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Abstract
Using the hydrodynamic equations of positive and negative ions, Boltzmann electron density distribution for degenerate

electron pressure, and Poisson equation with stationary dust, a further modified Korteweg–Vries equation is derived for

small but finite amplitude dust-ion-acoustic waves. ‘G0=G’ method is used to obtain a new class of solutions. The effects of

physical parameters on astrophysical compact objects, and thus the nonlinear solitary and shock structures are examined

corresponding to traveling waves.

Keywords Ions with positively and negatively charged � Degenerate electron pressure � Hydrodynamic equations �
Further modified Korteweg–de Vries (fmKdV) equation � G0=G method

1 Introduction

Both solitary (Abdelsalam 2010; Abdelsalam et al. 2011;

Malfliet 1992) and shock (Alinejad 2010; Abdou and

Soliman 2005) waves are nonlinear waves in characteris-

tics and are found from the solutions of KdV (Korteweg

and de Vries 1895; Russell 1844) and Burgers’ (Burger

1948; Abdou and Soliman 2005; Alinejad 2010) equations.

And there are already lots of works on those nonlinear

waves using the solution of KdV and Burgers’ equations

derived from reductive perturbation method (Abdelsalam

and Selim 2013; Abdou and Soliman 2005; Moslem 1999;

Moslem et al. 2010). Researchers have also found interest

in nonlinear wave dynamics (Davidson 1972; Malfliet

1992; Wang et al. 2008) in presence of negative and pos-

itive ions in plasma (Merlino and Kim 2006; Intrator et al.

1983), electron degeneracy (Abdelsalam et al.

2008a, b, c, 2012; Abdelsalam and Selim 2013) with

relativistic limits as non-relativistic limit and ultra-rela-

tivistic limits, (Chandrasekhar 1931, 1934, 1935), as well

as in astrophysics and space science (Shukla 2002;

Abdelsalam et al. 2008c, 2011, 2012; Alinejad 2010) to

make more studies on astro compact objects. Very recently,

the traveling waves (Samanta et al. 2013; Kazmierczak

1997; Wang et al. 2008) have taken the place of interest as

a new topic in plasma research (Davidson 1972), as in

space the waves could not form pure solitary or shock wave

structure to travel but as a sine wave. Traveling waves are

found to be more realistic to consider in space known as

solitary or shock waves (Samanta et al. 2013; Kazmierczak

1997; Davidson 1972; Shukla 2002) where the waves form

as a sine wave to propagate through the dense medium in

free space because of presence of electric filed (Abdel-

salam et al. 2008b, c, 2012) or magnetic filed (Samanta

et al. 2013; Abdelsalam and Selim 2013) or both electric

and magnetic fileds (Abdelsalam et al. 2008a; Moslem

et al. 2010).

One of the most challenging facts of a mathematical

model is to choose the correct method to derive an

acceptable solution. There are many internationally rec-

ognized methods for solving nonlinear wave equations

from a different type of mathematical modeling with

physical problems, which are successfully proved to pride

the exact solution. Among those methods, general expan-

sion method (Moslem et al. 2010), extended homogeneous
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balance method (Abdelsalam et al. 2016a) and ‘G0=G’
method (Wang et al. 2008; Abdelsalam and Selim 2013)

are used in this work with reductive perturbation method

(Abdelsalam 2010; Abdelsalam and Selim 2013; Alinejad

2010; Abdou and Soliman 2005; Moslem 1999) mostly

used methos to derive the solutions of stationary solitary

and shock waves from well-known KdV (Korteweg and de

Vries 1895; Russell 1844; Abdelsalam 2010; Abdelsalam

et al. 2011) and Burgers’ (Burger 1948; Abdou and Soli-

man 2005; Alinejad 2010) equations. Comparing other

methods, it is proved that, for the computation of exact

traveling wave solutions, ‘G0=G’ (Wang et al. 2008;

Abdelsalam and Selim 2013) is a direct and effective

algebraic method.

