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Abstract
The uniaxial compressive strength (UCS) and modulus of deformability (Es) of intact rocks are essential parameters in rock

engineering and engineering geology projects. Because of the difficulty involved in measuring these parameters, indirect

methods are often used to estimate these parameters. In this research, some predictive models using multiple regression

analysis and Adaptive Neuro-Fuzzy Infrence System (ANFIS) were developed for predicting UCS and Es of the limestone

outcropped of Asmari formation in Lordegan, Chaharmahal and Bakhtiari Province, Iran. For this purpose, a series of

important and easy-to-obtain parameters, such as density, porosity, and indirect tensile strength (Brazilian test) were used

as the model inputs. Because the measured values of UCS and Es of samples varied in a wide range, rock samples were

classified as medium- to high- and very high-strength rocks according to the ISRM UCS classification (1978), and then, the

ANFIS models were improved for these groups. The variation of coefficient of determination (R2), Variance Accounted

For (VAF), and Root Mean Square Error (RMSE) were calculated for the UCS and the modulus of deformability obtained

from the multiple regression and the neuro-fuzzy models. The results revealed that the forecasting performance and

accuracy of the neuro-fuzzy system are very higher than those of multiple regression models.

Keywords Neuro-fuzzy system � Asmari formation limestone � Uniaxial compressive strength � Modulus of deformability �
Multiple regression

1 Introduction

The rock engineering properties are among the important

parameters in geological, mining, petroleum engineering,

and geomechanical investigations. These properties are

requisite for exploration, planning, and designing a given

project and the optimal utilization of earth resources.

Design and construction of structures are influenced by

mechanical properties of rocks. An essential stage of the

geotechnical investigation is to determine the strength and

deformability of rocks. There are many methods for mea-

suring uniaxial compressive strength (UCS) and elastic

properties of rocks (Young’s modulus or Es) in the labo-

ratory (McCann and Entwisle 1992).

It is complicated, time-consuming, and tedious to

determine UCS and Es in both field and laboratory. The

laboratory tests for UCS and Es are wearisome and costly

which need good instrumentation (Eissa and Kazi 1988). A

plenty of laboratory data of mechanical properties are

required to provide valuable insight for geotechnical site

characterization. To overcome this difficulty and to deter-

mine an index to indirectly estimate mechanical properties

of rock samples, many experiments such as point load

index, Schmidt hammer test, punch test, and P-wave

velocity have been developed by many researchers (Fahy

and Guccione 1979; Howarth and Rowlands 1986; Cargill

and Shakoor 1990; Shakoor and Bonelli 1991; Edet 1992;

Ulusay et al. 1994; Grima 2000; Gokceoglu 2002; Gok-

ceoglu and Zorlu 2004; Sonmez et al. 2006; Zorlu et al.

2008; Gokceoglu et al. 2009; Gurocak et al. 2012; Kaya

and Karaman 2016).

In addition, many researchers have proposed meaningful

relationship using fuzzy to adaptive neuro-fuzzy inference

system (ANFIS) to characterize the rock properties
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Fig. 1 Case study area in geographical and geological maps [reference of the geological map: geological map of the Borujen–Ramhormoz with

the scale of 1/250,000, Geological Survey of Iran (Geological Survey of Iran 2001)]

Fig. 2 Some petrographic aspects of the studied limestone (XPL.4)

2006 Iran J Sci Technol Trans Sci (2018) 42:2005–2020
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(Tahmasebi and Hezarkhani 2010; Aali et al. 2009). It was

found that construction of a well-performing fuzzy system

is not always as easy as it seems. In the fuzzy logic,

membership function and rules are determined by the trial

and error process. For complex systems, a significant

matter of time is required to find out the correct member-

ship function and rules to obtain a reliable solution. The

generalization capability of the fuzzy logic is very poor as

it uses the heuristic algorithms for defuzzification, rule

evolution, and antecedent processing.

Although the artificial neural networks (ANNs) are

among the most widely used intelligence techniques, they

suffer some shortcomings. The main drawback of ANNs is

to determine the proper size and optimal structure of the

neural network. The relationships of weight variation with

input–output behavior during the training and use of the

trained system to generate correct output using the weights

is a very complicated task to understand. Another difficult

issue involved in ANNs is manipulating the learning

parameters for learning and convergence.

Therefore, a combination of fuzzy system ANNs han-

dles limitations of both methods, and offers an excellent

data-mining opportunity to solve the critical and complex

problems in geotechnics (Singh et al. 2005; Gokceoglu

et al. 2004). In this connection, one of the most common

techniques is ANFIS that combines both fuzzy system and

ANN. Therefore, fuzzy rules based ANN approach is a

good and flexible technique to define uncertainties in rock

properties.

