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Abstract
A simple step-stress accelerated life testing plan with two stress variables is considered, when the failure times in each

level of stress follow the lognormal distribution. The lognormal distribution is commonly used to model certain types of

data that arise in several fields of engineering such as, for example, different types of lifetime data or coefficients of wear

and friction. The problem of choosing the optimal times to change the stress level is investigated by minimizing the

asymptotic variance of the reliability estimate and maximizing the determinant of Fisher information matrix. In this paper,

we obtain the optimal bivariate step-stress accelerated life test using both the criteria. Due to the nonlinearity and

complexity of problem, the particle swarm optimization algorithm is developed to calculate the optimal hold times. In this

method, the research speed is very fast and the optimization ability is more. To illustrate the effect of the initial estimates

on the optimal values, sensitivity analysis is performed. Finally, numerical studies are discussed to illustrate the proposed

criterion. Simulation results show that the proposed optimum plan is robust.

Keywords Bivariate step-stress accelerated life test � Determinant optimality � Optimal design � Particle swarm

optimization algorithm � Reliability

1 Introduction

When the units being tested are of high reliability, some

traditional life tests result in no or very few failures by the

end of the test. In such cases, one approach is to do life

testing at higher than the usual use conditions to obtain

failures quickly. The data collected under stresses are used

to estimate the life distribution at normal use conditions

(Ismail and Sarhan 2009). Tests that are done in this way

are called accelerated life tests (ALTs). In accelerated life

tests, the engineer is interested in predicting the life of the

product (or more specifically, life characteristics, such as

MTTF, etc.) at normal use conditions, from the data

obtained in an accelerated life test. By analyzing the pro-

duct’s response to such tests, engineers can make predic-

tions about the service life and maintenance intervals of a

product.

Step-stress accelerated life testing (SSALT) is an

advanced case of ALT. In SSALT, the stress levels of the

experiment are increased during the test period at some

pre-specified times. If only one change of the stress level is

done, it is called a simple SSALT. The step-stress proce-

dure was first introduced, with the cumulative exposure

model, by Nelson (1980).

In this paper, the lognormal distribution is considered

for the lifetime of this product. This distribution is espe-

cially important in reliability. The lognormal life distribu-

tion is a very flexible model that can empirically fit many

types of failure data. The lognormal distribution is

important in the description of natural phenomena. As may

be surmised from the name, the lognormal distribution has

certain similarities to the normal distribution. A random

variable is lognormally distributed, if the logarithm of the

random variable is normally distributed. Because of this,

there are many mathematical similarities between the two

distributions. For example, the mathematical reasoning for

the construction of the probability plotting scales and the

bias of parameter estimators is very similar for these two

distributions. The lognormal distribution is commonly used
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to model the lives of units, whose failure modes are of a

fatigue–stress nature.

Recently, the problem of optimal scheduling of the step-

stress test has attracted great attention in the reliability

literature. For this purpose, the time of rising stress is

optimized. The main objective of this paper is to optimize

this test.

Miller and Nelson (1983) provided the optimum simple

step-stress plans for accelerated life testing, where life

products are assumed to have exponentially distributed

lifetimes. Khamis and Higgins (1996, 1998) obtained the

stress change time, which minimizes the asymptotic vari-

ance of the maximum likelihood estimate of the log mean

life at the design condition. Alhadeed and Yang (2002)

discussed the optimal simple step-stress plan for the Kha-

mis–Higgins model.

In those studies, only one accelerating stress variable is

used. In many applications for various reasons, it is

desirable to use more than one accelerating stress variable.

For example, an ALT of capacitors could include two

accelerated variables, such as temperature and voltage.

Since the use of more than one variable stress makes more

failure data and a better understanding of the simultaneous

effects of the stress variables, this paper presents an

SSALT model with two stress variables. We consider each

stress variable has two stress levels. The test process is that

the first stress variable increases at time s1 and the second

variable increases at time s2. So, in this scheme, there are

two different times to change the stress levels that need to

be optimized.

Li and Fard (2007) studied the SSALT for two stress

variables with Weibull failure times under Type-I censor-

ing. Ling et al. (2011) present a SSALT for two stress

variables to obtain optimal hold times under a Type-I

hybrid censoring scheme.

In this paper, optimal bivariate SSALT is considered.

The choice of a criterion of optimality is not straightfor-

ward in this case. Several criteria have been studied for this

purpose. Obviously, each of these criteria has different

properties. We use two different optimality criteria. The

first criterion minimizes the asymptotic variance (AV) of

reliability estimate at time n under usual operating condi-

tions and the second criterion maximizes the determinant

of Fisher information matrix.