In our current model where we consider one-dimen-

sional, collisionless, unmagnetized plasma consists of both

positive and negative ions, degenerate electrons, and sta-

tionary charged dust impurities which could be positive or

negative or both. Effects of q-parameter for non-extensive

electron distribution have been discussed in (Abdelsalam

et al. 2016b), but degenerate electrons (Abdelsalam et al.

2008a, b, c, 2012) are found to as an important properties

in astrophysical compact objects (Abdelsalam et al.

2008c, 2011; Alinejad 2010; Chandrasekhar 1931, 1935)

such as black holes, neutron star, and white dwarfs. So we

use degenerate electrons for both ultra-relativistic and non-

relativistic limits to study high-dense plasma case, and we

use ‘G0=G’ (Wang et al. 2008; Abdelsalam and Selim

2013; Zhang et al. 2008; Selim and Abdelsalam 2014)

method with reductive perturbation method to solve the

further modified Korteweg–de Vries (fmKdV) equation

(Moslem 1999) in case of travelling wave (Abdelsalam

et al. 2016b; Davidson 1972) and to obtain a solution

describing the possible nonlinear waves in our plasma

model.

This paper is organized as follows: in Sect. 2, we pre-

sent the governing equations for our plasma model. In

Sect. 3 the reductive perturbation method is employed to

derive further modified KdV (fmKdV) equation describing

the system and we apply G0=G method to solve fmKdV

equation in Sect. 4. The numerical results are presented in

Sect. 5. Finally, the results are summarized in Sect. 6.

2 Basic Equations

We consider unmagnetized, and collisionless three-com-

ponent plasma consisting of negative ions, positive ions,

electrons and stationary dust, a system of fluid equations

for the negative and positive ion fluids, respectively dis-

tinguished using the index ‘‘-’’ and ‘‘?’’. We consider

continuity equation for both ions:

on�;þ
ot

þr � ðn�;þu�;þÞ ¼ 0; ð1Þ

and the momentum equation for both ions,

mþnþ
o

ot
þ uþ

o

ox

� �
uþ þ oPþ

ox
þ eZþnþ

o/
ox

¼ 0; ð2Þ

and

m�n�
o

ot
þ u�

o

ox

� �
u� þ oP�

ox
� eZ�n�

o/
ox

¼ 0; ð3Þ

For electrons:

�e
o/
ox

þ 1

ne

oPe

ox
¼ 0; ð4Þ

The Poisson equation reads

r2/ ¼ 4pe

�
Zþnþ � Z�n� � ne þ qZdnd

�
: ð5Þ

In Eqs. (1)–(5), n�;þ is the negative (positive) ion number

density, while nd is the dust density. Furthermore, u�;þ is

the negative (positive) ion fluid velocity, / is the electro-

static wave potential, e is charge of electrons, Z is the

magnitude of charge for dust(d), negative (-) and positive

(þ) ions, m� is the mass of positive and negative ions,

q ¼ �. The ion pressure is assumed to be adiabatic and is

expressed by Ps ¼ n
ð0Þ
s kBTsn

3
s ðs ¼ þ;�Þ. The degenerate

electron pressure Pe ¼ Kn5=3e and K ’ 3
4
�hc;where n

ð0Þ
s are

the equilibrium densities for the positive ions, the negative

ions, respectively, kBis the Boltzmann constant, Tsthe

positive (negative) ions temperature, �h is the Plank con-

stant divided by 2p, and c is the speed of light in vacuum.

