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Abstract
In this paper, following very recent results of Baliarsingh (Alex Eng J 55(2):1811–1816, 2016), we first introduce the

concepts of statistically XD-summability and XD-statistical convergence by means of fractional-order difference operator

Da;b;c
h . We also present some important inclusion relations between newly proposed methods. Our present investigation

deals essentially with various summability techniques and reveals how these methods lead to a number of approximation

by positive linear operators. As an application, we prove a Korovkin type approximation theorem and also present an

illustrative example using the generating function type Meyer-König and Zeller operator. Furthermore, we estimate the rate

of convergence of approximating linear operators by means of the modulus of continuity and some Voronovskaja type

results are derived. Finally, we present some computational and geometrical interpretations to illustrate some of our

approximation results.

Keywords Statistical convergence and statistical summability � Fractional order difference operator � Korovkin and

Voronovskaja type approximation theorems � Modulus of continuity and rate of convergence � Meyer-König and Zeller

polynomials
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1 Introduction and Preliminaries

This work is a combination of two mathematical research

areas namely statistical summability and approximation

process based on positive linear operators. To reveal the

novelties presented by this article, we present some new

developments and historical comments in summability

theory and its applications to approximation theorems.

The theory of summability arises from the process of

summation of series and consists fruitful applications in

various contexts, for example, approximation theory, prob-

ability theory, quantum mechanics, analytic continuation,

Fourier analysis, dynamical systems, the theory of orthogo-

nal series, and fixed point theory. Due to the rapid develop-

ment of sequence spaces some researchers have focused on

the notion of statistical convergence which brings a new

approach to the concept of ordinary convergence. In 1935,

statistical convergence was introduced by Zygmund (1959)

under the name of almost convergence. In 1951, Steinhaus

(1951) and Fast (1951) independently introduced the notion

of statistical convergence. At the last quarter of the twentieth

century, statistical convergence and statistical summability

have been played the significant role in the development of

functional analysis. There are many other generalizations of

these concepts which have been investigated by many

researchers (Kadak et al. 2017; Edely and Mursaleen 2009;

Fridy 1993; Kadak 2016; Mohiuddine 2016; Mursaleen et al.

2012; Connor 1989; Başarır and Konca 2017; Yeşilkayagil

and Başar 2016; Nuray et al. 2016; Duman and Orhan 2008).

Let A be a subset of the set N of natural numbers and

An ¼ j� n : j 2 Af g. The natural density of A is defined by

dðAÞ ¼ lim
n!1

1

n
jAnj

provided that the limit exists, where jAnj denotes the car-

dinality of set An. A sequence x ¼ ðxjÞ is said to be
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statistically convergent (st-convergent) to the number L,

denoted by st � lim x ¼ L, if, for each e[ 0; the set:

Ae ¼ j 2 N : jxj � Lj= e
� �

;

has natural density zero, or equivalently:

dðA�Þ ¼ lim
n!1

1

n
fj� n : jxj � Lj= eg
�� �� ¼ 0:

By x, we denote the family of all real valued sequences

and any subspace of x is called a sequence space. We write

‘1; c and c0 for the classical sequence spaces of all

bounded, convergent and null sequences, respectively.

With respect to the supremum norm kxk1 ¼ supk jxkj, it is

not hard to show that these are Banach spaces. The theory

of difference sequence spaces was initially introduced by

Kızmaz (1981). As a generalization of difference sequence

spaces, the idea of difference operators with natural order

m was introduced by Et and Çolak (1995) by defining:

kðDmÞ ¼ fx¼ ðxkÞ :DmðxÞ 2 k;m 2Ng ðk 2 f‘1;c;c0gÞ;

where

D0x ¼ ðxkÞ; Dmx ¼ ðDm�1xk � Dm�1xkþ1Þ;

and

Dmxk ¼
Xm

i¼0

ð�1Þi
m

i

� �
xkþi:

Moreover, these well-known difference operators were

extended and used year after year in many directions (see

Aydin and Başar 2004; Kadak 2017a, b). In 2013,

Baliarsingh (2013), Baliarsingh and Dutta (2015) (also see

Kadak and Baliarsingh 2015) introduced a new kind of

difference sequence spaces with respect to the fractional-

order difference operator involving Gamma function, as:

DðaÞðxkÞ ¼
X1

i¼0

ð�1Þi Cðaþ 1Þ
i!Cða� iþ 1Þ xk�i:

In the year 2016, some new classes of difference sequence

spaces of fractional order have been introduced by

Baliarsingh (2016) (see Baliarsingh and Nayak 2017).

Given a positive constant h, for each real numbers a, b
and cðc 62 NÞ, we define generalized difference sequence

associating with the fractional order difference operator

Da;b;c
h as:

ðDa;b;c
h xÞk ¼

X1

i¼0

ð�aÞið�bÞi
i!ð�cÞihaþb�c

xk�i; ð1Þ

where

ðuÞk :¼
1; ðu¼ 0 or k ¼ 0Þ;
Cðuþ kÞ
CðuÞ ¼ uðuþ 1Þðuþ 2Þ. . .ðuþ k� 1Þ; ðk 2NÞ:

8
<

:

We assume without loss of generality, the summation given

in (1) is convergent for all c 62 N and aþ b[ c.

