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Abstract

In this paper, firstly, Hermite—-Hadamard-Fejér type inequalities for p-convex functions in fractional integral forms are
built. Secondly, an integral identity and some Hermite—-Hadamard-Fejér type integral inequalities for p-convex functions in
fractional integral forms are obtained. Finally, some Hermite-Hadamard and Hermite-Hadamard-Fejér inequalities for
convex, harmonically convex and p-convex functions are given. Many results presented here for p-convex functions

provide extensions of others given in earlier works for convex, harmonically convex and p-convex functions.
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1 Introduction

Let f:1 C R — R be a convex function defined on the
interval I of real numbers and a,b € I with a<b. The
inequality

a+b
()<
is well known in the literature as Hermite—-Hadamard’s
inequality (Hadamard 1893; Hermite 1883).

The most well-known inequalities related to the integral
mean of a convex function f are the Hermite—Hadamard
inequalities or its weighted versions, the so-called Her-
mite—Hadamard—Fejér inequalities.

Fejér (1906) established the following Fejér inequality
which is the weighted generalization of Hermite—Hada-
mard inequality (1):
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Theorem 1 Let f: [a,b]— R be convex function. Then

the inequality
x)dx < / £

f<a+b)/
_f() / wx)ds,

holds, where w : [a,b]— R is nonnegative, integrable and
symmetric to (a + b)/2.

For some results which generalize, improve, and extend
the inequalities (1) and (2), see Bombardelli and Varosanec
(2009), Chen and Wu (2014), Dragomir and Agarwal
(1998), Fang and Shi (2014), Iscan (2013, 20l4c,
d, 2016b, c¢), Mihai et al. (2015), Noor et al. (2016), Pearce
and Pecaric (2000), Sarikaya (2012) and Tseng et al.
(2011).

We will now give definitions of the right-hand side and
left-hand side Riemann—Liouville fractional integrals
which are used throughout this paper.

Definition 1 (Kilbas et al. 2006). Let f € L[a,b]. The
right-hand side and left-hand side Riemann-Liouville
fractional integrals J f and Jj_f of order « >0 with
b > a >0 are defined by
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() = F(loc) / x(x — )" 'f(r)dr, x > a and

o 1 b -1
J) f(x) :W/X (t—x)*"" f(t)dt, x<b,
respectively, where I'(a) is the Gamma function defined by
(o) = [, e ' dr.

Because of the wide application of Hermite—Hadamard
type inequalities and fractional integrals, many researchers
extend their studies to Hermite—-Hadamard type inequalities
involving fractional integrals not limited to integer inte-
grals. Recently, more and more Hermite—Hadamard
inequalities involving fractional integrals have been
obtained for different classes of functions; see Dahmani
(2010), Iscan (2014a, b, 2015), Iscan and Wu (2014), Iscan
et al. (2016d), Sarikaya et al. (2013) and Wang et al.
(2012, 2013).

Iscan (2014d) gave the definition of harmonically con-
vex function and established the following Hermite—
Hadamard type inequality for harmonically convex func-
tions as follows:

Definition 2 Let/ C R\{0} be a real interval. A function
f I — R is said to be harmonically convex if

Xy
f(tx—l—(l—t)y) <tf(y) + (1 = )f (x), (3)
for all x,y €I and 7 € [0,1]. If the inequality in (3) is

reversed, then f is said to be harmonically concave.

Theorem 2 (iscan 2014d). Let f : 1 C R\{0} — R be a
harmonically convex function and a,b € I with a<b. If
f € Lla, b], then the following inequalities hold:

2ab ab  [Pf(x) . fla)+f(b)
f<a+b)5m , @ ST @

x2 - 2

Chen and Wu (2014) presented Hermite—-Hadamard—
Fejér inequality for harmonically convex functions as
follows:

Theorem 3 Let f:1C R\{0} — R be a harmonically

convex function and a,b € I with a<b. If f € L[a,b] and

w: [a,b] C R\{0} — R is nonnegative, integrable and
2ab

harmonically symmetric with respect to {7, then

() f e [0
L) [0,

- 2 x2

72, €\ Springer

Sarikaya et al. (2013) presented Hermite—Hadamard
inequality for convex functions via fractional integrals as
follows:

Theorem 4 Let f : [a,b] — R be a positive function with
0<a<bandf € La,b. If f is a convex function on |a, b],
then the following inequalities for fractional integrals hold:

1(457) < 2 ) + 5.1
- f(a) +f(b)

— 2 )

with o > 0.

