems are taken from the literature and the calcu-

lations were performed using Maple software. Also, to

show that our method is practical for nonlinear FIDEs and

partial FIDEs, two examples are presented.

Example 4.1 Consider the following FIDE (Sayevand

et al. 2013)

DayðxÞ �
Z x

0

ðx � tÞyðtÞdt ¼ x; ð31Þ

subject to the initial condition

yð0Þ ¼ 0: ð32Þ

The exact solution of this problem is yðxÞ ¼
xaþ1Eaþ2;aþ2ðxaþ2Þ (Sayevand 2014).

According to the RVIM, the following iterative relation

resulted

ynþ1ðxÞ ¼ y0ðxÞ þ Iaþ2ynðxÞ þ Iax; ð33Þ

where y0ðxÞ ¼ 0 and ynðxÞ indicates the n-th approximation

of y(x).

According to (33), the following relations are obtained.

y1ðxÞ ¼
xaþ1

Cðaþ 2Þ ;

y2ðxÞ ¼
xaþ1

Cðaþ 2Þ þ
x2aþ3

Cð2aþ 4Þ ;

y3ðxÞ ¼
xaþ1

Cðaþ 2Þ þ
x2aþ3

Cð2aþ 4Þ þ
x3aþ5

Cð3aþ 6Þ ;

..

.

ynðxÞ ¼
Xn

k¼1

xkðaþ2Þ�1

Cðkðaþ 2ÞÞ :

Therefore,

yðxÞ ¼ lim
n!1

ynðxÞ ¼
X1
k¼1

xkðaþ2Þ�1

Cðkðaþ 2ÞÞ

¼
X1
k¼0

xðkþ1Þðaþ2Þ�1

Cððk þ 1Þðaþ 2ÞÞ

¼
X1
k¼0

xkðaþ2Þxaþ1

Cðkðaþ 2Þ þ aþ 2Þ ¼ xaþ1Eaþ2;aþ2ðxaþ2Þ;

which is the exact solution of (31).

Example 4.2 Consider the following FIDE in two cases.

D
5
3yðxÞ þ y0ðxÞ þ xyðxÞ ¼ f ðxÞ þ 1

2

Z x

0

ðx � tÞ2yðtÞdt; x 2 ½0; 1�;

y0ð0Þ ¼ yð0Þ ¼ 0:

8<
:

ð34Þ

Case 1: choosing f(x) subject that the exact solution of (34),

be x
10
3

Cð13
3
Þ þ

2x
11
3

Cð14
3
Þ �

x4

12
.

According to the RVIM, the following iterative relation

is resulted

ykþ1ðxÞ ¼ y0ðxÞ þ I
5
3 �y0ðxÞ � xyðxÞ þ f ðxÞ þ 1

2

Z x

0

ðx � tÞ2yðtÞdt

� �
;

ð35Þ

where y0ðxÞ ¼ 0.

The approximate solutions ykðxÞ for k ¼ 4; 5; 6 are

shown in Figs. 1, 2 and 3. From these figures, we can

conclude that the numerical solutions become more and

more accurate when k increases. In Table 1, the errors are

given in the infinity norm and L2 norm for different values

of k using the presented method. Also, maximum error

obtained for different values of N using the spectral-

collocation method Ma and Huang (2014) and method in

Mashayekhi and Razzaghi (2015), that is based on the

hybrid functions consisting of block-pulse functions and

Bernoulli polynomials are shown in this table. In compar-

ison with Ma and Huang (2014) and Mashayekhi and

Razzaghi (2015), our method provides more accurate

results.

Case 2: choosing f(x) subject that the exact solution of

(34), be x
5
3

Cð8
3
Þ þ

x
10
3

Cð13
3
Þ þ

2x
11
3

Cð14
3
Þ �

x4

12
, then similarly, Fig. 4 shows

the approximate solutions ykðxÞ for k ¼ 4; . . .; 8. Moreover,

absolute errors of our method for different values of k are

demonstrated in Table 2. This implies that the approximate

solutions become more and more satisfactory and accurate

by increasing the value of k.