As mentioned, the two times must be optimized. For

optimization, we use the particle swarm optimization

(PSO) method. PSO is an extremely simple algorithm that

seems to be effective for optimizing a wide range of

functions. Following are the two key aspects by which we

believe that PSO has become so popular:

1. The main algorithm of PSO is relatively simple.

2. PSO has been found to be very effective in a wide

variety of applications, being able to produce very

good results at a very low computational cost (Engel-

brecht 2005; Kennedy et al. 2001).

The paper is organized as follows. Section 2 describes test

method and assumptions. The maximum likelihood esti-

mators (MLEs) are given in Sect. 3. The problem of

choosing the optimal hold times using two criteria will be

addressed in Sect. 4. Fisher information matrix is given in

Sect. 5. Finally, simulation study and the sensitivity anal-

ysis are given in Sect. 6.

2 Model and Assumption

We consider the SSALT with two stress variables, and each

stress variable has two levels. Let Slk be the kth stress level

of variable l, where l ¼ 1; 2 and k ¼ 0; 1; 2. The S10; S20 are

the stress levels at typical operating conditions.

Suppose we have n independent and identically dis-

tributed items that are initially put to test at the first step

with stress levels ðS11; S21Þ. The first stress variable is

increased from S11 to S12 at time s1. The test is continued

until the time s2, when the other stress variable are

increased from S21 to S22. The test continues, until all the

units fail. Let ni be the number of failures at time tij, where

j ¼ 1; 2; . . .; ni in step i and i ¼ 1; 2; 3. However, s1 and s2
are the times of increasing the first and second stress

variables, respectively. To optimize the described test, s1
and s2 should be selected as appropriate. In Sect. 4, opti-

mization of the test plan is studied.

The basic assumptions are:

1. Under any constant stress, the lifetime of a test unit

follows a base-e lognormal distribution with cumula-

tive distribution function (CDF)

FðtÞ ¼ U
logðtÞ � u

r

� �
; t� 0

where u and r are, respectively, the mean and standard

deviation of the distribution of the log life time of the

unit under life testing and Uð:Þ is standard normal

CDF.

2. The mean of log life time u is a linear function of the

stress level. Thus, we proposed the following life-

stress relationship:

Step 1: log u1ð Þ ¼ b0 þ b1S11 þ b2S21;

Step 2: log u2ð Þ ¼ b0 þ b1S12 þ b2S21;

Step 3: log u3ð Þ ¼ b0 þ b1S12 þ b2S22;

ð1Þ
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where b0, b1, and b2 are the unknown parameters

depending on the nature of the product, and the method

of test.

3. A cumulative exposure model holds, i.e., the remaining

life of a test product depends only on the cumulative

exposure (CE) it has seen (Khamis and Higgins 1998).

4. The constant r does not depend on the stress level.

The CDF of test units under bivariate SSALT and CE

model is:

The corresponding PDF is

Let Y ¼ logT , the probability density function under CE

model be comes as

3 The Likelihood Function and Fisher
Information Matrix

The log likelihood function for complete data from the log

of the observed lifetimes is,

GðtÞ ¼

U
logðtÞ � u1

r

� �
; 0� t\s1;

U
log½s1eu2�u1 þ t � s1� � u2

r

� �
; s1 � t\s2;

U
log½ðs2 � s1 þ s1eu2�u1Þeu3�u2 þ t � s2� � u3

r

� �
; s2 � t\1:

8>>>>>>><
>>>>>>>:

ð2Þ

gðtÞ ¼

1ffiffiffiffiffiffi
2p

p
rt

e�
1
2

log t�u1
rð Þ2 ; 0� t\s1;

1ffiffiffiffiffiffi
2p

p
rðt � s1 þ s1eu2�u1Þ

e�
1
2

log½t�s1þs1e
u2�u1 ��u2

r

� �2
; s1 � t\s2;

1ffiffiffiffiffiffi
2p

p
rðt � s2 þ ðs2 � s1 þ s1eu2�u1Þeu3�u2Þ

e�
1
2

log½t�s2þðs2�s1þs1e
u2�u1 Þeu3�u2 ��u2

r

� �2
; s2 � t\1:

8>>>>>>><
>>>>>>>:

gðyÞ ¼

1ffiffiffiffiffiffi
2p

p
r
e�

1
2

y�u1
rð Þ2 ; �1\y\ log s1;

eye�
1
2

log½ey�s1þs1e
u2�u1 ��u2

r

� �2
ffiffiffiffiffiffi
2p

p
rðey � s1 þ s1eu2�u1Þ

; log s1\y\ log s2;

eye�
1
2

log½ey�s2þðs2�s1þs1e
u2�u1 Þeu3�u2 ��u2

r

� �2
ffiffiffiffiffiffi
2p

p
rðey � s2 þ ðs2 � s1 þ s1eu2�u1Þeu3�u2Þ

; log s2\y\1:

8>>>>>>>>>><
>>>>>>>>>>:

ð3Þ
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‘ u1;u2;u3;r;yð Þ/�ðn1þn2þn3Þlogrþ
Xn2
j¼1

y2j

þ
Xn3
j¼1

y3j�
1

2

Xn1
j¼1

y1j�u1

r

� �2
�
Xn2
j¼1

log½Aj�

� 1

2

Xn2
j¼1

log½Aj��u2

r

� �2

�
Xn3
j¼1

log½Bj��
1

2

Xn3
j¼1

log½Bj��u3

r

� �2

;

where Aj ¼ ey2j � s1 þ s1eu2�u1 and Bj ¼ ey3j � s2þ
ðs2 � s1 þ s1eu2�u1Þeu3�u2 . In addition, y1j, y2j and y3j are

the logarithm of the failure times in three steps of the test.

With the placement of (1) in the above equation, the log

likelihood function can be written as,

Onmaximizing the above function, theMLEsofb0,b1,b2 and

r can be obtained.With b̂0, b̂1, b̂2 and r̂ and by the invariance
property, we can obtain û1, û2 and û3. The first-order partial

derivatives of the log likelihood function with respect to b0,
b1, b2 and r and setting them to zero are given by,

o‘

ob0
¼ 1

r2
Xn1
j¼1

ðy1j � u1Þ þ
1

r2
Xn2
j¼1

ðlog½Aj� � u2Þ

þ 1

r2
Xn3
j¼1

ðlog½Bj� � u3Þ;
ð4Þ

o‘

ob1
¼ 1

r2
Xn1
j¼1

S11ðy1j � u1Þ �
Xn2
j¼1

s1eu2�u1ðS12 � S11Þ
Aj

� 1

r2
Xn3
j¼1

s1eu3�u1ðS12 � S11Þ
Bj

� 1

r2
Xn2
j¼1

ðlog½Aj� � u2Þ �S12 þ
s1eu2�u1ðS12 � S11Þ

Aj

� �

� 1

r2
Xn3
j¼1

ðlog½Bj� � u3Þ �S12 þ
s1eu3�u1ðS12 � S11Þ

Bj

� �� �
;

ð5Þ

o‘

or
¼�n1þn2þn3

r
þ 1

r3
Xn1
j¼1

ðy1j�u1Þ2þ
1

r3
Xn2
j¼1

ðlog½Aj��u2Þ2

þ 1

r3
Xn2
j¼1

ðlog½Bj��u3ÞÞ2: ð7Þ

‘ b0; b1; b2; r; yð Þ / �ðn1 þ n2 þ n3Þ log rþ
Xn2
j¼1

y2j þ
Xn3
j¼1

y3j

� 1

2

Xn1
j¼1

y1j � b0 � b1S11 � b2S21
r

� �2

�
Xn2
j¼1

log½s1eb1ðS12�S11Þ þ ey2j � s1�

� 1

2

Xn2
j¼1

log½s1eb1ðS12�S11Þ þ ey2j � s1� � b0 � b1S12 � b2S21
r

� �2

�
Xn3
j¼1

log½ðs2 � s1 þ s1e
b1ðS12�S11ÞÞeb2ðS22�S21Þ þ ey3j � s2�

� 1

2

Xn3
j¼1

log½ðs2 � s1 þ s1eb1ðS12�S11ÞÞeb2ðS22�S21Þ þ ey3j � s2� � b0 � b1S12 � b2S22
r

� �2

:

o‘

ob2
¼ 1

r2
Xn1
j¼1

S21ðyj � u1Þ þ
1

r2
Xn2
j¼1

ðlog½Aj� � u2Þ

�
Xn3
j¼1

eu3�u2ðS22 � S21Þðs2 � s1 þ s1eu2�u1Þ
Bj

� 1

r2
Xn3
j¼1

ðlog½Bj� � u3Þð�S22 þ
eu3�u2ðS22 � S21Þðs2 � s1 þ s1eu2�u1Þ

Bj

Þ
� �

;

ð6Þ
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Given that, it is difficult to obtain a closed form solution to

the nonlinear Eqs. (4)–(7), a numerical method is used to

solve these equations.