(6)

Iscan and Wu (2014) presented Hermite—Hadamard
inequality for harmonically convex functions via fractional
integrals as follows:

Theorem 5 Let f:1C (0,00) — R be a function such
that f € La,b], where a,b € I with a<b. If f is a har-
monically convex function on |a,b], then the following
inequalities for fractional integrals hold:

P(2) < T (L T e gp)

a+b
I (fog)(1/a)] IO

(7)

with o> 0 and g(x) =1, x € [} ,1].

Iscan (2015) presented Hermite—-Hadamard-Fejér
inequality for convex functions via fractional integrals as
follows:

Theorem 6 Let f : [a,b] — R be a convex function with
a<b and f € Lla,b]. If w is nonnegative, integrable and
symmetric to (a + b)/2, then the following inequalities for
fractional integrals hold:

£(“50) o) 97 wia)]

< [ (fw) (B) + T3 (fiw)(a)] (8)

- JM T2, w(b) + T _w(a)],

with o > 0.

Iscan et al. (2016d) presented Hermite—Hadamard—Fejér
inequality for harmonically convex functions via fractional
integrals as follows:

Theorem 7 Let f : [a,b]— R be a harmonically convex
function with a<b and f € Lla,b]. If w:[a,b]— R is
nonnegative, integrable and harmonically symmetric with
respect to 2ab/a + b, then the following inequalities for
fractional integrals holds:



Iran J Sci Technol Trans Sci (2018) 42:2079-2089

2081

7( 25 [ wo ) 1/a) 475 (w0 01 /0)]
< [T (o g)(1/a) + 73, _(fwo)(1/b)]

SDEIO e oo )(1/a) + 17, (w0 2)(1/8)]

©)
with o> 0 and g(x) =1, x € [} 1].
Zhang and Wan (2007) gave the definition of p-convex
functionon I C R, 1§can (2016¢) gave a different definition
of p-convex function on 7 C (0, 00) as follows:

Definition 3 Let / C (0,00) be a real interval and
p € R\{0}. A function f : I — R is said to be p-convex, if

(I + (1= 0]'7) <) + (1= 0 ()

for all x,y € I and 7 € [0, 1].

(10)

It can be easily seen that for p=1 and p = —1, p-
convexity reduces to ordinary convexity and harmonically
convexity of functions defined on I C (0, 00), respectively.

In Fang and Shi (2014), Theorem 5, if we take
IC (0,00), p e R\{0} and A(¢) =1, then we have the
following theorem.

Theorem 8 Letf:1 C (0,00) — R be a p-convex func-
tion, p € R\{0}, and a,b € I with a<b. If f € L|a, b] then
the following inequalities hold:

@+ P [Pfx), _fla)+f(b)
f({ 2 } )pr—apa drs '

xl=r " = 2

(11)

For some results related to p-convex functions and its
generalizations, we refer the reader to see Fang and Shi
(2014), 1§can (20164, b, ¢), Mihai et al. (2015), Noor et al.
(2016) and Zhang and Wan (2007).

In this paper, we built Hermite—Hadamard—Fejér type
inequalities for p-convex functions in fractional integral
forms. We obtain an integral identity and some Hermite—
Hadamard-Fejér type integral inequalities for p-convex
functions in fractional integral forms. We give some Her-
mite—Hadamard and Hermite-Hadamard-Fejér inequalities
for convex, harmonically convex and p-convex functions.

2 Main Results

Throughout this section, |[w||,,= sup,c(,,)[w(z)|, for the
continuous function w : [a, b]— R.