As it is difficult and expensive to determine all the

geomechanical parameters of the rocks, in this study, an

attempt was made to determine the UCS and Es from basic

low-cost tests such as indirect tensile strength (TS),

porosity (n), and density (q) of rock, using the statistical

method and fuzzy system with membership functions based

on ANFIS technique. To construct the models, mechanical

properties of different samples of limestone were deter-

mined according to the proposed methods (ISRM 2007).

Statistical and fuzzy logic approach to data analysis is

completed by DATAFIT 8 and MATLAB (matrix labora-

tory) software packages, respectively.
2 Geological Background of the Study Area

Study area (Khersan 1 and 2 dam sites) is located in

Khersan River in the southwest of Lordegan, Chaharmahal

and Bakhtiari Province, Iran.

According to geological zoning of Iran, this region

belongs to Folded Zagros and Arabian Shield craton.

The Folded Zagros consists of resistant layers such as

thick limestone, relatively less thin limestone, marl and

shale mainly covered with gray and pink limestone

(Aghanabati 2004). The formation in the abutments and

bedrock of Khersan dams is composed of the upper Asmari

limestone (Fig. 1).

Table 1 Data resulted from physical and mechanical experiments

conducted on 87 samples of Asmari limestone

Es (GPa) UCS (MPa) TS (MPa) q (g/cm3) n (%)

Average 30.57 96.41 6.37 2.59 5.83

Min 3.39 25.09 0.61 2.43 1.00

Max 57.77 184.34 16.62 2.72 14.663

Table 2 Classification of the uniaxial compressive strength of rocks

from ISRM (1978)

UCS (MPa) Number of samples

Soil \ 0.25 MPa 0

Extremely low strength 0.25–1 0

Very low strength 1–5 0

Low strength 5–25 0

Medium strength 25–50 5

High strength 50–100 44

Very high strength 100–250 39

Extremely high strength [ 250 0
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Fig. 3 Rock samples classified as medium- to high- and very high-

strength rocks according to ISRM uniaxial compressive strength

classification (1978)
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Limestone studied in the dam sites is often dolomitized,

with an increase of porosity, which consequently leads to

decrease in rock strength. Besides, the micritic limestone

rocks (fine crystals), which are more resistant compared to

sparitic (coarse crystals) ones, are observed in the study

area. These rocks may contain varying amounts of impu-

rities such as oxide, iron hydroxide, organic matter, quartz,

and clay minerals.

Because limestone has a more complex structure due to

calcium carbonate dissolution (thus easier diagenesis), their

mechanical behavior is often controlled by porosity,

cleavage, crystal size, density, petrification, and small

cracks.

Asmari formation is exposed extensively in the west and

southwest of Iran. A large number of development projects

such as dams, tunnels, and hydropower plants including

Density (gr/cm3)

Porosity (%)

TS (MPa)

UCS (MPa)

ES (GPa)

Fig. 4 Correlation matrix between physical and mechanical properties of Asmari limestone

Table 3 The coefficient of

determination (R2) between

physical and mechanical

properties measured in the

laboratory

TS q n UCS Es

Es 1

UCS 1 0.698 (linear)

n 1 - 0.315 (linear) - 0.242 (linear)

q 1 - 0.374 (log) 0.354 (log) 0.335 (linear)

TS 1 0.182 (power) - 0.213 (linear) 0.478 (linear) 0.41(power)

2008 Iran J Sci Technol Trans Sci (2018) 42:2005–2020
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Khersan 1, 2, and 3, Karun 4, and Seimareh are constructed

in this formation.

3 Petrographic Aspects

Petrographic investigations of limestone cropped out from

the Asmari formation consist of routine observations and

measurements on thin sections using a polarized

microscope. A set of 22 thin sections were prepared from

drilled boreholes of the upper Asmari limestone (access

tunnels of the Khersan 1 and 2 dams). The sections reveal

that the rocks mainly consist of calcite, aragonite, and

opaque minerals (iron oxides and hydroxides, organic

matter) and a small trace of clay and quartz (Fig. 2).

The fine-grained calcite with a diameter varying from 1

to 4 lm makes 20–80% of these rocks and often contains

significant amounts of fossils. Since over 50% of the
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Fig. 5 Variation trend of UCS and Es versus TS, n, and q
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constituents include carbonate (calcite type) minerals,

these rocks are considered as carbonate. According to

Dunham’s classification, they can be classified as ‘‘mud-

stone’’, ‘‘wackestone’’, ‘‘packstone’’, and ‘‘grainstone’’.

Besides, using Folk classification, they are classified as

‘‘biomicrite’’ and ‘‘biosparite’’. Skeletal grains in these

rocks are bivalve, coral, bioclast, nummulites, etc., which

are Oligocene–Miocene in age. In Fig. 2, microscopy

images of two thin sections of the Asmari limestone are

shown.