4 Optimization Criteria

We can obtain the preliminary estimates of the parameters

b0, b1, b2 and r from the previous experiments of similar

products, or from some target mean time to failure (MTTF)

values or from a small sample experiment. These estimates

are then used to obtain the optimal test design.

In this section, we consider the problem of optimal

designing using two criteria.

4.1 Criterion I

The first one (Criterion I) is obtained by minimizing the

asymptotic variance of MLE of the log of the mean life or

some percentile life at a specified stress level. Notice that

since the MTTF is related to the reliability function, the

optimization function could also be defined as,

MTTF ¼
R1
0

RðtÞdt, the optimization criterion could also

be defined as a function of reliability. Reliability prediction

is an important factor in a product design and during the

developmental testing process. To accurately estimate the

product reliability, the test design criterion is defined to

minimize the AV of the reliability estimate at the time n
under the normal operating conditions.

Let xi ¼ ðSi1 � Si0Þ=ðSi2 � Si0Þ, i ¼ 1; 2, then

Si0 ¼ ðSi1 � xiSi2Þ=ð1� xiÞ, i ¼ 1; 2. As previously men-

tioned, S10; S20 are the stress levels at typical operating

conditions. Similarly, u0 is mean of log lifetime at typical

operating conditions. From assumption 2, we can obtain

logðu0Þ as follows:
u0 ¼ b0 þ b1S10 þ b2S20;

¼ b0 þ b1
S11 � x1S12

1� x1
þ b2

S21 � x2S22

1� x2
;

¼ 1

ð1� x1Þ
u1 þ

ðx2 � x1Þ
ð1� x1Þð1� x2Þ

u2 �
x2

ð1� x2Þ
u3:

ð8Þ

Thus, the reliability under typical operating conditions at

predetermined time n is

RðS10;S20ÞðnÞ ¼ 1� U
logðnÞ � u0

r

� �
ð9Þ

with the placement of (8) in (9), MLE of RðS10;S20ÞðnÞ is

bRðS10;S20ÞðnÞ ¼ 1� U
log n� 1

1�x1
û1 þ x2�x1

ð1�x1Þð1�x2Þ û2 �
x2

1�x2
û3

r̂

 !
:

The AV of the reliability estimate at a predetermined time

n under typical operating conditions can be obtained as

follows, using the delta theorem:

AVðbRðS10;S20ÞðnÞÞ ¼ H0 F�1 H; ð10Þ

where F is Fisher information matrix, and H is the row

vector of the first derivative of bRðS10;S20ÞðnÞ with respect to

b̂0, b̂1, b̂2 and r̂. i.e.,

H ¼
obRðS10;S20ÞðnÞ

ob̂0
;
obRðS10;S20ÞðnÞ

ob̂1
;
obRðS10;S20ÞðnÞ

ob̂2
;
obRðS10 ;S20ÞðnÞ

or̂

" #

where

obRðS10;S20ÞðnÞ
ob̂0

¼ 1

r̂
1

1� x1
þ x2

1� x2
� x2 � x1

ð1� x1Þð1� x2Þ

� �
/ðAÞ;

obRðS10;S20ÞðnÞ
ob̂1

¼ 1

r̂
S11

1� x1
þ x2S12

1� x2
� ðx2 � x1ÞS12
ð1� x1Þð1� x2Þ

� �
/ðAÞ;

obRðS10;S20ÞðnÞ
ob̂2

¼ 1

r̂
S21

1� x1
þ x2S22

1� x2
� ðx2 � x1ÞS21
ð1� x1Þð1� x2Þ

� �
/ðAÞ;

obRðS10;S20ÞðnÞ
or̂

¼ 1

r̂2
A/ðAÞ;

where A ¼ 1
r̂ ðlog n� 1

1�x1
û1 þ x2�x1

ð1�x1Þð1�x2Þ û2 �
x2

1�x2
û3Þ and

/ð:Þ is the standard normal probability density function.

The values s�1 and s�2 that minimizes AV½bRS10;S20ðnÞ�,
given by Eq. (10), leads to the optimal SSALT plan.