Equations (1)–(4) may be cast in a reduced (non-di-

mensional) form, for convenience in manipulation. For

positive ion fluid, we have

onþ
ot

þ onþuþ
ox

¼ 0 ; ð6Þ

ouþ
ot

þ uþ
ouþ
ox

þ rþnþ
onþ
ox

þ o/
ox

¼ 0: ð7Þ

In the same way, for the negative ion, we have

on�
ot

þ on�u�
ox

¼ 0 ; ð8Þ

ou�
ot

þ u�
ou�
ox

þ r�Q�n�
on�
ox

� Q�D�
o/
ox

¼ 0: ð9Þ

For electrons:

o/
ox

� dn�1=3
e

one

ox
¼ 0: ð10Þ

Finally, the Poisson equation becomes:
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o2/

ox2
¼ nþ � aD�n� � cDþne � qb; ð11Þ

where the mass ratio Q� ¼ mþ=m� (mþ and m� are the

positive and negative ion mass, respectively), rþ;� ¼ 3
Tþ;�
Te

,

d ¼ 5kn
ð0Þ
e

kBTef
, D� ¼ Z�=Zþ, and Dþ ¼ 1=Zþ and the upper bar

in Eqs. (6)–(11) will henceforth be omitted (Abdelsalam

and Selim 2013; Moslem et al. 2010).

The neutrality condition implies

1 ¼ D�aþ Dþc� qb; ð12Þ

where a ¼ nð0Þ� =n
ð0Þ
þ ; c ¼ n

ð0Þ
e =n

ð0Þ
þ and b ¼ Zdn

ð0Þ
d =n

ð0Þ
þ (the

index ‘(0)’ denotes the unperturbed density states).

3 Derivation of the Modified Korteweg–de
Vries (mKdV) Equation

The independent variables can be stretched as:

X ¼ �ðx� ktÞ; and s ¼ �3t; ð13Þ

where � is a small dimensionless (real) parameter mea-

suring the weakness of the dispersion and nonlinearity

(Alinejad 2010; Abdelsalam and Selim 2013; Moslem

et al. 2010; Malfliet 1992; Davidson 1972) and k is the

wave propagation speed. The dependent variables are

expanded as

W ¼ Wð0Þ þ
X1
n¼1

�nWðnÞ; ð14Þ

where

W ¼ fnþ; n�; ne; uþ; u�;/gT; ð15Þ

and

Wð0Þ ¼ f1; b; a; 0; 0; 0gT: ð16Þ

Employing the variable stretching in Eq. (13) and the

expansion of Eqs. (14)–(16) into Eqs. (6)–(11), we may

now isolate distinct orders in � and derive the corre-

sponding variable contributions. The lowest-order equa-

tions in � read

ne1 ¼
1

d
/1; nð1Þ� ¼ �Q�D�

ðk2 � r�Q�Þ
/ð1Þ;

uð1Þ� ¼ �Q�D�k

ðk2 � r�Q�Þ
/ð1Þ;

ð17Þ

and

n
ð1Þ
þ ¼ 1

ðk2 � rþÞ
/ð1Þ; u

ð1Þ
þ ¼ k

ðk2 � rþÞ
/ð1Þ: ð18Þ

The Poisson equation provides the compatibility condition.

1

ðk2 � rþÞ
þ aQ�D

2
�

ðk2 � r�Q�Þ
� cDþ

d
¼ 0: ð19Þ

The next order in � yields:

n
ð2Þ
þ ¼ 1

ðk2 � rþÞ
/ð2Þ þ ð3k2 þ rþÞ

2ðk2 � rþÞ2
/ð1Þ2

" #
; ð20Þ

nð2Þ� ¼ Q�D�

ðk2 � r�Q�Þ
�/ð2Þ þQ�D�ð3k2 þ r�Q�Þ

2ðk2 � r�Q�Þ2
/ð1Þ2

" #
;

ð21Þ

nð2Þe ¼ 1

d
/ð2Þ þ 1

6d
/ð1Þ2

� �
; ð22Þ

the Poisson’s equation gives:

1

ðk2 � rþÞ
þ aQ�D

2
�

ðk2 � r�Q�Þ
� cDþ

d

� �
/ð2Þ þ B/ð1Þ2 ¼ 0;