4 Physical and Mechanical Properties

According to ISRM suggested methods (ISRM 2007),

physical and mechanical properties such as UCS, indirect

tensile strength (TS), secant Young’s modulus (Es),

porosity (n), and density (q), were measured for 87 lime-

stone samples in geotechnical laboratory of Khersan dam

sites, Iran.

The results obtained from the laboratory tests are pre-

sented in Table 1.

Because the measured values of UCS and Es of samples

listed in Table 1 vary in a wide range, rock samples are

classified as medium, high- and very high-strength rocks by

ISRM UCS classification (1978).

According to Table 2 and Fig. 3, only five samples are

in the range of medium strength, therefore, samples clas-

sified in two main groups (medium- to high-strength and

very high-strength samples) and predictive models were

developed for these two groups.

5 Statistical Analysis of Laboratory Results

The statistical approach is among the most common

methods used in rock engineering and engineering geology

to evaluate predictive models. It can often be used in two

options of simple and multivariate regression. In this study

during the simple regression analyses, linear (y = ax ? b),

power (y = axb), exponential (y = aebx) and logarithmic

(y = alnx ? b) functions were employed. Correlation

matrix between physical and mechanical properties of

Asmari limestone is shown in Fig. 4. In addition, the

coefficient of determination for all functions used was

derived and the best of which are shown in Table 3.

The results shown in Table 3 indicate that there is a

weak correlation between UCS and Es versus TS, n, and q.
The best-fit trend lines for all samples, medium- to high-

strength samples and very high-strength samples, are

shown in Fig. 5. As shown in this figure, by reducing the

number of data and dividing the samples in two groups of

medium- to high- and very high-strength samples, the

performance of regression models is reduced significantly;

as a result, the regression analysis for all samples provides

the best performance.

Also, multivariate regressions including three indepen-

dent variants and one dependent variant were used in this

study. The best-fit obtained multivariate equations to esti-

mate UCS and Es are written as Eqs. 1 and 2, respectively.

Predicted UCS (MPa) = 65/4237+0/6533*x; 0/95 Pred.Int.
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Fig. 6 Comparison between measured and predicted UCS (right) and Es (left) values

Fig. 7 The basic structure of designed FIS to estimate UCS and Es
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UCS ¼ 5:753� TS� 2:298� nþ 137:48� q

� 284:144; R2 ¼ 0:615;
ð1Þ

Es ¼ 2:237� TS� 2:298� nþ 73:126�
q� 152; R2 ¼ 0:591:

ð2Þ

Comparison between the measured and predicted UCS

and Es upon the base of Eqs. 1 and 2 is shown in Fig. 6.

6 Data Analysis by ANFIS Technique

General principles of fuzzy logic are fundamentally set up

by Lotfizadeh (1965) who applied logic operators to esti-

mate precise values from fuzzy data. Fuzzy Inference

Systems (FIS) are generally designed according to one of

two methods proposed by Mamdani and Assilian (1975)

and Sugeno (1985).

Over the past recent years, FIS have been successfully

applied in the field of rock engineering and engineering

geology. One of the reasons for using fuzzy logic in earth

sciences and rock engineering is the high capability of this

approach to solving multivariate and nonlinear problems

rather than statistical approaches. In fact, the efficiency of

FIS in estimating the mechanical properties of rocks is

related to using non-precise and low-relative data to

achieve high-relative and relatively precise models so that

it has become an efficient and applicable method. The high

efficiency of FIS has been proven by numerous studies

completed on the base of some non-precise data as the

input of FIS to reach the valuable and confident outputs

(Gokceoglu et al. 2004).

In the present study, parameters including TS, n, and q
are used as simple and rudimentary inputs to design pre-

dictive models to estimate UCS and Es of Asmari forma-

tion limestone. Although none of these three inputs shows a

highly meaningful relation with UCS, using these inputs

result in the more efficient predictive models of FIS in

comparison to those designed by statistical approaches.

The FIS presented in this study was designed according to

one-order Sugeno method using ANFIS technique (Grima

and Babuška 1999), which is a neuro-fuzzy approach

completed by MATLAB software. In this work, four dis-

tinctive ANFIS models are presented for estimating UCS

and Es for medium- to high-strength and very high-strength

samples. The common inputs including TS, n, and q are

used to predict output parameters including UCS and Es

(Fig. 7).

Fig. 8 Designed FIS for predicting UCS of medium- to high-strength samples

Iran J Sci Technol Trans Sci (2018) 42:2005–2020 2011
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The inputs of FIS are non-fuzzy sets that should be

fuzzified sets in the first step. To convert non-fuzzy sets to

fuzzy, specific functions known as Membership Functions

are employed. In this study, membership functions were

derived by ANFIS technique (Figs. 8, 9, 10, 11). In Sugeno

method, output MF can either be constant values (zero-

order functions) or one- or high-order functions. The MF of

FIS designed here are one-order (linear) functions, which

can be presented in the form of a m 9 n matrix; where m is

the number of rows and n is the number of columns. Every

row in this matrix indicates factors of a particular output

MF. The number of rows (m) equals to the number of

output MF. In every FIS, to create a logical relation among

inputs and outputs, several conditional rules are required

(Gustafson and Kessel 1978). In this case, nine rules were

built for all FIS to estimate UCS and Es for medium- to

high-strength and very high-strength samples (Figs. 8, 9,

10, 11).