4.2 Criterion II

Another approach (Criterion II) is based on maximizing the

determinant of Fisher information matrix. Maximizing this

determinant is equivalent to minimizing the generalized

asymptotic variance (GAV) of the MLE of the model

parameters at normal use condition. The GAV is the

reciprocal of the determinant of Fisher information matrix;

see Bai et al. (1993). That is,

GAV ¼ 1

jFj ;

where F is the Fisher information matrix, which is obtained

in the next section.

Therefore, the optimal hold times are chosen, so that |F|

is maximized and then the GAV is minimized. It can be

statistically shown that maximizing the determinant of the

Fisher information matrix is the same as minimizing the

determinant of the covariance matrix. Therefore, the opti-

mal SSALT plan that maximizes the determinant of the

Fisher information matrix will provide the smallest stan-

dard error and it is called a D-optimal plan. Moreover, the

determinant of Fisher information is proportional to the
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reciprocal of the volume of the asymptotic joint confidence

region for the parameters, so that maximizing the deter-

minant is equivalent to minimizing the volume of confi-

dence region (Arefi and Razmkhah 2013).

The values sþ1 and sþ2 maximize the determinant of the

Fisher information matrix.

5 Fisher Information Matrix

To optimize the test plan, the Fisher information matrix

F must be obtained first. The Fisher information matrix

plays a key role in the parameter estimation. It is a measure

of the information content of the data relative to the

parameters being estimated. Its elements are obtained

through taking expectation on the negative second partial

and mixed partial derivative of ‘ðb0; b1; b2; rÞ with respect

to parameters b0, b1, b2 and r. Then, the Fisher informa-

tion matrix F is obtained as follows:

F ¼ n

A11 A12 A13 A14

A12 A22 A23 A24

A13 A23 A33 A34

A14 A24 A34 A44

2
6664

3
7775;

Details of the calculations are presented in Appendices 1

and 2. Therefore, the elements of F are given as,

A11 ¼E � 1

n
� o

2‘

ob20

" #
¼ 1

r2
;

A22 ¼E � 1

n
� o

2‘

ob21

" #
¼ S211

r2
e1 þ J1 þ J3 þ

1

r2
ðJ2 þ J4Þ;

A33 ¼E � 1

n
� o

2‘

ob22

" #
¼ S221

r2
ðe1 þ e2Þ þ J5 þ

1

r2
J6;

A44 ¼E � 1

n
� o

2‘

or2

	 

¼ �1

r2
þ 3

r4
ðJ7 þ J8 þ J9Þ;

A12 ¼E � 1

n
� o2‘

ob1ob0

	 

¼ S11e1

r2
� 1

r2
ðJ10 þ J11Þ;

A13 ¼E � 1

n
� o2‘

ob2ob0

	 

¼ S21

r2
ðe1 þ e2Þ �

1

r2
J12;

A14 ¼E � 1

n
� o2‘

orob0

	 

¼ 2

r3
ðJ13 þ J14 þ J15Þ;A23 ¼

A24 ¼E � 1

n
� o2‘

orob1

	 

¼ 2

r3
ðJ19 � J20 � J21Þ;

A34 ¼E � 1

n
� o2‘

orob2

	 

¼ 2

r3
ðJ22 þ J23 � J24Þ;

where the detailed calculation for J1 to J24, and e1, e2 and

e3 in the formulas above are in Appendices 1 and 2,

respectively.

This work focus on considering the lognormal distri-

bution for the lifetime of the items. We can generalize this

study to the large family of distributions. For example,

Hong et al. (2010) proposed an approach for computing the

approximate variance of MLEs of quantiles of the log-

location-scale family of distributions. They examined the

results for the Weibull and lognormal distributions.

The most applied statistical distributions are either

members of the log-location-scale family of distributions

or closely related to this class of distributions (e.g., log-

normal, loglogistic, etc.). To aim the generalization of our

method, assume that at any step of test, the failure time

follows a log-location-scale family of distributions with the

following CDF and PDF,

PðT � tÞ ¼ w
logðtÞ � l

r

� �

and

fTðtÞ ¼
1

tr
u

logðtÞ � l
r

� �
;

where w, u, l and r are CDF, PDF, the location and the

scale parameters of the location-scale family of the distri-

butions, respectively.