Example 4.3 Consider the following nonlinear fractional

integro-differential equation (Eslahchi et al. 2014)
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D0:5yðxÞ ¼ gðxÞyðxÞ þ f ðxÞ þ
Z x

0

ffiffiffi
x

p
y2ðtÞdt; yð0Þ ¼ 0; ð36Þ

where gðxÞ ¼ 2
ffiffiffi
x

p
þ 2x

3
2 � ð

ffiffiffi
x

p
þ x

3
2Þ lnð1þ xÞ and

f ðxÞ ¼ 2arctanhð
ffiffi
x

pffiffiffiffiffi
1þx

p Þffiffi
p

p ffiffiffiffiffiffiffiffi
p1þx

p � 2x
3
2. The exact solution of this equa-

tion is yðxÞ ¼ lnð1þ xÞ (Eslahchi et al. 2014). According

to the RVIM, the following iterative relation resulted.

ykþ1ðxÞ ¼ y0ðxÞ þ I
1
2 gðxÞykðxÞ þ f ðxÞ þ

R x

0

ffiffiffi
x

p
y2kðtÞdt


 �
;

y0ðxÞ ¼ 0:

(
ð37Þ

Using (37), the following relations are obtained.

y1ðxÞ ¼ x � 1

4
ð2þ 3

ffiffiffi
p

p
Þx2 þ 1

3
x3 � 1

4
x4 þ 1

5
x5 � 1

6
x6 þ Oðx13

2 Þ;

y2ðxÞ ¼ x � 1

4
ð2þ 3

ffiffiffi
p

p
Þx2 þ 1

3
x3 � 1

4
x4 þ 1

5
x5 � 1

6
x6 þ Oðx13

2 Þ;

y3ðxÞ ¼ x � 1

2
x2 þ 1

3
x3 � 1

2048
ð512þ 525p

3
2Þx4

� 1

327;680
ð70;875p3

2 � 65;536Þx5

� 1

1;572;864
ð56;133p3

2 þ 262;144Þx6 þ Oðx13
2 Þ;

y4ðxÞ ¼ x � 1

2
x2 þ 1

3
x3 � 1

4
x4 � 1

1;310;720
ð165;375p2 � 262;144Þx5

� 1

100;663;296
1ð15;644;475p2 þ 16;777;216Þx6 þ Oðx13

2 Þ;

..

.

ykðxÞ ¼
Xk

n¼1

ð�1Þnþ1
xn

n
;

therefore, yðxÞ ¼ limk!1 ykðxÞ ¼
P1

n¼1
ð�1Þnþ1

xn

n
¼

lnð1þ xÞ; which is the exact solution of (36). This example

was also solved by the collocation method (Eslahchi et al.

2014) and fractional pseudospectral integration matrices

(Tang and Xu 2015). The approximate results were

reported for various N in Eslahchi et al. (2014) and Tang

and Xu (2015). Eslahchi et al. (2014) showed that in the

best situation the resulted maximum of absolute error is

9.0178e-06 and if N ¼ 150 the infinity norm in Tang and

Xu (2015) is 1.1127e-05, whereas we obtained the exact

solution.

Example 4.4 Consider the following fractional partial

integro-differential equation

oauðx; tÞ
ota

¼
Z t

0

ðt � sÞ
�1
2
o2uðx; sÞ

ox2
ds; 0� x� 1; ð38Þ

Fig. 1 Comparison between the exact solution and the RVIM solution

with k ¼ 4 for Example 4.2 (case 1)

Fig. 2 Comparison between the exact solution and the RVIM solution

with k ¼ 5 for Example 4.2 (case 1)

Fig. 3 Comparison between the exact solution and the RVIM solution

with k ¼ 6 for Example 4.2 (case 1)
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subject to the initial condition uðx; 0Þ ¼ sinðpxÞ:
The exact solution of this problem for a ¼ 1 is

uðx; tÞ ¼ sinðpxÞ
P1

n¼0
ð�p

5
2t

3
2Þn

Cð3
2
nþ1Þ.

According to the RVIM, the recursive relation is given

by

ukþ1ðx; tÞ ¼ u0ðx; tÞ þ
ffiffiffi
p

p
Iaþ

1
2
o2ukðx; tÞ

ox2
;

u0ðx; tÞ ¼ sinðpxÞ:

8>><
>>:

ð39Þ

Then, we have

u1ðx; tÞ ¼ sinðpxÞ � p
5
2 sinðpxÞ taþ

1
2

Cðaþ 3
2
Þ ;

u2ðx; tÞ ¼ sinðpxÞ 1� p
5
2

taþ
1
2

Cðaþ 3
2
Þ
þ p5

t2aþ1

Cð2aþ 2Þ

 !
;

u3ðx; tÞ ¼ sinðpxÞ 1� p
5
2

taþ
1
2

Cðaþ 3
2
Þ þ p5

t2aþ1

Cð2aþ 2Þ � p
15
2

t3aþ
3
2

Cð3aþ 5
2
Þ

 !
;

..