Our main focus of the present study is to generalize

the concept of statistical summability using a fractional

order linear difference operator Da;b;c
h . In fact, our pre-

sent investigation shows how newly proposed summa-

bility methods lead to a number of approximation

processes. We also establish some important approxi-

mation results associating with statistically XD-summa-

bility and investigate Korovkin and Voronovskaja type

approximation results by the help of generalized Meyer-

König and Zeller operator. We also present computa-

tional and geometrical approaches to illustrate some of

our results in this paper.

2 Some New Definitions and Inclusion
Relations

In this section, we first give the definitions concerning

statistically XD-summability and XD-statistical conver-

gence by means of the fractional order difference operator

Da;b;c
h . Secondly, we state and prove two theorems and an

illustrative example to determine some inclusion relations

between proposed methods.

Let ðknÞ1n¼0 be a strictly increasing sequence of positive

numbers i.e.

0\k0\k1\ � � �\kn\ � � � and lim
n!1

kn ¼ 1:

Also, let x ¼ ðxnÞ be a sequence of real or complex num-

ber. We then define the following sum involving difference

operator Da;b;c
h ðkxÞ as follows:

XD
n ðkxÞ ¼

1

Dkn

Xkn

k¼kn�1

ðDa;b;c
h ðkxÞÞk

¼ 1

kn � kn�1

Xkn

k¼kn�1

Xk

i¼0

ð�aÞið�bÞi
i!ð�cÞihaþb�c

kk�ixk�i;

where a; b and c 62 N are real numbers, h is a positive

constant such that jDa;b;c
h ðknÞj � 0 and k�n ¼ 0 for all

n 2 N. That is,

XD
n ðkxÞ¼

1

Dknhaþb�c

Xkn

k¼kn�1

(

kkxk�
ab
c
kk�1xk�1þ

aða�1Þbðb�1Þ
2cðc�1Þ kk�2xk�2

� aða�1Þða�2Þbðb�1Þðb�2Þ
3!cðc�1Þðc�2Þ kk�3xk�3þ���þð�aÞkð�bÞk

k!ð�cÞk
k0x0

)

:

Definition 1 Let a; b and c 62 N be real numbers and h be

any positive constant. A sequence x ¼ ðxnÞ is said to be

XD-summable to the number L, if
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lim
n!1

1

kn � kn�1

Xkn

k¼kn�1

ðDa;b;c
h ðkxÞÞk ¼ L:

We also say that the sequence x ¼ ðxnÞ is strongly XD
q -

summable to L, if

lim
n!1

1

kn � kn�1

Xkn

k¼kn�1

��ðDa;b;c
h ðkxÞÞk � L

��q ¼ 0 ð0\q\1Þ:

Definition 2 A sequence x ¼ ðxnÞ is said to be XD-sta-

tistical convergent to a number L, if, for every �[ 0;

lim
n!1

1

kn � kn�1

k� kn � kn�1 :
��ðDa;b;c

h ðkxÞÞk � L
��� �

n o���
��� ¼ 0:

We denote it by SXD � lim xn ¼ L: We also say that the

sequence x ¼ ðxnÞ is statistically XD-summable to L, if

st � limXD
n ðkxÞ ¼ L:

Equivalently, we may write

lim
j!1

1

j

(

n� j :

����
1

kn � kn�1

Xkn

k¼kn�1

ðDa;b;c
h ðkxÞÞk � L

����= �

)�����

�����
¼ 0:

We write it as NXD � lim xn ¼ L.

Now, we shall give the following special cases to show

the effectiveness of above definitions.

(1) Let us take a ¼ 2, b ¼ c, h ¼ 1, i.e.

ðD2;b;b
1 ðkxÞÞk ¼ kkxk � 2kk�1xk�1 þ kk�2xk�2:

Then statistically XD-summability given in Defini-

tion 2 is reduced to the K2-statistically summability

introduced in Braha et al. (2015) (see also Kadak

2016; Alotaibi and Mursaleen 2013).

(2) Let a ¼ 2, b ¼ c, h ¼ 1, then XD-statistical conver-

gence given in Definition 2 reduces to weighted K2-

statistically convergence. In addition, the notion of

strongly XD
q -summability can be interpreted as

strongly K2-summability (see Kadak 2016; Braha

et al. 2015; Mursaleen 2000).

We now present the following theorem which gives the

relation between XD-statistical convergence and statisti-

cally XD-summability.

Theorem 1 Let jðDa;b;c
h ðkxÞÞk � Lj �M for all k 2 N: If a

sequence x ¼ ðxnÞ is XD-statistical convergent to the

number L, then it is statistically XD-summable to the same

limit, but not conversely.

Proof Let h[ 0 be any constant, a; b and c 62 N be real

numbers. Let jðDa;b;c
h ðkxÞÞk � Lj �M for all k 2 N. Since

SXD � lim xn ¼ L, we have

lim
n!1

1

kn � kn�1

k� kn � kn�1 :
��ðDa;b;c

h ðkxÞÞk � L
��� �

n o���
��� ¼ 0:

We thus find that

jXD
n ðkxÞ � Lj ¼

����

�
1

kn � kn�1

Xkn

k¼kn�1

ðDa;b;c
h ðkxÞÞk

�
� L

����

¼
����

1

kn � kn�1

Xkn

k¼kn�1

½ðDa;b;c
h ðkxÞÞk � L� þ

�
1

kn � kn�1

Xkn

k¼kn�1

L� L

�����

� 1

kn � kn�1

(����
Xkn

k ¼ kn�1

ðk 2 Kknð�ÞÞ

½ðDa;b;c
h ðkxÞÞk � L�

����þ
����

Xkn

k ¼ kn�1

ðk 2 KC
kn
ð�ÞÞ

½ðDa;b;c
h ðkxÞÞk � L�

����

)