ð23Þ

where

B ¼ 1

2

ð3k2 þ rþÞ
ðk2 � rþÞ3

� aQ2
�D

3
�ð3k

2 þ r�Q�Þ
ðk2 � r�Q�Þ3

� cDþ

3d2

" #
:

ð24Þ

If we consider the third-order in �, we obtain:

on
ð3Þ
e

on
¼ 1

d
o/ð3Þ

on
þ 1

3d
oð/ð1Þ/ð2ÞÞ

on
� 1

18d2
/ð1Þ2 o/

ð1Þ

on

" #
:

ð25Þ

The Poisson’s equation in this order becomes:

o2/ð1Þ

on2
¼ ðnð3Þþ � n

ð2Þ
þ Þ � aD�ðnð3Þ� � nð2Þ� Þ � cDþðnð3Þe � nð2Þe Þ:

ð26Þ

Using the last equations, we obtain the fmKdV equation

o/
os

þ AB/
o/
on

þ AC/
2 o/
on

þ A

2

o3/

on3
¼ 0: ð27Þ

where we replace /ð1Þby / for simplicity. The coefficients

A and C are given as:

A ¼ � 1

k
1

ðk2 � rþÞ2
þ aQ�D

2
�

ðk2 � r�Q�Þ2

" #�1

; ð28Þ

C ¼ � 3

2ðk2 � rþÞ5
k2ðk2 þ 3rþÞ þ

1

2
ðk2 þ rþÞð3k2 þ rþÞ

� �
�

3aQ3
�D

4
�

2ðk2 � r�Q�Þ5
k2ðk2 þ 3r�Q�Þ
�

þ 1

2
ðk2 þ r�Q�Þð3k2 þ r�Q�Þ� �

cDþ

36d3
:

ð29Þ
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4 Solution of the Further Modified
Korteweg–de Vries fmKdV
Equation via G0=G-Expansion Method

Now, we go beyond the ‘‘ traditional’’ solution of the

further modified Korteweg–de Vries fmKdV Eq. (27) by

quadrature (see in the previous Section) by adopting an

alternative method, namely, the G0=G-expansion method

introduced in Wang et al. (2008) and Abdelsalam and

Selim (2013) (see for more details).

According to G0=G-expansion method, we anticipate

that Eq. (27) has the following solution:

uðfÞ ¼
Xn
i¼0

ai
G0ðfÞ
GðfÞ

� �i

; ð30Þ

where ai are real constants with an 6¼ 0 to be determined,

and n is a positive integer to be determined. The function

GðfÞ is the solution of the auxiliary linear ordinary dif-

ferential equation

G00 þ mG0 þ lG ¼ 0; ð31Þ

where m and l are real constants to be determined.

Consider fmKdV Eq. (27) in the form

ou

os
þ Cu

ou

on
þ Ku

2 ou

on
þ X

o3u

on3
¼ 0: ð32Þ

where C ¼ AB, K ¼ AC, X ¼ A
2
.

We seek for the special solution of Eq. (32), traveling

wave solution, in the form

uðn; sÞ ¼ uðfÞ; f ¼ n� # s; ð33Þ

where # is a constant to be determined later. Using the

transformation (33), Eq. (32) reduces to a nonlinear ordi-

nary differential equation (ODE) Davidson (1972):

�kU0 þ CUU0 þ KU2U0 þ XU000 ¼ 0; ð34Þ

Integrating Eq. (34) once,

�#uþ 1

2
Cu2 þ 1

3
Ku3 þ Cu00 ¼ 0; ð35Þ

where the balance between the highest order derivatives

and the nonlinear term gives n ¼ 1, so (30) reduced to

uðfÞ ¼ a0 þ a1
G0ðfÞ
GðfÞ

� �
; ð36Þ

It is well known that exact solutions of Eq. (31) are as

follows:

(i) for k ¼ m2 � 4 l[ 0

G0ðfÞ
GðfÞ

� �
¼

ffiffiffi
k

p

2

c1 cosh
ffiffi
k

p

2
f

� 	
þ c2 sinh

ffiffi
k

p

2
f

� 	

c1 sinh
ffiffi
k

p

2
f

� 	
þ c2 cosh

ffiffi
k

p

2
f

� 	
0
@

1
A

� m
2
;