Under the assumptions considered in Sect. 2, the CDF

of test units under bivariate SSALT and CE model is:

GðtÞ ¼

w
logðtÞ � l1

r

� �
; 0� t\s1;

w
log½s1el2�l1 þ t � s1� � l2

r

� �
; s1 � t\s2;

w
log½ðs2 � s1 þ s1el2�l1Þel3�l2 þ t � s2� � l3

r

� �
; s2 � t\1:

8>>>>>>><
>>>>>>>:

2264 Iran J Sci Technol Trans Sci (2018) 42:2259–2271

123



Table 1 Optimal hold times s�1 and s�2 versus changes in b0 with respect to criterion I ðn ¼ 40; b1 ¼ 0:05;b2 ¼ 0:075; r ¼ 1; n ¼ 9Þ

b0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

s�1 1.1393 1.1394 1.1411 1.1446 1.1470 1.1479 1.1486 1.1491 1.1493

s�2 2.2903 2.2925 2.3012 2.3107 2.3251 2.3283 2.3295 2.3320 2.3355

Table 2 Optimal hold times s�1 and s�2 versus changes in b1 with respect to criterion I ðn ¼ 40; b0 ¼ 0:025;b2 ¼ 0:075;r ¼ 1; n ¼ 9Þ

b1 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

s�1 1.1437 1.1439 1.1446 1.1452 1.1470 1.1472 1.1475 1.1481 1.1481

s�2 2.3172 2.3200 2.3213 2.3227 2.3251 2.3267 2.3272 2.3385 2.3386

Table 3 Optimal hold times s�1 and s�2 versus changes in b2 with respect to criterion I ðn ¼ 40; b0 ¼ 0:025;b1 ¼ 0:05; r ¼ 1; n ¼ 9Þ

b2 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095

s�1 1.1456 1.1458 1.1460 1.1467 1.1470 1.1471 1.1475 1.1480 1.1483

s�2 2.3188 2.3192 2.3199 2.3209 2.3251 2.3262 2.3270 2.3382 2.3386

Table 4 Optimal hold times s�1 and s�2 versus changes in r with respect to criterion I ðn ¼ 40; b0 ¼ 0:025;b1 ¼ 0:05; b2 ¼ 0:075; n ¼ 9Þ

r 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

s�1 1.1452 1.1458 1.1463 1.1463 1.1470 1.1472 1.1475 1.1483 1.1497

s�2 2.3200 2.3213 2.3221 2.3231 2.3251 2.3269 2.3274 2.3382 2.3390

Table 5 Optimal hold times sþ1 and sþ2 versus changes in b0 with respect to criterion II ðn ¼ 40;b1 ¼ 0:05; b2 ¼ 0:075;r ¼ 1; n ¼ 9Þ

b0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

sþ1 1.1808 1.1814 1.1838 1.1839 1.1840 1.1843 1.1843 1.1844 1.1845

sþ2 2.1905 2.1916 2.1918 2.1942 2.1988 2.1991 2.1993 2.1994 2.1995

Table 6 Optimal hold times sþ1 and sþ2 versus changes in b1 with respect to criterion II ðn ¼ 40;b0 ¼ 0:025; b2 ¼ 0:075; r ¼ 1; n ¼ 9Þ

b1 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

sþ1 1.1834 1.1835 1.1836 1.1838 1.1840 1.1842 1.1843 1.1845 1.1847

sþ2 2.1976 2.1978 2.1979 2.1983 2.1988 2.1992 2.1993 2.1996 2.1999
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The corresponding PDF under bivariate SSALT and CE

model is:

in this paper, all of the analyses are performed using PDF.

So, we can use the above functions for analysis of model

and optimization of the test plan.

6 Simulation Study

In this section, we first present a simulation study to

illustrate the proposed procedure in obtaining the optimal

plan. Then, we perform a sensitivity analysis.

Because the objective function in both the criteria is

nonlinear and complex, PSO in this methodology is an

appropriate optimization method and can be employed to

find the near optimal solution. PSO is originally attributed to

Eberhart and Kennedy (1995) and Shi and Eberhart (1998)

and was first intended for simulating social behavior, as a

stylized representation of the movement of organisms in a

bird flock or fish school. The algorithm was simplified and it

was observed to be performing optimization.

PSO has been found to be successful in a wide variety of

optimization tasks (Kennedy et al. 2001). The mechanism

used to search the solution space in the PSO differs from

the evolutionary computations. The simplicity and the

applicability of the PSO method have added to the popu-

larity of this method for solving a large number of

engineering and management optimization problems

(Khalili-Damghani et al. 2013).

The advantages of this method compared to other

methods are that it occupies more optimization ability, can

be completed easily, and the speed of the researching is

very fast.

In Appendix 3, the PSO algorithm is described.