þ
����

1

kn � kn�1

Xkn

k¼kn�1

L� L

����

� 1

kn � kn�1

(
Xkn

k ¼ kn�1

ðk 2 Kknð�ÞÞ

��ðDa;b;c
h ðkxÞÞk � L

��þ
Xkn

k ¼ kn�1

ðk 2 KC
kn
ð�ÞÞ

��ðDa;b;c
h ðkxÞÞk � L

��
)

�
MjKknð�ÞÞj þ �jKC

kn
ð�Þj

kn � kn�1

! �ðn ! 1Þ;
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where

Kknð�Þ :¼ fk� kn � kn�1 : jðDa;b;c
h ðkxÞÞk � Lj � �g

and

KC
kn
ð�Þ :¼ fk� kn � kn�1 : jðDa;b;c

h ðkxÞÞk � Lj\�g:

That is to say that x ¼ ðxnÞ is XD-summable to L and hence

statistically XD-summable to the same limit. On the other

hand the converse is not true, as can be seen by considering

the following example.

Example 1 Define the sequence x ¼ ðxnÞ by

xn :¼
1=m2; n ¼ m2 � m;m2 � mþ 1; . . .;m2 � 1;m[ 1;

�1=m3; n ¼ m2;m[ 1;

0; otherwise

8
><

>:

for all m 2 N. Let a 2 ð0; 1Þ; b ¼ c, h ¼ 1 and kn ¼ n2 for

all n 2 N. We thus find that

XD
n ðkxÞ ¼

1

2n� 1

(

n4xn2 þ ð1� aÞðn2 � 1Þ2
xn2�1

þ
�

1� aþ aða� 1Þ
2

�
ðn2 � 2Þ2

xn2�2 þ � � �

þ
�

1� aþ aða� 1Þ
2

� aða� 1Þða� 2Þ
3!

þ � � �
�
ðn� 1Þ4

xðn�1Þ2

)

:

ð2Þ

Letting n!1 in (2), we find that XD
n ðkxÞ ! 0 which

yields st� limXD
n ðkxÞ ¼ 0. On the other hand, for a fixed

a 2 ð0;1Þ, since

SXD � lim inf xn ¼ lim inf
n

1

2n� 1
k� 2n� 1 : jDa;b;c

h ðxkÞj� �
n o���

��� ¼ 0

and

SXD � lim supxn ¼ lim sup
n

1

2n� 1
k�2n� 1 : jDa;b;c

h ðxkÞj� �
n o���

��� ¼ 1;

then the sequence x ¼ ðxnÞ is not XD-statistical convergent.

Theorem 2

(a) Let us suppose that x ¼ ðxnÞ is strongly XD
q -

summable ð0\q\1Þ to the number L. If the

following conditions hold, then the sequence x is

XD-statistical convergent to L:

(i) q 2 ð0; 1Þ and 05 jðDa;b;c
h ðkxÞÞk � Lj\1 or

(ii) q 2 ½1;1Þ and 15 jðDa;b;c
h ðkxÞÞk � Lj\1.

(b) Assume that x ¼ ðxnÞ is XD-statistical convergent to

L and jðDa;b;c
h ðkxÞÞk � Lj �M for all k 2 N: If the

following conditions hold, then the sequence x is

strongly XD
q -summable to L:

(i) q 2 ð0; 1� and M 2 ½1;1Þ or

(ii) q 2 ½1;1Þ and M 2 ½0; 1Þ.

Proof

(a) Let x ¼ ðxnÞ be strongly XD
q -summable (0\q\1)

to L. Under the above conditions, we get

1

�Dkn

Xkn

k¼kn�1

��ðDa;b;c
h ðkxÞÞk�L

��q� 1

�Dkn

Xkn

k¼kn�1

��ðDa;b;c
h ðkxÞÞk�L

��

� 1

�Dkn

Xkn

k¼kn�1

ðk2Kknð�ÞÞ

��ðDa;b;c
h ðkxÞÞk�L

��

� 1

�Dkn

Xkn

k¼kn�1

ðk2Kknð�ÞÞ

�

¼ 1

kn�kn�1

jKknð�ÞÞj ð�[0Þ

which leads us by passing to limit as n ! 1 that

1

kn � kn�1

k� kn � kn�1 :
��ðDa;b;c

h ðkxÞÞk � L
��� �

n o���
���! 0:

Hence, x ¼ ðxnÞ is XD-statistical convergent to L.