ð37Þ

(ii) for k ¼ m2 � 4l\0

G0ðfÞ
GðfÞ

� �
¼

ffiffiffiffiffiffi
�k

p

2

c1 cos
ffiffiffiffiffi
�k

p

2
f

� 	
� c2 sin

ffiffiffiffiffi
�k

p

2
f

� 	

c1 sin
ffiffiffiffiffi
�k

p

2
f

� 	
þ c2 cos

ffiffiffiffiffi
�k

p

2
f

� 	
0
@

1
A� m

2
;

ð38Þ

(i) for k ¼ m2 � 4l ¼ 0

G0ðfÞ
GðfÞ

� �
¼ c2

c1 þ c2f

� �
� m
2
; ð39Þ

Substituting Eq. (36) in Eq. (35) and making use of

Eq. (31), we obtain a polynomial equation in
G0ðfÞ
GðfÞ

� 	
.

Equating the coefficients of
G0ðfÞ
GðfÞ

� 	
to zero will result in an

overdetermined system of algebraic equations with respect

to a0, a1, l, k and #. We obtain a complete new set of

solutions, which will be presented in the following.

For k[ 0,

u1ðfÞ ¼
�C
2K

1� coth

ffiffiffiffiffiffiffiffi
�K
6X

r
�C
2K

f

 ! !
; ð40Þ

u2ðfÞ ¼
�C
2K

1� tanh

ffiffiffiffiffiffiffiffi
�K
6X

r
�C
2K

f

 ! !
; ð41Þ

u3ðfÞ ¼
�C
2K

1þ coth

ffiffiffiffiffiffiffiffi
�K
6X

r
�C
2K

f

 ! !
; ð42Þ

u4ðfÞ ¼
�C
2K

1þ tanh

ffiffiffiffiffiffiffiffi
�K
6X

r
�C
2K

f

 ! !
: ð43Þ

For k ¼ 0,

u5ðfÞ ¼
�C
2K

; ð44Þ

u6ðfÞ ¼
�C
2K

þ
ffiffiffiffiffiffiffiffiffiffi
�6X
K

r
f: ð45Þ

For k\0,

u7ðfÞ ¼
�C
2K

1� tan

ffiffiffiffiffiffi
K
6X

r
�C
2K

f

 ! !
; ð46Þ
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u8ðfÞ ¼
�C
2K

1� cot

ffiffiffiffiffiffi
K
6X

r
�C
2K

f

 ! !
; ð47Þ

u9ðfÞ ¼
�C
2K

1þ tan

ffiffiffiffiffiffiffiffi
�K
6X

r
�C
2K

f

 ! !
; ð48Þ

u10ðfÞ ¼
�C
2K

1þ cot

ffiffiffiffiffiffiffiffi
�K
6X

r
�C
2K

f

 ! !
: ð49Þ

5 Results and Discussion

fmKdV equation has been derived for multicomponent

plasma consisting of negative ions, positive ions, electrons

and stationary dust, and the electrons are supposed to be

degenerate. A lot of papers studied the KdV equation and

its soliton solutions, and the KdV equation was derived for

similar models of plasmas with various types of electron

distribution (see Abdelsalam 2010; Abdelsalam et al. 2011;

Abdelsalam 2013). We can see that the soliton solution was

studied for a similar model of plasma in Abdelsalam

(2010), in which the dust ion acoustic waves were studied

in a similar dense plasma, and the author derived KdV

equation to study the soliton waves and the affect of the

many some physical parameters on these waves. The KdV

equation and the soliton waves were studied for similar

models but with nonextensive electrons in Abdelsalam

et al. (2011), and with superthermal electrons, ion beam in

Abdelsalam (2013). However, to study the shock waves we

derived the fmKdV equation in the present paper, and by

solving this equation we can get the kink or shock wave

solution. To investigate the nonlinear properties of solitary

waves represented by Eq. (27), we express the solution

from Eq. (41) in the following form:

/ðfÞ ¼ 1

2
/m 1� tanh

2f
W

� �� �
; ð50Þ

which represents a shock wave, where /m and W are the

amplitude and width of the double layers, respectively, and

are given by:

/m ¼ � B

C
and W ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�12=C

p
/mj j : ð51Þ

It is noted that the amplitude and width depend on the

electron density n
ð0Þ
e , negative-to-positive ion density ratio

a ¼ nð0Þ� =n
ð0Þ
þ

� 	
, and the positive (negative) ion-to-electron

temperature ratio rþ;� ¼ 3
Tþ;�
TFe

.

Figure 1 is the representation of amplitudes (u) of

nonlinear waves that how u varies with x and t. It gives a

pure 3D view to change the variations, but little

complicated to make a quick assumption from this point of

view. So Fig. 2 is comparatively easier than Fig. 1 to

explain that with increasing time there is no such a change

in u, but at the initial state, u increases with increasing the

value of x. At a certain value of x, the value of u suddenly

decreases as shown in the figure. And again, the value of u

increases with the increasing value of x. The value of x,

where u suddenly drops its value is called the critical point

of x. We make a sharp view from the critical point of x,

then we find something different from opposite polarity. At

the opposite polarity of X axis, the value of amplitudes (u)

increases slowly with x. And this is true before and after

the critical value of x. So from Figs. 1 and 2, we can make

a statement that our, in dusty plasma model, amplitudes

increase with x before and after the critical value of x when

a, b, r�, and rþ are fixed in value, but the rate of

increasing value of u is not same for both polarity of x,

from 3D point of view which is never observed in 2D plot.

Now from Figs. 3, 4 and 5, we can make some analysis

about the outcomes of our present work with some dis-

cussion. For example, the value of amplitudes (u) increases

slowly for the higher electron number density (n
ð0Þ
e ) but it

increases sharply with lower electron number density. But

after passing a certain distance, the value of f, and u is

same for all values of n
ð0Þ
e , when other parameters are fixed

as shown in Fig. 3. In other word, it is obvious from Fig. 3

that increasing the parameter n
ð0Þ
e would lead to a decrease

in the amplitude of the shock wave.

Figure 4 is the example to show the effect of r, which is

a combination of rþ;�, on amplitude (u). When in such a

combination, the value of rþ is greater than r�, then the

value of u increases slowly with f. But u increases sharply

against f for r, where r� is greater than rþ. And when the

values of r� and rþ are same, then the effects of r on u is

between two conditions, just previously mentioned. We

can also explain this in another way with simple analysis

like, Fig. 4 clears that the increase of positive ion-to-

electron temperature ratio would lead to make the shock

amplitude taller but the negative ion-to-electron tempera-

ture ratio make the shock shorter. On the other hand, the

Fig. 1 Three-dimensional profile of the periodic solution [given by

Eq. (46)] for fixed values of a ¼ 0:7; b ¼ 0:2, r� ¼ 0:6 and rþ ¼ 0:5
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ion temperature accelerate the particles due to generation

of high potential shock wave.

And the effects of a on amplitudes is shown in Fig. 5.

The value of u increases slowly and sharply for lower and

higher values of a. So it is obvious from Fig. 5 that the

excess of negative-to-positive ion density ratio would lead

to increase the shock amplitude. But the most interesting

point to note from Figs. 3, 4 and 5 is that for the effects of

different parameters (when some other parameters are fixed

in values) the amplitudes of shock waves always negative

in value, and the highest value of u is 0 in all conditions

(Figs. 3, 4, 5). In addition, the amplitude for different

values of rþ and r� is 10 times smaller shown in Fig. 4

than n
ð0Þ
e (in Fig. 3) and a (in Fig. 5). So one conclusion

could be established from this point that our dusty plasma

model for nonlinear wave equations only negates negative

values of amplitudes for shock wave profiles. And the main

reasons could be: (1) we consider both positive and nega-

tive ions with stationary (positive/negative) charged dust

impurities and (2) presence of electron degeneracy pres-

sure. If we consider no dust particles or highly charged

either positive or negative dust grains, then there could be

some change in amplitudes of nonlinear shock waves. So, it

needs to justify what makes the main effect to provide

positive and negative shock wave profile, but this is beyond

our present model.