Definition 4 Let p € R\{0}. A function w: [a,b] C
(0,00) — R is said to be p-symmetric with respect to

5] " it

w(x) = W([a" F B xp]l/"),
holds for all x € [a, D).

Lemma 1 Ler peR\{0}, >0 and w:la,b]C
(0,00) — R is integrable, p-symmetric with respect to

2527 then
() Ifp>0,
S (wog)(b') = Jp,_(wog)(d”)

= % o (wog)(B') + Jh_(wog)(a”)],

with g(x) = X, x € [a?, bP].
Gi) If p<0,
Ty (wog)(d) =Jg (wog)b)

o) @) + 1 (wog) ).

with g(x) = X, x € (b7, a’].

Proof

(i) Let p > 0. Since w is p-symmetric with respect to

[#]1/,;, using Definition 4 we have w(xl/p) =

w([a” +bP —x]””) for all x € [@”,b”]. Hence in

the following integral setting ¢t = a” + b” — x and
dr = —dx gives

o)) =15 | " (s
=ﬁ/:ﬁ(hp—x)“_]w<[a”+b”—x}l/”)dx

1 v o—1 1

=W/m) (x—a")* w(x /”)dsz,f,_(wog)(a”).
This completes the proof of i.

(i)  The proof is similar to i.

Theorem 9 Ler f : I C (0,00) — R be a p-convex func-
tion, p € R\{0}, o >0 and a,b €l with a<b. If f €
Lla,b] and w : [a,b] — R is nonnegative, integrable and p-

L224 1/p

symmetric with respect to [ 5 , then the following

inequalities for fractional integrals hold:

2, @) Springer
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@ Ifp>0, f(lra 4+ (1 =0 7) g ([ + (1 = )]

@ + VP
f< } )[;‘,, (wog)(¥’) +Jj_(wog)(d)] 2
2 ' _f(@) +1(b)
< o (fwo g)(07) + T _(fw o g)(a”)] B 2 15)
@) +1(b) [ s ] : 15
DL g2 o g)(17) + 75 (wo g)(@)].
(12) Multiplying  both  sides of (15) by
2t°‘"w([ta” +(1- t)bp]l/p) and integrating with
i }vith f)(X) =P, x e o, b7). respect to ¢ over [0, 1], using Lemma 1-i, we get
i) If p<O, .
Py pr] /P [y (fwog) () +J5_(fwog) ()]
a’ + ,
JZ Py 4 J%, v fla)+f( .
f({ P } )[bfur(Wog)(a )+ gf(Wog)( )] < ( )2 ( )[JZ,,Jr(wog)(bp)+pr,(WOg)(ap)],
< i (fwog)(a”) +J5_(fwo g)(8")] he risht hand side of (12). Thi | X
the right hand side o . 1s completes the
fla) +f() , N
DO wo o)) + 75 (o 2) (1), proof of i
(13) (i)  The proof is similar to i.
O]
with g(x) = x'/?, x € [P, a").
Remark 1 In Theorem 9, one can see the following.
Proof (1) If one takes p = 1, one has (8).

(i) Letp>0.Sincef:IC (0,00) — Risap-convex (2) If one takes p =1 and w(x) = 1, one has (6).
function, we have, for all x,y € I (with t = % in the (3) If one takes p = 1 and « = 1, one has (2).
inequality (10)) (4) If one takes p = 1, o = 1 and w(x) = 1, one has (1).

| (5) If one takes p = —1, one has (9).
¥ X+ yP /e <f(x) +£(y) (6) If one takes p = —1 and w(x) = 1, one has (7),
2 - 2 ' (7) If one takes p = —1 and « = 1, one has (5).
(8) If one takes p = —1, a = 1 and w(x) = 1, one has
Choosing x = [ta” + (1 —1)b"]"?  and y= 4).
[th” + (1 — t)ap]l/P, we get (9) If one takes « = 1 and w(x) = 1, one has (11).