(b) Let x ¼ ðxnÞ be XD-statistical convergent to L and

jðDa;b;c
h ðkxÞÞk � Lj �M for all k 2 N:

Thus, clearly, we have

1

Dkn

Xkn

k¼kn�1

��ðDa;b;c
h ðkxÞÞk � L

��q

¼ 1

Dkn

Xkn

k ¼ kn�1

ðk 2 KC
kn
ð�ÞÞ

��ðDa;b;c
h ðkxÞÞk � L

��q þ 1

Dkn

�
Xkn

k ¼ kn�1

ðk 2 Kknð�ÞÞ

��ðDa;b;c
h ðkxÞÞk � L

��q

� 1

Dkn

Xkn

k ¼ kn�1

ðk 2 KC
kn
ð�ÞÞ

��ðDa;b;c
h ðkxÞÞk � L

��þ 1

Dkn

�
Xkn

k ¼ kn�1

ðk 2 Kknð�ÞÞ

��ðDa;b;c
h ðkxÞÞk � L

��

�
�jKC

kn
ð�Þj

kn � kn�1

þMjKknð�Þj
kn � kn�1

! � ðn ! 1Þ:
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Hence, for 0\q\1, our sequence x ¼ ðxnÞ is

strongly XD
q -summable to L . h

3 Applications to Korovkin Type
Approximation Theorem

Let C[a, b] be the space of all continuous real valued

functions on [a, b]. It is well known that C[a, b] is a

Banach space with the norm defined by

kfk1 ¼ sup
�
jf ðxÞj : x 2 ½a; b�

�
:

Let L : C½a; b� ! C½a; b� be a linear operator. Then, L is

said to be positive provided by f � 0 implies Lf � 0. We

also use the notation L(f; x) for the value of Lf at a point x.

The classical Korovkin type approximation theorem (see

Korovkin 1953; Bohman 1952) states as follows:

Let Tn : C½a; b� ! C½a; b� be a sequence of positive

linear operators. Then

lim
n!1

kTnðf ; xÞ � f ðxÞk1 ¼ 0; for all f 2 C½a; b�

if and only if

lim
n!1

kTnðfi; xÞ � fiðxÞk1 ¼ 0; for each i ¼ 0; 1; 2;

where the test function fiðxÞ ¼ xi.

The statistical version of Korovkin theorem was given

by Gadjiev and Orhan (2002). With the development of

summability methods, this type approximation has been

widely used and extended by many authors the reader may

refer to (Kadak 2016, 2017; Orhan and Demirci 2014;

Srivastava et al. 2012; Edely et al. 2010).

In this section using the test function fiðxÞ ¼ ð x
1�x

Þi, i ¼
0; 1; 2 for x 2 ½0;A� where A5

1
2
, we try to obtain a Kor-

ovkin type approximation theorem which is stronger than

that both classical and statistical cases of Korovkin

theorem.

Theorem 3 Let a, b and c 62 N be real numbers and h be

a positive constant. Also let ðTkÞk� 1 be a sequence of

positive linear operators from C[0, A] into itself. Then, for

all f 2 C½0;A�;
NXD � lim

n!1

		Tkðf ðsÞ; xÞ � f ðxÞ
		
1 ¼ 0 ð3Þ

if and only if

NXD� lim
n!1

		Tkð1; xÞ � 1
		
1 ¼ 0 ð4Þ

NXD� lim
n!1

				Tk

�
s

1 � s
; x

�
� x

1 � x

				
1

¼ 0 ð5Þ

NXD� lim
n!1

				Tk

 �
s

1 � s

�2

; x

!

�
�

x

1 � x

�2				
1

¼ 0:

ð6Þ

Proof Since each 1; x
1�x

; ð x
1�x

Þ2
functions belongs to

C[0, A] then the assertions (4), (5) and (6) follow imme-

diately from the first assertion (3). Let us take f 2 C½0;A�
and x 2 ½0;A� be fixed. Then there exists a constant M[ 0

such that jf ðxÞj �M for all x 2 ½0;A�. Thus, we have

jf ðsÞ � f ðxÞj � 2M ðs; x 2 ½0;A�Þ: ð7Þ

By continuity of f at x, for given e[ 0, there exists a

number d ¼ dðeÞ[ 0 such that for all s; x 2 ½0;A�
satisfying
����

s

1 � s
� x

1 � x

����\d

we have

jf ðsÞ � f ðxÞj\e : ð8Þ

Setting uðs; xÞ ¼ ð s
1�s

� x
1�x

Þ. For j s
1�s

� x
1�x

j � d, then

u2ðs; xÞ� d2. Hence, we derive the consequence from (7)

and (8) that

jf ðsÞ � f ðxÞj\eþ 2M

d2
u2ðs; xÞ:

It follows from the linearity and positivity of Tk that

jTkðf ðsÞ; xÞ � f ðxÞj ¼ jTkðf ðsÞ � f ðxÞ; xÞ þ f ðxÞðTkðf0; xÞ � f0ðxÞÞj
� Tkðjf ðsÞ � f ðxÞj; xÞ þMjTkð1; xÞ � 1j

� Tk eþ 2M

d2
u2; x

� �����

����þMjTkð1; xÞ � 1j

� eþ eþM þ 4M

d2

� �
jTkð1; xÞ � 1j þ 4M

d2

����

� Tk

�
s

1 � s
; x

�
� x

1 � x

����

þ 2M

d2

����Tk

��
s

1 � s

�2

; x

�
�
�

x

1 � x

�2����:

Taking the supremum over x 2 ½0;A�, we obtain

kTkðf ðsÞ; xÞ � f ðxÞk1 � eþ N

(				Tkð1; xÞ � 1

				
1

þ
				Tk

�
s

1 � s
; x

�
� x

1 � x

				
1

þ
				Tk

��
s

1 � s

�2

; x

�
�
�

x

1 � x

�2				
1

)

ð9Þ

where
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N :¼ eþM þ 4M

d2


 �
:

We now replace Tkð�; xÞ by

XD
k ðTð�; xÞÞ ¼

1

kk � kk�1

Xkk

j¼kk�1

Da;b;c
h ðkTð�; xÞÞj

in (9). For a given e0 [ 0, we choose a number e[ 0 such

that e\e0. Then, upon setting

B :¼ k� n :k XD
k ðTðf ðsÞ; xÞÞ � f ðxÞ k1 � e0

� �
;

B0 :¼ k� n : kXD
k ðTð1; xÞÞ � 1k1 � e0 � e

3N


 �
;

B1 :¼


k� n :

		XD
k

�
T
� s

1 � s
; x


� x

1 � x

		
1 � e0 � e

3N

�
;

B2 :¼ k� n :
		XD

k

�
T
�� s

1 � s

2
; x


�
� x

1 � x

2		
1 � e0 � e

3N


 �
:

Then, it is clear that B � B0 [ B1 [ B2 and hence using the

conditions (4–6) we obtain

NXD � lim
n!1

kTkðf ðsÞ; xÞ � f ðxÞk1 ¼ 0; for all f 2 C½0;A�;

which completes the proof.

Now we may give an example for Theorem 3. Before

giving this example, we present a short introduction related

with the generating function type Meyer-Konig and Zeller

operators (see Altın et al. 2005).

For a function f on [0, 1), the operators

Mnðf ; xÞ ¼
X1

k¼0

f
k

k þ nþ 1

� �
mnkðxÞ

are known as Meyer-Konig and Zeller operators Meyer-

König and Zeller (1960) where

mnkðxÞ ¼
nþ k

k

� �
xkð1 � xÞnþ1:

This operator were also generalized in Altın et al. (2005)

using linear generating functions

Lnðf ðsÞ; xÞ ¼
1

hnðx; sÞ
X1

k¼0

f
ak;n

ak;n þ bn

� �
Ck;nðsÞxk ð10Þ

where 0\ ak;n
ak;nþbn

� ~A, ~A 2 ð0; 1Þ, and hnðx; sÞ is the gen-

erating function for the sequence of fCk;nðsÞgðs 2 IÞ with

the form

hnðx; sÞ ¼
X1

k¼0

Ck;nðsÞxk ðs 2 I � RÞ:

We also suppose that the following conditions hold true:

(i) hnðx; sÞ ¼ ð1 � xÞhnþ1ðx; sÞ;

(ii) bnCk;nþ1ðsÞ ¼ akþ1;nCkþ1;nðsÞ and Ck;nðsÞ� 0 for

all s 2 I � R;

(iii) bn ! 1; bnþ1

bn
! 1 and bn 6¼ 0 for all n 2 N;

(iv) akþ1;n � ak;nþ1 ¼ un where junj �m\1, and

a0n ¼ 0:

It is easy to see that Ln defined by (10) is positive and

linear. We also observe that

Lnð1; xÞ ¼1; Ln
s

1 � s
; x

� �
¼ x

1 � x
and

Ln
s

1 � s

� �2

; x

� �
¼ x2

ð1 � xÞ2

bnþ1

bn
þ un

bn

x

1 � x
:

Example 2 Let fTkg be a sequence of positive linear

operators from C½0; ~A� into itself defined by

Tkðf ðsÞ; xÞ ¼ ð1 þ xkÞLkðf ðsÞ; xÞ ð11Þ

where x ¼ ðxkÞ is defined as in Example 1. Since

NXD � lim xn ¼ 0, it is easy to see that

NXD� lim
n

kTkð1; xÞ � 1k1 ¼ 0 and

NXD� lim
n

Tk
s

1 � s
; x

� �
� x

1 � x

			
			
1
¼ 0:

In view of (iii), we have

Tk

��
s

1 � s

�2

; x

�
�
�

x

1 � x

�2

¼ ð1 þ xkÞ
��

x

1 � x

�2
bkþ1

bk
þ uk

bk

x

1 � x

� ��
�
�

x

1 � x

�2

�ð1 þ xkÞ
(�

bkþ1

bk
� 1

�
þ m

bk

)

which yields that

NXD � lim
n

				Tk

��
s

1 � s

�2

; x

�
�
�

x

1 � x

�2				
1

¼ 0:

Therefore, we obtain

NXD � lim
n

kTkðfiðsÞ; xÞ � fiðxÞk1 ¼ 0; i ¼ 0; 1; 2:

By taking Theorem 3 into account, and hence by letting

n ! 1, we are led to the fact that

NXD � lim
n

kTkðf ðsÞ; xÞ � f ðxÞk1 ¼ 0:

In view of above example, we say that our proposed

method works successfully but classical and statistical

forms of Korovkin theorem do not work for this sequence

fTkg of positive linear operators.
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4 Rates of XD-Statistical Convergence

In this section, we estimate the rate of XD-statistical con-

vergence of positive linear operators defined from C[0, A]

into itself.

We first present the following definition.

Definition 3 Let a, b and c 62 N be real numbers and h be

a positive constant. Also let ðhnÞ be any non-increasing

sequence of positive real numbers. We say that a sequence

x ¼ ðxnÞ is XD-statistical convergent to the number L with

the rate oðhnÞ if, for every �[ 0,

lim
n!1

1

hnDkn
k� kn � kn�1 : jðDa;b;c

h ðkxÞÞk � Lj � �
n o���

��� ¼ 0:

ð12Þ

In this case, we can write xk � L ¼ XD � oðhnÞ.