.

ukðx; tÞ ¼ sinðpxÞ
Xk

n¼1

ð�1Þnp
5n
2 tnðaþ1

2
Þ

Cðnðaþ 1
2
Þ þ 1Þ

:

Therefore,

uðx; tÞ ¼
P1

k¼1 ukðx; tÞ ¼ sinðpxÞ
P1

n¼1

ð�p
5
2taþ

1
2Þn

Cðnðaþ 1

2
Þ þ 1Þ

¼ sinðpxÞEaþ1
2
ð�p

5
2taþ

1
2Þ:

ð40Þ

Thus, the closed form solution for a ¼ 1 of (38) resulted as:

uðx; tÞ ¼ sinðpxÞE3
2
ð�p

5
2t

3
2Þ ¼ sinðpxÞ

X1
n¼0

ð�p
5
2t

3
2Þn

Cð3
2

n þ 1Þ
;

which is the exact solution of (38). This shows that this

method can successfully be applied for solving fractional

partial integro-differential equations. This example was

previously solved in Mashayekhi and Razzaghi (2015) and

the authors applied the pseudospectral spatial discretization

based on the Legendre–Gauss–Lobatto collocation points to

convert the problem (38) to a system of integro-differential

equations. The absolute errors obtained for different values

of t for a ¼ 1 and k ¼ 16 are reported in Mashayekhi and

Razzaghi (2015). They showed that for the best approximate

solution, the absolute error for t ¼ 0:4 and N ¼ 6 is equal to

9.7e-06. It is obvious that the present method gives better

results than the method inMashayekhi and Razzaghi (2015).

The obtained numerical solutions for different values of a are
depicted in Figs. 5 and 6, which are consistent with the exact

solution for this equation.

Table 1 The errors of RVIM for

Example 4.2 (case 1)
kyðxÞ � ykðxÞk2 kyðxÞ � ykðxÞk1

Present method

k ¼ 4 3.352022038e-05 3.240956057e-05

k ¼ 5 5.790548934e-06 5.647778800e-06

k ¼ 6 6.356985987e-07 6.238157544e-07

k ¼ 7 0 0

Spectral collocation method (Ma and Huang 2014)

N ¼ 2 – 7.6802e-04

N ¼ 4 – 1.3923e-05

N ¼ 6 – 1.6134e-06

Hybrid method (Mashayekhi and Razzaghi 2015)

N ¼ 1 – 8.0e-004

N ¼ 2 – 8.0e-005

N ¼ 3 – 8.0e-006

Fig. 4 Comparison between the exact solution and the RVIM solution

with k ¼ 4; 6; 8 for Example 4.2 (case 2)
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Example 4.5 Finally, consider the following fractional

integro-differential equation

D
1
2yðxÞ ¼

8
3

x
3
2 � 2x

1
2ffiffiffi

p
p � 3x5 � 4x4

12
þ
Z x

0

xtyðtÞdt 0� x; t � 1;

ð41Þ

subject to yð0Þ ¼ 0.

The exact solution of this problem is yðxÞ ¼ x2 � x

(Kumar et al. 2016).

According to the RVIM, the following iterative relation

resulted.

ykþ1ðxÞ ¼ y0ðxÞ þ I
1
2

8

3
x
3
2 � 2x

1
2

ffiffiffi
p

p � 3x5 � 4x4

12
þ
Z x

0

xtynðtÞdt

2
64

3
75;

y0ðxÞ ¼ 0:

8>>><
>>>:

ð42Þ

Using (42), the following relations are obtained.

y1ðxÞ ¼ x2 � x þ 256

945

x
9
2ffiffiffi
p

p � 128

693

x
11
2ffiffiffi
p

p ;

y2ðxÞ ¼ x2 � x þ Oðx8Þ;
y3ðxÞ ¼ x2 � x þ Oðx23

2 Þ;
y4ðxÞ ¼ x2 � x þ Oðx15Þ;

therefore, yðxÞ ¼ limk!1 ykðxÞ ¼ x2 � x; which is the

exact solution of (41). This example was studied by three

numerical schemes such as Linear (S1), Quadratic (S2) and

Quadratic-Linear (S3) scheme in Kumar et al. (2016). The

maximum absolute errors are reported in Tables 3 for the

schemes S1, S2 and S3. From this table, it is observed that

in the best situation, the maximum of absolute error is

5.20829e-05, whereas we obtained the exact solution.