()

Sf([fa”+(1 —]'?) erf([tb”Jr(l ~)ar)') |

(14)
Multiplying  both (14) by
2t“’1w([m” + (1 - t)bp]l/‘”) and integrating with

sides  of

respect to ¢ over [0, 1], using Lemma 1-i, we get

ab 1/p
f ([ ;bp] ) [ (wog)(BP) + T3, _(wo g)(a”)]
<%, (fwo g)(B") + T3 _(fwo g)(a’)],

the left hand side of (12). For the proof of the
second inequality in (12), we first note that if fis a
p-convex function, then, for all ¢ € [0, 1], it yields

22, Q) Springer

Lemma 2 Let f:1C (0,00) — R be a differentiable
function on I° and a,b € I° with a<b, p € R\{0} and
o> 0.Iff € Lla,b] andw : [a,b] — R is integrable and p-

symmetric with respect to [

#]1/ P then the following

equalities for fractional integrals hold:

®

Ifp>0,
JM (2, (wog) (W) + Ji_(wog)(a)]

= [y (fwo )W) + T3 _(fwo g)(d”)]
L[ el e
L) Jo |- .];W(s — ) N (wog)(s)ds

with g(x) = x'/?, x € [, b"].
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() Ifp<O,

JM [‘]ZIUr(W o g)(a”) +]Z',,,(W o g)(bp)}

= Vi (fwog)@) + 75 _(fwog)(B")]

L R -y e |
“ra . {_f:"@_bp)wwog)(s)ds @
(17)
with g(x) = x'/?, x € [b,a"].
Proof
(i) Let p > 0. It suffices to note that
LY @ =) T (wog)(s)ds ,
71—‘(“) ar |:_ftb"(s_ap)a_l(WOg)(S)ds:|(f g) (t)dt

— [ = o] o)

S / s — @) wo (] 70 2 s

=1 — b,
(18)

By integration by parts and using Lemma 1-i, we
have

1 v

= e [0 -9 wegias)

al

5 @0 e

b
L / B —5)" (wog)(s)ds

1 b o—1
~ti L @0 e
700

=L wog) () +J5_(wog)(@)]

—Ja (fwog) (D)
(19)

and similarly

1 b’

=W(fog)(t) (/tyy(sfa")“fl(wog)(S)dS)

1
[(2)

,
=S [ = o) as

L

aP

,
e [ =7 (o oy

z
+ﬁ / (1—a?)" (fwog)(1)ds

P

_ —@[ s (wog) (W) +J3,_(wog)(d”)]

+Jp_(fwog)(d).

A combination of (18), (19) and (20) gives (16).
This completes the proof of i.
(i)  The proof is similar to i.

Remark 2 In Lemma 2, one can see the following.

(1) If one takes p = 1, one has 1§.can (2015), Lemma
2.4,

(2) If one takes p = 1 and w(x) = 1, one has Sarikaya
et al. (2013), Lemma 2.

(3) If one takes p=1 and o =1, one has Sarikaya
(2012), Lemma 2.6.

(4) If one takes p=1, o =1 and w(x) = 1, one has
Dragomir and Agarwal (1998), Lemma 2.1.

(5) If one takes p = —1, one has 1§can et al.
(2016d), Lemma 3.

(6) If one takes p = —1 and w(x) = 1, one has Igcan and
Wu (2014), Lemma 3.

(7) If one takes p = —1, « = 1 and w(x) = 1, one has
Iscan (2014d), 2.5. Lemma.

(8) If one takes o = 1 and w(x) = 1, one has Noor et al.
(2016), Lemma 2.4.

Theorem 10 Let f:1 C (0,00) — R be a differentiable
function on I° such that ' € Lla,b], where a,b € I and
a<b. If |f'| is p-convex function on [a,b] for p € R\{0}
and o> 0, w: [a,b] — R is continuous and p-symmetric
[52]"”

with respect to , then the following inequality for

fractional integrals hold:

@ Ifp>0,

M LI o 07) 30 9]

—[To (fwo ) (B) + T3 _(fwo g)(d)]|

— o1
< %[Cl(w)lﬂ(a)l + G D),

Ci(o,p) /1 10— w)* ] udu and Cy(o,p)
s = 2{%,
' o pluar + (1 — uybr])'~1/P
_/1 (1 — u)*—u|
0 plua® + (1 — u)br]'~0/P)

(1 — u)du

with g(x) = x'/7, x € [a”, b].