6 Conclusion

In this paper, we consider a nonlinear propagation of

traveling waves using the fluid model for ions (both posi-

tively and negatively charged) and electrons (with electron

degenerate pressure), and a reductive perturbation tech-

nique. We derive further modified KdV equation (fmKdV)

for the investigation of small but finite amplitude waves.

The solutions of fmKdV equation are obtained using

G0=G method (Zhang et al. 2008; Selim and Abdelsalam

Fig. 2 Three-dimensional profile of the explosive/blowup pulse

[given by Eq. (40)] for the same parameters as in Fig. 1

Fig. 3 The shock wave profile for different values of nð0Þe where

nð0Þe ¼ 2:31x1021 (solid line), nð0Þe ¼ 3:7x1021 (dotted line), nð0Þe ¼
5:2x1021 (dashes line). Here, a ¼ 0:9; b ¼ 0:1; T1 ¼ 9000; T2 ¼
8000; and Q ¼ 0:8

Fig. 4 The shock wave profile for different values of rþ and r�
where rþ ¼ r� ¼ 0:6 (solid line), rþ ¼ 0:65; r� ¼ 0:6 (dotted line),

rþ ¼ 0:6; r� ¼ 0:65 (dashes line). Here, a ¼ 0:9; b ¼ 0:1; and

Q ¼ 0:8

Fig. 5 The shock wave profile for different values of a where a ¼ 0:4;
(solid line), a ¼ 0:6; (dotted line), a ¼ 0:8; (dashes line). Here, rþ ¼
r� ¼ 0:6; and Q ¼ 0:8

2180 Iran J Sci Technol Trans Sci (2018) 42:2175–2182

123



2014). G0=G method successfully proves different classes

of solutions of the fmKdV equation (Davidson 1972; Fan

2000; Wang et al. 2008). Basically, different nonlinear

wave equations are derived using G0=G method with new

solutions and then those solutions are used to compare with

the solutions (Yusufoglu and Bekir 2008; Fan 2003). The

transformation formula is used in our nonlinear wave

equations to show that our analysis of fmKdV is applicable

for any nonlinear problems. So in this paper, G0=G method

(Davidson 1972; Selim and Abdelsalam 2014; Fan 2000;

Wang et al. 2008) is used with a computation of periodic

traveling wave solutions for our model corresponding to

nonlinear wave equations, and to understand the effects

electron degeneracy pressure has on astrophysical compact

objects as well as their wave characteristics.

In summary, we would like to say that our model is

developed with multicomponent in dust plasma to derive

the exact traveling solution of nonlinear shock waves from

further modified Korteweg–de Vries equation using G0=G
method (Zhang et al. 2008; Selim and Abdelsalam 2014).

A mathematical derivation of nonlinear (Davidson 1972;

Selim and Abdelsalam 2014; Fan 2000; Wang et al. 2008)

wave equations with solutions justifies that our model is

valid in such a limited case. There are still some facts to

consider such as coupling parameter, degeneracy pressures

for ions and neutrons, and magnetic field to observe the

same phenomena in solitary and double layers waves. If we

could consider all facts in one model, then it will be highly

complicated to derive and solve, which could be critical to

all researchers other than the strong mathematical

background.

So for the future work, we hope there could be some

works using our model with Gardner equations to analyze

the nonlinear solitons. And we also hope for future labo-

ratory work to justify our model with further validity and

limitations.
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