5 An Application

Many problems in engineering and different fields of sci-

ences can be modeled by the fractional integro-differential

equations. Among these problems, we can refer to the

fractional population growth model of a species within a

closed system which can be written as the following Vol-

terra integro-differential equation:

DauðtÞ ¼ auðtÞ � bu2ðtÞ � cuðtÞ
Z t

0

uðsÞds; 0\a� 1;

with initial condition

uð0Þ ¼ b;

where a[ 0 is the birth rate coefficient, b[ 0 is the

crowding coefficient and c[ 0 is the toxicity coefficient

(Yuzbasi 2013). Also, u(t) is the population at time t with

initial population u(0). The total metabolism or total

amount of toxins accumulated from time zero is presented

in this model through the integral. Since the system is

closed, the presence of the toxic term always causes the

population level to fall to zero in the long run. It is worth

mentioning that for a ¼ 1, we have classical logistic

growth model.

In this part, we solve this model by the proposed method

for a ¼ 1; b ¼ 0:1, k ¼ c
ab
¼ 0:1 and the following

approximate solution is obtained.

uðtÞ ¼ 0:1þ :9t þ 3:55t2 þ 6:316666667t3 � 5:537500000t4

� 63:70916666t5 � 156:0804167t6 � 18:47323414t7

þ 1056:288569t8 þ Oðt9Þ;

also, for a ¼ 1
2
; b ¼ 0:1 and k ¼ 0:1, we have

Table 2 Error estimation of RVIM for Example 4.2 (case 2)

t Absolute error

k ¼ 4 k ¼ 5 k ¼ 6 k ¼ 7 k ¼ 8 k ¼ 9

0 0 0 0 0 0 0

0.1 5.74688563e-08 2.60833662e-09 1.09049437e-10 4.24672781e-12 1.55009920e-13 0

0.2 0.116359822e-05 8.38435705e-08 5.54256486e-09 3.42434673e-10 1.98412698e-11 0

0.3 6.79078378e-06 6.41327862e-07 5.51968629e-08 4.46500935e-09 3.39006696e-10 0

0.4 2.38491842e-05 2.72947279e-06 2.82060606e-07 2.76122018e-08 2.53968254e-09 0

0.5 6.34773521e-05 8.43406462e-06 1.00004884e-06 1.13465662e-07 1.21101500e-08 0

0.6 1.41885714e-04 2.13011487e-05 2.81391533e-06 3.60035794e-07 4.33928571e-08 0

0.7 2.81312416e-04 4.68374714e-05 6.75058746e-06 9.55744954e-07 1.27657335e-07 0

0.8 5.11123288e-04 9.30995595e-05 1.44109785e-05 2.22650843e-06 3.25079365e-07 0

0.9 8.69076998e-04 1.71388383e-04 2.81417353e-05 4.69451055e-06 7.41407645e-07 0

1 1.40277104e-03 2.97066429e-04 5.12266410e-05 9.14929773e-06 1.55009920e-06 0
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uðtÞ ¼ 0:1þ 1:015541250
ffiffi
t

p
þ 7:199999998t

þ 35:49637104t
3
2 þ 90:42203878t2 � 321:1576322t

5
2

� 5346:321826t3 � 32307:78860t
7
2 � 82694:80770t4 þ Oðt92Þ;

which are the same as that results given in Xu (2009).

Furthermore, to show the accuracy of our method for

solving this model, we compute the following error

estimate:

ENðtÞ ¼ jDauðtÞ � auðtÞ þ bu2ðtÞ þ cuðtÞ
Z t

0

uðsÞdsj:

Figures 7 and 8 show the numerical results and error

estimate for the population growth model, respectively.

These figures confirm the efficiency of our method for

solving this type of equations.

Fig. 5 Plot of the RVIM solution with a ¼ 0:25 (right) and a ¼ 0:5 (left) for Example 4.4

Fig. 6 Plot of the RVIM solution with a ¼ 0:75 (right) and a ¼ 1 (left) for Example 4.4
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6 Conclusion

In this work, we apply an efficient scheme based on the

VIM and Laplace transform, named the reconstruction of

variational iteration method (RVIM), to solve Volterra

integro-differential equations of fractional order (FIDEs).

This method was more accurate, effective and convenient

to solve FIDEs and did not require any knowledge of

variational theory. Also, without any restrictive assump-

tions one could derive an iterative relation. Moreover, the

stability and convergence properties of our method for

solving FIDEs have been proved. Several examples are

presented to demonstrate the efficiency and accuracy of the

proposed method. The results showed that the RVIM could

obtain solutions with a remarkable accuracy in only a few

number of iterations. Tables and graphs of the numerical

results indicated that in comparison with some other well-

known methods, our method was more effective and

accurate. The method was also applied to nonlinear FIDEs

and fractional partial integro-differential equations and

population growth model and the obtained results were

very interesting.
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