Gi) If p<0,
OO 1 wo (@) + 73 (wo ()]

[ (o 0)(@) 4 (o )]

< % (€3 )| (@)] + Calp)IF (B,

where

@ Springer
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I (LR
Cs(a,p :/
(o) Jo pluar + (1 — u)pr)' =P

= ] =[(1 —u)*—w| —u)du
_/0 pluar + (1 —u)bp]lfu/m(l )d

udu and Cy(o,p)

with g(x) = x'/?, x € b, a").

Proof

(i) Let p > 0. Using Lemma 2-i, it follows that

W%ﬂb) i (w0 ) (8) + T3 (wo )(@)]

— [ (fwog)(B") + T3, _(fwo g)(a")]|
1 /”’ Joo (B =) (wog)(s)ds
o) Jar | — ﬁw (s —a”) ' (wog)(s)ds

|(f 08)(r)]dr.
(21)

. . L 1
Since w is p-symmetric with respect to [#] /e ,

using Definition 4 we have w(xl/P) =

w([a” + b —x]l/p) for all x € [a”, bP]:

y P
L= wen@as— [ s-ar " twog)(s)s

t

t

»
L O

br

t
/ (s— ") (wog)(s)ds
a1

al +-b’ — - S
f’urbl "(s—a”)“ I(Wog)(s)|ds, te {all,%}

<

P bP N
fa’,,Jrl,,,7[|(As—a/’)“‘l(wog)(s)‘ds7 te [a ; ,bp]

(22)

(@ +5) .
e

(1 —u)"—u*
pluar + (1 — b
| w* — (1 —u)”

pluar + (1 = u)br]'
CNUEY ol Y
F(a+1) 0 pluar + (1 — u)b?)'

So-

[l (7 — @)

+

_—

i V'([uaﬂ (- u)bﬂ]'/")

iV (fna + (=)

A combination of (21) and (22) gives

y(a);f(b) Vi (wog) (1) +J5,_(wog) ()]

— i (o) (07) +J5s (fwor) ()] |

o { Lot (K s =ary wog)(9)|ds) |(Fog) ()] ar ]

T s ([ (5= o) ()]as) [ (fog) (1) ar
ol [ L (7 ey as) | (pog) ()|

e (o (s=ayas) (Fog) (0 )dr}

[ (o) A (o)

HWerJ jaﬂz (Jr (s—a") ds)ptlf(]/ﬁ) ! dr

I'(a) i a1 1 1 A /p
(.[alurb"—t(siap) ds)lmv (t /])
ul’u;l’(bf’—t)d—(t—ap)a ey

ol | e WV(’ ")

ST | (=) = =0 [\ g |
= ()

_+ j#;w

<

dr

+. ﬁf’gw

Setting ¢ = ua” 4+ (1 — u)b? and dt = (a” — b”)du
gives

i (wog)(VF) +Jp_(wog)(a)] — 1o, (fwo g)(B") + T5_(fwo g)(a")] ’

i (1 + (1= 0))

du

(23)
du

du.

22, Q) Springer
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Since |f’| is p-convex function on [a, b], we have
I (lua” + (1= 17 )| <l (@) + (1 = w)|f'(B).

(24)
A combination of (23) and (24) gives

MO LI0) s o)+ s 5))]

— [T (fwo g)(B") + T3 _(fw o 8)(a")]|

[l (b7 — a)*"!
- I(e+1)
f()l |(1 — M) 7ux| o0 du[f/(a)\

pluar + (1 —u)br]'~

I (1 = w)*—u”|

Y pluar + (1= ]

Il (b — )
I(e+1)

i (1~ w)dulf (5)]

This completes the proof of i.
(i)  The proof is similar to i.