Lemma 1 Let ðanÞ and ðbnÞ be positive non-increasing

sequences. Assume that x ¼ ðxkÞ and y ¼ ðykÞ are two

sequences such that

xk � L1 ¼ XD � oðanÞ and yk � L2 ¼ XD � oðbnÞ:

Then

(1) ðxk � L1Þ 	 ðyk � L2Þ ¼ XD � oðcnÞ
(2) ðxk � L1Þðyk � L2Þ ¼ XD � oðanbnÞ
(3) lðxk � L1Þ ¼ XD � oðanÞ, for any scalar l 2 R,

where cn ¼ maxnfan; bng.

Proof Assume that xk � L1 ¼ XD � oðanÞ and yk � L2 ¼
XD � oðbnÞ. In addition, for �[ 0, let us set

D :¼ k� kn � kn�1 : jðDa;b;c
h ðkxÞÞk þ ðDa;b;c

h ðkyÞÞk � ðL1 þ L2Þj � �
n o

;

D0 :¼ k� kn � kn�1 : jðDa;b;c
h ðkxÞÞk � L1j �

�

2

n o

and

D1 :¼ k� kn � kn�1 : jðDa;b;c
h ðkyÞÞk � L2j �

�

2

n o
:

We then observe that D � D0 [ D1. Thus, we obtain

jDj
cnðkn � kn�1Þ

� jD0j
anðkn � kn�1Þ

þ jD1j
bnðkn � kn�1Þ

ð13Þ

where cn ¼ maxfan; bng. Now letting n ! 1 in (13) and

using by hypothesis, we have

lim
n!1

1

cnDkn

��fk� kn � kn�1 : jðDa;b;c
h ðkxÞÞk þ ðDa;b;c

h ðkyÞÞk

� ðL1 þ L2Þj � �g
�� ¼ 0;

as asserted by Lemma 1 (1). Since the other assertions can

be proved similarly, we choose to omit the details involved.

We now recall the following basic definition and nota-

tion on the modulus of continuity to get the rates of XD-

statistical convergence using Definition 3.

The modulus of continuity for a function f 2 C½0;A� is

defined as follows:

xðf ; dÞ ¼ sup
jhj\d

jf ðxþ hÞ � f ðxÞj:

It is well-known that for any d[ 0 and each s 2 ½0;A�,

jf ðsÞ � f ðxÞj �xðf ; dÞ js� xj
d

þ 1

� �
; ðf 2 C½0;A�Þ:

ð14Þ

Theorem 4 Let a, b and cð62 NÞ be real numbers and h

be a positive constant. Let fTkg be a sequence of positive

linear operators from C[0, A] into itself. Assume further

that ðanÞ and ðbnÞ be positive non-increasing sequences.

Suppose that the following conditions hold true:

(i) kTkð1; xÞ � 1k1 ¼ XD � oðanÞ on [0, A],

(ii) xðf ; nkÞ ¼ XD � oðbnÞ on [0, A], where nk :¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTkðuxðsÞ; xÞk

p
1 with

uxðsÞ ¼
�

s

1 � s
� x

1 � x

�2

:

Then we have, for all f 2 C½0;A�;

kTkðf ðsÞ; xÞ � f ðxÞk1 ¼ XD � oðcnÞ

where cn ¼ maxfan; bng.

Proof Let f 2 C½0;A� and x 2 ½0;A� be fixed. Since fTkg
is linear and monotone, we see (for any d[ 0) that

jTkðf ðsÞ; xÞ � f ðxÞj � Tkðjf ðsÞ � f ðxÞj; xÞ þ jf ðxÞjjTkð1; xÞ � 1j

�xðf ; dÞTk
�� s

1�s
� x

1�x

��

d
þ 1; x

� �
þ NjTkð1; xÞ � 1j

�xðf ; dÞTk
�

s
1�s

� x
1�x

2

d2
þ 1; x

 !

þ NjTkð1; xÞ � 1j

�xðf ; dÞ 1

d2
Tkðux; xÞ þ Tkð1; xÞ


 �
þ NjTkð1; xÞ � 1j

where N ¼ kfk1. Taking the supremum over x 2 ½0;A� on

both sides, we get

kTkðf ðsÞ; xÞ � f ðxÞk1

�xðf ; dÞ 1

d2
kTkðux; xÞk1 þ kTkð1; xÞ � 1k1 þ 1


 �

þ NkTkð1; xÞ � 1k1:

Now, if we take

d ¼ nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTkðux; xÞk

p
1

in the last relation, we deduce that
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kTkðf ðsÞ; xÞ � f ðxÞk1 �xðf ; nkÞ
�
kTkð1; xÞ � 1k1 þ 2

�

þ NkTkð1; xÞ � 1k1
¼ xðf ; nkÞkTkð1; xÞ � 1k1

þ 2xðf ; nkÞ þ NkTkð1; xÞ � 1k1:

Now, we replace Tkð�; xÞ by

Hkð�; xÞ :¼ Da;b;c
h ðkTð�; xÞÞk:

Using Lemma 1, for a given �[ 0, we obtain that

1

cnðkn � kn�1Þ
��fk� kn � kn�1 : kHkðf ðsÞ; xÞ � f ðxÞk1 � eg

��

� 1

anðkn � kn�1Þ
��fk� kn � kn�1 : kHkð1; xÞ � 1k1 � e=3Ng

��

þ 1

anbnðkn � kn�1Þ
��fk� kn � kn�1 : xðf ; nkÞkHkð1; xÞ � 1k1 � e=3g

��

þ 1

bnðkn � kn�1Þ
��fk� kn � kn�1 : xðf ; nkÞ� e=6g

��:

Letting n ! 1 which leads us to the fact that

kTkðf ðsÞ; xÞ � f ðxÞk1 ¼ XD � oðcnÞ ðf 2 C½0;A�Þ;

as desired.