The numerical examples are given for calculating the

optimal hold times of the bivariate SSALT under both the

criteria. We propose a simple bivariate SSALT for log-

normal data. For the given values of n ¼ 40, u1 ¼ 0:0975,

u2 ¼ 0:1115, u3 ¼ 0:1415 and r ¼ 1, the parameters bi at
assumption 2, for i ¼ 0; 1; 2 is obtained as b0 ¼ 0:025,

b1 ¼ 0:05 and b2 ¼ 0:075. Now, we determine the optimal

hold times using PSO algorithm under both the criteria.

Using the criterion I and assuming n ¼ 9, the optimal hold

times are obtained s�1 ¼ 1:1470 and s�2 ¼ 2:3251. Using the

criterion II, the optimal hold times are obtained sþ1 ¼
1:8140 and sþ2 ¼ 2:1988.

6.1 Sensitivity Analysis

To examine the effect of changes in the initial parameters

b0, b1, b2 and r on the optimal values, a sensitivity analysis

is performed. Its objective is to identify the sensitive

parameters, which need to be estimated with special care to

minimize the risk of obtaining an erroneous optimal

gðtÞ ¼

1

rt
u

logðtÞ � l1
r

� �
; 0� t\s1;

1

rs1el2�l1 þ t � s1
u

log½s1el2�l1 þ t � s1� � l2
r

� �
; s1 � t\s2;

1

rðs2 � s1 þ s1el2�l1Þel3�l2 þ t � s2
u

log½ðs2 � s1 þ s1el2�l1Þel3�l2 þ t � s2� � l3
r

� �
; s2 � t\1:

8>>>>>>><
>>>>>>>:

Table 7 Optimal hold times sþ1 and sþ2 versus changes in b2 with respect to criterion II ðn ¼ 40;b0 ¼ 0:025; b1 ¼ 0:05;r ¼ 1; n ¼ 9Þ

b2 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095

sþ1 1.1838 1.1838 1.1839 1.1839 1.1840 1.1842 1.1843 1.1845 1.1846

sþ2 2.1983 2.1984 2.1985 2.1987 2.1988 2.1990 2.1993 2.1996 2.1998

Table 8 Optimal hold times sþ1 and sþ2 versus changes in r with respect to criterion II ðn ¼ 40;b0 ¼ 0:025;b1 ¼ 0:05;b2 ¼ 0:075; n ¼ 9Þ

r 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

sþ1 1.1839 1.1839 1.1839 1.1840 1.1840 1.1841 1.1841 1.1842 1.1842

sþ2 2.1984 2.1985 2.1985 2.1987 2.1988 2.1989 2.1990 2.1991 2.1992
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solution. Toward this end, the optimal values are derived,

when one of the objectives b0, b1, b2 and r changes and the

others are fixed.

Tables 1, 2, 3 and 4 present the sensitivity analysis for

the different values of the parameters, b0, b1, b2 and r,
respectively and with respect to the criterion I. From these

tables, we can see that as these parameters increase, the

optimal stress change times very slightly increase.

Tables 5, 6, 7 and 8 present the optimal hold times for

the specified values of the parameters, b0, b1, b2 and r,
respectively and with respect to the criterion II. These

tables also show that, as parameters increase, the optimal

stress change times very slightly increase. In addition, we

see that, based on the both of the criteria, these parameters

have a very small effect on the hold times. According to

these two criteria, the optimal hold times are not too

sensitive.

7 Conclusion

In this paper, a simple SSALT plan with two variables was

considered for products in which the failure times at each

level of stress are lognormally distributed. Since each cri-

terion can be used for a special purpose, it was also seen

that in some situations, the different criteria give quite

different results. To find the optimal stress change times,

two different criteria were considered. The first criterion

determined the optimal hold times, so that the AV of the

reliability estimate under the normal operating conditions

was minimized. The second criterion was based on maxi-

mizing the determinant of the Fisher information matrix. It

was seen that the criterion II was less influenced by

changes in the initial parameters than the criterion I. The

PSO algorithm was used for optimization. Furthermore,

according to simulation studies, we have found that since

the optimal hold times are not too sensitive to the model’s

parameters, we anticipate that the proposed design is

robust.
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Appendix 1

The Fisher information matrix can be obtained by taking

the expected values of the negative second partial, and

mixed partial derivatives with respect to b0, b1, b2 and r.

The results of these derivatives are given in the following

which are used to develop the Fisher information matrix:
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¼ n
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;
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where C ¼ s2 � s1 þ s1eu2�u1 .