Remark 3 In Theorem 10, one can see the following.

(1) If one takes
(2015), Theorem 2.6.

(2) If one takes p = 1 and w(x) = 1, one has Sarikaya
et al. (2013), Theorem 3.

(3) If one takes p=1, a =1 and w(x) =1, one has
Dragomir and Agarwal (1998), Theorem 2.2.

(4) If one takes o = 1 and w(x) = 1, one has Noor et al.
(2016), Theorem 3.1.

p=1, one  has 1§can

Corollary 1 In Theorem 10, one can see the following.

(1) If one takes p = 1 and o = 1, one has the following
Hermite—Hadamard-Fejér inequality for convex

functions:
1 f(a) +f(b)

b—a 2 / S 7a/f
gM[CI(M)W@)I+Cz(1»1>lf'(b)”'

(2) If one takes p = —1, one has the following Hermite—
Hadamard—Fejér inequality for harmonically convex
functions via fractional integrals:

y(w;f( M7, wo)(1 /)47, (wog)(1/5)]

[ o)1)+ 07 (frog)(1/)]|

<o) (02 6,0ty o))

[Ci(op)If'(@)] + Ca(o, p)IF' (B)]]-

(3) If one takes p = —1, a = 1 and w(x) = 1, one has
the following Hermite—Hadamard inequality for
harmonically convex functions:

ARSI @dx‘

2 b—al,
b—a
<
- ( ab
4) Ifonetakes p = —1 and o = 1, one has the following
Hermite—-Hadamard—Fejér inequality for harmoni-
cally convex functions:
b b
0 410) (i, [,
2 . X2 . x2

2
SYUINCED ey

)[03(1, —DIf' (@) + Ca(1, =DIF (B)]]-

L =1)If'(@)| + Cs(1, =DIf'(b)]].

(5) If one takes p=—1 and w(x) =1, one has the
following Hermite—Hadamard inequality for har-
monically convex functions via fractional integrals:

W) +f(b) T(a+1)

5 a1y i oD 1/a) + T (7o) (1/0)]

< (e nr@l+ G- o)

Theorem 11 Let f : I C (0,00) — R be a differentiable
function on I° such that f' € L[a,b], where a,b €I and
a<b. If |[f'|", ¢>1, is p-convex function on l|a,b| for
p € R\{0}, « >0, w:[a,b] = R is continuous and p-
symmetric with respect to [“’ == ] , then the following

inequality for fractional integrals holds:
® Ifp>0,

T[(a) ;f(b) [ Zn+(wog)(bp)"'J}O;P—(Wog)(ap)]

— o (fwo) W)+ _(fiwog)(a)]]

[l — @)™ iy
<a G )

x [Ci(ap)If (@)["+Ca(ap)If (B)"]7,

where Cy(a,p), C2(ar,p) are the same in Theorem
10,

Q=

1 A .
Cs(oc,p):/ U —w=w]
0 plua’ + (1 — w)pr]' =17

with g(x) = x'/?, x € [a”, b7)].
() If p<0,

72, €\ Springer
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T i (wog)(d) +75_(wog)(¥)]

— [T (Fwog) (@) + % _(fivo ) (1]

Wl (@ — 7)1t
S F(O(+1 C6 q(avp)

)
[C3(o p)If' (@) +Ca (o p)If ()],

where C3(a,
10,

Y (@) +£(b)

<=

D), Ca(o,p) are the same in Theorem

Cuap) = [ A0,
o 0 p[uap—i—(l—u)bp]l*(l/]])

with g(x) = x'/?, x € [b,a").