5 A Voronovskaja-Type Theorem

In this section, using the notion of statistically XD-

summability we obtain a Voronovskaja-type approximation

theorem by the help of Tk family of linear operators defined

by (11) for hnðx; sÞ ¼ ð1 � xÞ�n�1
, ak;n ¼ k, Ck;nðsÞ ¼

nþ k

k

� �
and bn ¼ nþ 1 for all n 2 N.

Lemma 2 Let a, b and cð62 NÞ be real numbers and h be

a positive constant. Suppose also that gxðsÞ ¼ s
1�s

� x
1�x

� 

where x; s 2 ½0;A�. Then, we get

NXD � lim
n

�
ðk þ 1ÞTkðg2

x ; xÞ
�
¼ x

ð1 � xÞ2
: ð15Þ

Proof Let h be a positive constant, x 2 ½0;A� and, a, b and

cð62 NÞ be real numbers. Since

Lk
� s

1 � s
; x

¼ x

1 � x
;

we deduce that

Tkðgx; xÞ ¼ ð1 þ xkÞ Lk

�
s

1 � s
; x

�
� x

1 � x
Lkð1; xÞ

� �
¼ 0:

In addition, since

Lk
s2

ð1 � sÞ2
; x

 !

¼ k þ 2

k þ 1

�
x

1 � x

�2

þ 1

k þ 1

�
x

1 � x

�
;

we find that

Tkðg2
x ;xÞ ¼ ð1þ xkÞ Lk

�
s2

ð1� sÞ2
;x

�
� 2

x

1� x
Lk

�
s

1� s
;x

�"

þ
�

x

1� x

�2

Lkð1;xÞ
#

¼ ð1þ xkÞ
1

kþ 1

�
x

1� x

�2

þ 1

kþ 1

�
x

1� x

�" #

which yields, for all x2 ½0;A�ðA�1=2Þ, that

ðk þ 1ÞTkðg2
x ; xÞ �

�
x

1 � x

�2

þ x

1 � x

" #

¼ xk

�
x

1 � x

�2

þ x

1 � x

" #

� 2xk:

Since

NXD � lim
n!1

2xk ¼ 0;

the desired result follows, that is,

NXD � lim
n!1

ðk þ 1ÞTkðg2
x ; xÞ ¼

x

ð1 � xÞ2
:

Corollary 1 Assume that h is a positive constant,

x 2 ½0;A�. Let gxðsÞ be given as in Lemma 2. Then there is

a positive constant M0ðxÞ depending only on x, such that

NXD � lim
n!1

�
ðk þ 1Þ2

Tkðg4
x ; xÞ

�
¼ M0ðxÞ:

Theorem 5 Let a, b and cð62 NÞ be real numbers and

h be a positive constant. Then, for every f 2 C½0;A� such
that f 0; f 00 2 C½0;A�;

NXD � lim
n



ðk þ 1Þ

�
Tk

�
f

�
s

1 � s

�
; x

�
� f

�
x

1 � x

���

¼ x

2ð1 � xÞ2
f 00
�

x

1 � x

�
:

Proof Let x 2 ½0;A� and f ; f 0; f 00 2 C½0;A�. Now we con-

sider the following function defined by

where hxð x
1�x

Þ ¼ 0 and hx 2 C½0;A�. Using the Taylor for-

mula for f 2 C½0;A�, we can write
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f
s

1 � s

� �
¼ f

x

1 � x

� �
þ s

1 � s
� x

1 � x

� �
f 0

x

1 � x

� �
þ

þ 1

2

s

1 � s
� x

1 � x

� �2

f 00
x

1 � x

� �

þ hx

�
s

1 � s

�
s

1 � s
� x

1 � x

� �2

:

We then observe that the operator Tk is linear and that

Tk

�
f

�
s

1 � s

�
; x

�
¼ Tk

�
f

�
x

1 � x

�
; x

�

þ f 0
�

x

1 � x

�
Tk

��
s

1 � s
� x

1 � x

�
; x

�

þ 1

2
f 00
�

x

1 � x

�
Tk

��
s

1 � s
� x

1 � x

�2

; x

�

þ Tk

�
hx

�
s

1 � s

��
s

1 � s
� x

1 � x

�2

; x

�
:

In view of Lemma 2, one obtains

Tk

�
f

�
s

1�s

�
;x

�
¼ f

�
x

1�x

�
Tkð1;xÞþ f 0

�
x

1�x

�
Tk

�
gx;x

�

þ1

2
f 00
�

x

1�x

�
Tk

�
g2
x ;x

�
þTk

�
hx

�
s

1�s

�
�g2

x ;x

�

¼ f

�
x

1�x

�
ð1þxkÞ

þ1þxk

2
f 00
�

x

1�x

�
1

kþ1

�
x

1�x

�2

þ 1

kþ1

�
x

1�x

�" #

þTk

�
hx

�
s

1�s

�
�g2

x ;x

�
:

Upon multiplying both sides by kþ1, we have

ðk þ 1Þ
�
Tk

�
f

�
s

1 � s

�
; x

�
� f

�
x

1 � x

��

¼ ðk þ 1Þf
�

x

1 � x

�
xk þ

1 þ xk

2
f 00
�

x

1 � x

�
x

ð1 � xÞ2

þ ðk þ 1ÞTk
�
hx

�
s

1 � s

�
� g2

x ; x

�

and hence

����ðkþ 1Þ Tk

�
f

�
s

1� s

�
;x

�
� f

�
x

1� x

�� �

� 1

2

x

ð1� xÞ2
f 00
�

x

1� x

�����

�ðkþ 1ÞM1xk þM2

xk

2
þðkþ 1Þ

����Tk

�
hx

�
s

1� s

�
� g2

x ;x

�����

ð16Þ

where M1 ¼
		f ð x

1�x
Þ
		
1 and M2 ¼

		f 00ð x
1�x

Þ
		
1. Applying

the Cauchy-Schwarz inequality in (16), we obtain

ðk þ 1Þ
����Tk

�
hx

�
s

1 � s

�
� g2

x ; x

�����

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tk

�
h2
x

�
s

1 � s

�
; x

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 1Þ2

Tkðg4
x ; xÞ

q
:

From Theorem 3, we observe that

NXD � lim Tk

�
h2
x

�
s

1 � s

�
; x

�
¼ 0:

Using Lemma 2 and Corollary 1, it is not hard to see that

NXD � lim
n
ðk þ 1Þ

����Tk

�
hx

�
s

1 � s

�
� g2

x ; x

����� ¼ 0:

Thus, by taking n ! 1 in (16), we get

NXD � lim
n

ðk þ 1ÞM1xk þ
M2xk

2




þ ðk þ 1Þ
����Tk

�
hx

�
s

1 � s

�
� g2

x ; x

�����

�
¼ 0;

which leads us to the desired assertion of Theorem 5. h

6 Computational and Geometrical
Approaches

In this section, we provide the computational and geo-

metrical approaches of Theorem 3 with respect to the linear

operator Lnðf ; xÞ given in (10) under different choices for

the parameters. Here, we have found it to be convenient to

hx

�
s

1 � s

�
¼

f
s

1 � s

� �
� f

x

1 � x

� �
� s

1 � s
� x

1 � x

� �
f 0

x

1 � x

� �
� 1

2

s

1 � s
� x

1 � x

� �2

f 00
x

1 � x

� �

s

1 � s
� x

1 � x

� �2
; s 6¼ x;

0; s ¼ x;

8
>>><

>>>:
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Fig. 1 The convergence of

XD
mðkLð1; xÞÞ for different

values of m

Fig. 2 The convergence of XD
m kL s

1�s
; x

� � 
for different values of m
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Fig. 3 The convergence of XD
m kL s

1�s

� 2
; x

� �� �
for different values of m

Fig. 4 The convergence of XD
m kL cosð3psÞ

1þs2 ; x
� �� �

for different values of m
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investigate our series only for finite sums. More powerful

equipments with higher speed can easily compute the more

complicated infinite series in a similar manner.

Here, in our computations, we take

• hnðx; sÞ ¼ ð1 � xÞ�n�1
and Ck;nðsÞ ¼

nþ k

k

� �
;

• ak;n ¼ k and bn ¼ nþ 1;

• a ¼ 2; b ¼ c and h ¼ 1;

• kðnÞ ¼ n2 for all n 2 N.

Based upon the above choices, we may define the follow-

ing operator XD
mðkLf Þ by

XD
mðkLf Þ ¼

1

2m� 1

Xm2

n¼ðm�1Þ2

D2;b;b
1 ðknLnðf ; xÞÞ ð17Þ

where

Lnðf ; xÞ ¼ ð1 � xÞnþ1
X1

k¼0

f
k

k þ nþ 1

� �
nþ k

k

� �
xk:

ð18Þ

Under above conditions, we obtain

XD
mðkLf Þ ¼

1

2m� 1
m2Lmðf ; xÞ � ðm� 1Þ2

Lm�1ðf ; xÞ
h i

:

In fact, in Fig. 1, the value of k runs from k ¼ 0 to 25 for

m ¼ 5, m ¼ 10 and m ¼ 15, respectively. As the value of

m increases, the sequence

XD
mðkLð1; xÞÞ

converges towards to the function f0ðxÞ ¼ 1.

In addition, from Fig. 2, it can be observed that, as the

value of m increases, the sequence

XD
m

�
kL
� s

1 � s
; x
�

ðs; x 2 ½0;A�;A� 1=2Þ

converges to the function f1ðxÞ ¼ x
1�x

:

Similarly, from Fig. 3, it can be easily seen that, as the

value of m increases, the sequence

XD
m

�
kL

��
s

1 � s

�2

; x

��

converges to the function f2ðxÞ given by f2ðxÞ ¼
�

x
1�x

2
:

Figures 1, 2 and 3 clearly show that the conditions (4),

(5) and (6) of Theorem 3 are satisfied.

We also observe from Fig. 4 that, as the value of m in-

creases, the operators given by (17) converge towards the

function. Indeed, Fig. 4 shows that the condition (3) holds

true for the function

f ðsÞ ¼ cosð3psÞ
1 þ s2

in C[0, A] where A5 1=2.
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