The results of the above equations are then used to

develop the Fisher information matrix. To simplify the

second partial and mixed partial derivatives, the following

definitions are made:
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Appendix 2

The calculation details of ei ¼ E ni
n

� �
, i ¼ 1; 2; 3 are

demonstrated through the following three steps:
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At the first step, n new products are tested at stress levels

ðS11; S21Þ until the time s1, where the test units are assumed

independent and identically distributed. The life of items

follows the CDF of t in Eq. (2). The number of failures n1
in the time s1 is a binomial random variable with param-

eters n and p1. From the Eq. (2), we have:

p1 ¼Gðs1Þ ¼ U
log½s1� � u1

r

� �
;

e1 ¼E
n1

n

h i
¼ U

log½s1� � u1

r

� �
:

The second step starts with n� n1 unfailed items, tested at

stress levels ðS12; S21Þ until the time s2. The life of items

follows the CDF of t given by the Eq. (2), where the

number of failures n2 follows a binomial distribution with

parameters n� n1 and p2. Then, from the Eq. (2), we have:

p2 ¼ Prðitem fail in time s2 j item not fail in time s1 in first stepÞ
p2 ¼ 1� Prðitem not fail in time s2 j item not fail in time s1Þ

¼
U log½s1eu2�u1þt�s1��u2

r

� �
� U logðs1Þ�u1

r

� �

1� U log½s1��u1
r

� � ;

e2 ¼ E
n2

n

h i
¼ E

n2

n� n1
� n� n1

n

	 


¼ E
n2

n� n1

	 

� 1� E

n1

n

h i� �
¼ p2 � ð1� e1Þ;

¼ p2ð1� p1Þ:

For the third step, n� n1 � n2 i.i.d. survival items are then

placed at stresses ðS12; S22Þ until all the units failed. The

lifetime of any item follows the CDF in Eq. (2). Since n3 is

the number of failures in the final stage and

n3 ¼ n� n1 � n2, its expected value is obtained from the

following equation:

e3 ¼ E
n3

n

h i
¼ E

n� n1 � n2

n

h i
¼ 1� e1 � e2:

Appendix 3

PSO algorithm is a new intelligent optimization algorithm

intimating the bird swarm behaviors. Compared with other

optimization algorithms, the PSO is more objective, easy to

perform, and is applied in many fields.

In PSO algorithm, each individual is called ‘‘particle’’,

which represents a potential solution. The algorithm

achieves the best solution by the variability of some par-

ticles in the tracing space. The particles search in the

solution space following the best particle by changing their

positions and the fitness frequently, the flying direction and

velocity are determined by the objective function (Mu

et al. 2009).

For improving the convergence performance of PSO, the

inertia factor w is used to control the impact on current

particle by the former particles velocity. PSO algorithm has

preferred global searching ability, when w is relatively

large. On the contrary, its local searching ability becomes

better, when w is smaller. Now, we describe the PSO

Algorithm.

Assuming Xi ¼ ðxi1; xi2; . . .; xiDÞ is the position of ith

particle in D dimension, Vi ¼ ðvi1; vi2; . . .; viDÞ is its

velocity, which represents its direction of searching. In

iteration process, each particle keeps the best position pbest

found by itself, besides, it also knows the best position

gbest searched by the group particles, and changes its

velocity according to the two best positions. The standard

formula of PSO is as follows:

vkþ1
id ¼ wvkid þ c1r1ðpid � xkidÞ þ c2r2ðpgd � skidÞ
xkþ1
id ¼ xkid þ vkþ1

i

In which, i ¼ 1; 2; . . .;N; N is the population of the group

particles; d ¼ 1; 2; . . .;D; k is the maximum number of

iterations; r1 and r2 are the random values between [0, 1],

which are used to keep the diversity of the group particles;

c1 and c2 are the learning coefficients, also called as

acceleration coefficients; vkid is the number d component of

the velocity of particle i in kth iterating; xkid is the number

d component of the position of particle i in kth iterating; pid
is the number d component of the best position particle

i has ever found; pgd is the number d component of the best

position the group particles have ever found.

The procedure of PSO is as follows:

1. Initialize the original position and velocity of the

particle swarm,

2. Calculate the fitness value of each particle,

3. For each particle, compare the fitness value with the

fitness value of pbest, if the current value is better, then

renew the position with current position, and update

the fitness value simultaneously,

4. Determine the best particle of group with the best

fitness value, if the fitness value is better than the

fitness value of gbest, then update the gbest and its

fitness value with the position,

5. Check the finalizing criterion, if it has been satisfied,

quit the iteration; otherwise, return to step 2.
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