Proof

(i) Let p > 0. Using (23), power mean inequality and
the p-convexity of |f'|?, it follows that

(a);f( )[ % (wog) (") +J5,_(wog)(a”)]

= [Jin (Fwog)(B") +T5_(fwog)(a”)]|
Il (B = 1 (1 —u) ]
< [(a+1) ‘/O'p[uap_"_(]_u)bp]lf(l/p)

Lf' ([ua”+ (1 7u)bn]1/p> y
S e
" </0 | p[mplil(x):);‘p‘]“]!I/P) Lf ([““p +(
[ e )
(e

1 ‘(l—u)“—u“| AP , %
+</0 P[W”+(lfu)b1’]1—(l/p)(1 ) )lf ()] ]

%Cﬁ(w) [C1(p

1-1
) |

This completes the proof of i.
(i)  The proof is similar to i.

Remark 4 In Theorem 11, one can see the following.

(1) If one takes
(2015), Theorem 2.8.

(2) If one takes p=1, a =1 and w(x) =1, one has
Pearce and Pecaric (2000), Theorem 1.

(3) If one takes p = —1 and w(x) = 1, one has Iscan and
Wu (2014), Theorem 5.

(4) If one takes p = —1, « = 1 and w(x) = 1, one has
Iscan (2014d), 2.6. Theorem.

p=1 one has Iscan

b=ty
Shiraz Onivarsity
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—u)b"]l/") ‘qdu>q

) (@)|"+Caep) I (B)] .

(5) If one takes o = 1 and w(x) = 1, one has Noor et al.
(2016), Theorem 3.2.
Corollary 2 In Theorem 11, one can see the following.

(1) If one takes p=1 and w(x) =1, one has the
following Hermite—Hadamard inequality for convex
functions via fractional integrals:

a r
’f( +f 2(5,1_21)1 [JZJ(b) -
cb-qa

Ty f(a)]

(s, DIF (b))

D[Ci(o, DI (@)]"+Ca,

- 2

(2) If one takes p =1 and o = 1, one has the following
Hermite—Hadamard—-Fejér inequality for convex

functions:
I fla )+f( )

3 [Pt [t
SHW”ooz(b_a)CS_E(LI)

<=

[CI(L DI (@) *+C (1, D) (b))

(3) If one takes p = —1, one has the following Hermite—
Hadamard-Fejér inequality for harmonically convex
functions via fractional integrals:

y( );f( )[ 1/b+(wog)(1/a)+Ji“/af(W°g)(1/b)}

[ o)1 /) +75, (Fwog)(1/0)]|

< ||W||lgo(zli(li )— a) <b£;a>

€y (=) [Co(o, =) (@) 4+ Calos DI ()"

4) Ifonetakes p = —1 and o = 1, one has the following
Hermite—-Hadamard—Fejér inequality for harmoni-
cally convex functions:

‘f +f)/ dx/f ‘

w b—a) 1-L
ol b —a) ity

[C5(1,~1)|f (@)"+Ca(1, ~ DI (B

Theorem 12 Let f : I C (0,00) — R be a differentiable
function on I° such that f' € L|a,b], where a,b € I and
a<b. If |f'|%, g > 1, is p-convex function on |a,b] for
p € R\{0}, o >0, %—&—}: 1, w: [a,b] — R is continuous

and p-symmetric with respect to [#]1/ P then the fol-
lowing inequality for fractional integrals holds:



Iran J Sci Technol Trans Sci (2018) 42:2079-2089

2087

@ Ifp>0,

M LI o )07) 530 ()

— [ (fw o)) + T3 _(fwo g)(d)]|

il (B —a)* o HOIETROIAY
< w@(“vl’vr)(f) )

1/p>> du
/e (wog))

[ (fwo ) @) + 03 (w0 )]

Wl (a” = 7)o I (@) |7+ |f (B)[7\ #
>~ wcg(%]?,r) (f) 5

where
10wt
Cy(o,p, ) —/0 (p[ua”—i—(l _u>bp]

with g(x) = x'/?, x € [, b"].
() If p<0,

[y (wog)a) + 5

where

B (e A Y
C8(0‘7P>”)*/0 (p[ua/’—i—(l—u)bf’] 1/,,) du

with g(x) = x'/?, x € b, ).

Proof

1) Let p > 0. Using (23), Holder’s inequality and
the p-convexity of |f’|7, it follows that

V(a);ﬂ AT ) (wog) )+ 05 (wog) (@)

— [T (fwog)(B) +T5,_(fwog)(a”)]|

][ oo (B a”)m/l (1 =) —u”|
- [(a+1) 0 pluar+(1—u)br]'~0/P)

x}f’([uahr(lfu )

1/p>> d“)

)]

(1 —u)"—u”|

) (/01 <p[ua”+(l —:)bP;I_(
(L

1 s e

]l (0 — )™
- I'(e+1)

(1 —w)’—u’]

</0 <P[“ap + (1 - u)bp]l—(l/p)> dM)

. ( / @)1 - u>V’<b>qdu)‘l'
(B — ar)**!

(Gt
y (V’(a)l"+lf’(b)lq>5

2
p)cc+l

—<1/p>> d“)
Il =@

F(O(+1) C7(Ot,p,l")

. (V/(a)ﬁ;ﬂb)ﬁ)?

This completes the proof of i.
(i)  The proof is similar to i.

Remark 5 In Theorem 12, one can see the following.

(I) If one takes p =1, one has 1§can (2015), Theo-
rem 2.9-i.

(2) If one takes p=1, o =1 and w(x) = 1, one has
Dragomir and Agarwal (1998), Theorem 2.3.

(3) If one takes p=1 and o =1, one has Sarikaya
(2012), Theorem 2.8.

Corollary 3 In Theorem 12, one can see the following.

(1) If one takes p=1 and w(x) =1, one has the
following Hermite—Hadamard inequality for convex
functions via fractional integrals:

[0 10Tt ) e ) g i)
boa s F (@) +Hf (51"
<— <°<’1”)< 2 )

(2) If one takes p=—1 and w(x) =1, one has the
following Hermite—Hadamard inequality for har-
monically convex functions via fractional integrals:

72, €\ Springer
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If(a) erf(b) _ zr((f‘i;l { Y. (fo8)(1/a) +Jf/a,(f0g)(1/b)]
b a

< (b—a>ci(fx,71’r) (Wy

—\ ab 2

(3) If one takes p = —1, oo =1 and w(x) = 1, one has
the following Hermite—Hadamard inequality for
harmonically convex functions:

o 0o [0,
< (ba_b“> Ci(1,-1,7) <—V/(“)|q;lf/(b)|q>é.

(4) If one takes p = —1, one has the following Hermite—
Hadamard-Fejér inequality for harmonically convex
functions via fractional integrals:

w[ (w0 2)(1/a) + 7, (wo g)(1/0)]

[ (w o @)(1/a) + 0w o )(1/0)]|
[wllcab(b —a) (b—a\ I @I+ B)[")*
bt 0oy, (or sy
(5) Ifonetakes p = —1 and o = 1, one has the following

Hermite—-Hadamard—Fejér inequality for harmoni-
cally convex functions:

f(a) +£(b) /u”w)g) e /”Jw dx‘

2

o004y (LSO

(6) If one takes oo=1 and w(x) =1, one has the
following Hermite—Hadamard inequality for p-con-

vex functions:
fl)+f() __p_ ["f) dx‘ - (lf’(a)l"ﬂf’(b)qu
2 b —ar f, x'=r |~ 2
§ @d(ww% p>0
@Cé(m r),  p<0

3 Conclusion

In Theorem 9, Hermite—-Hadamard-Fejér type inequalities
for p-convex functions in fractional integral forms are built.
In Lemma 2, an integral identity, and in Theorems 10, 11
and 12, some Hermite-Hadamard-Fejér type integral
inequalities for p-convex functions in fractional integral

@ Springer

forms are obtained. In Corollaries 1, 2 and 3, some Her-
mite-Hadamard and Hermite—-Hadamard-Fejér inequalities
for convex, harmonically convex and p-convex functions
are given. Some results presented in Remarks 3, 4 and 5
provide extensions of others given in earlier works for
convex, harmonically convex and p-convex functions.
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