The models were designed to estimate UCS for medium-

to high-strength and very high-strength, after six and seven

training steps (Fig. 12). Then, they were designed to esti-

mate Es for medium- to high-strength and very high-

strength samples after eight and five training steps, where

the minimum error was reached, respectively (Fig. 13).

These models predict UCS and Es according to the

following outlined steps:

1. In the first stage, input data are converted to fuzzy sets

using the membership functions presented in Figs. 8, 9,

10, 11.

2. As shown in Figs. 8, 9, 10, 11 and according to the

rules designed on the basis of the logic operator (prod

function [25]), all three inputs are turned into Zi
function and degree of infection (Wti) using Eqs. 3 and

4, respectively.

Zi ¼ aixi þ biyi þ cihi þ ki; ð3Þ

where a, b, c, and k are parameters presented as every

row in matrixes of Figs. 8, 9, 10, 11. It means that xi is

TS yi is n and hi is q for each sample.

3. The function 4 is applied to make the output defuzzi-

fied and to gain value of Z, which is the answer of the

model (Eq. 4).

Fig. 9 Designed FIS for predicting UCS of very high-strength samples

2012 Iran J Sci Technol Trans Sci (2018) 42:2005–2020
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Z ¼
Xn

i¼1

Zi
WtiP
Wti

� �
; ð4Þ

where n is the number of rules, Wti is the degree of

infection derived from the operation of the method

(prod function) on the membership functions in each

rule, and Zi is derived from Eq. 3.

Figures 14 and 15 show how these four ANFIS models

work to estimate UCS and Es for limestone samples. As

shown in Fig. 14 (models for medium- to high-strength

samples), for a limestone with TS = 6.15 (MPa), n = 8.43

(%), and q = 2.56 (g/cm3) outputs are UCS = 87.8 (MPa)

and Es = 24.7 (GPa). Also, in Fig. 15 (models for very

high-strength samples), for a limestone with TS = 7.21

(MPa), n = 3.84 (%), and q = 2.62 (g/cm3), outputs are

UCS = 150 (MPa) and Es = 51.7 (GPa).

Relations between UCS and Es resulted from ANFIS

models and laboratory measuring are shown in Fig. 16.

These relations provide the determination coefficients (R2)

of 0.95 and 0.96 for UCS of samples with medium to high

and very high strength, respectively. Also, the R2 values for

Es of samples with medium to high and very high strength

are 0.89 and 0.91, respectively. Obviously, the predictive

capability of the models is significant.

Also, we tested the predictive neuro-fuzzy models using

63 samples of limestone (39 samples with medium to high

strength, and 24 samples with very high strength), outcrops

of Asmari formation in Khersan 3, and Behesht Abad dam

site projects, in Chaharmahal and Bakhtiari Province, Iran.

Results are shown in Fig. 17.

Figure 18 presents error values in predicting UCS and

Es with methods of multivariate regression and neuro-fuzzy

inference system models.

7 Performance Controls of the Presented
Models

Relations between the predicted UCS and Es resulted from

multiple statistical and ANFIS methods versus the mea-

sured values in the laboratory are displayed in Figs. 6 and

16. In fact, the coefficient of determination (R2) between

the measured and predicted values and error values for two

approaches (ANFIS and multiple statistics) are good indi-

cators of checking the prediction performance of the

models.

In addition, Variance Accounted For, VAF, (Eq. 5) and

Root Mean Square Error (RMSE), (Eq. 6) indices were

Fig. 10 Designed FIS for predicting Es of medium- to high-strength samples

Iran J Sci Technol Trans Sci (2018) 42:2005–2020 2013
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Fig. 11 Designed FIS for predicting Es of very high-strength samples

Fig. 12 The minimum amount

of ANFIS models after six

training epochs to estimate UCS

for medium- to high-strength

samples and after seven training

epochs to estimate UCS for very

high-strength samples

2014 Iran J Sci Technol Trans Sci (2018) 42:2005–2020
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also calculated to control the performance of predicting

capacity of predictive models developed in the study, as

they were employed by Grima and Babuška (1999), Finol

et al. (2001), and Gokceoglu et al. (2004).

VAF ¼ ð1� varðy� y0Þ
varðyÞ Þ � 100; ð5Þ

RSME ¼
ffiffiffiffi
1

N

r XN

i¼1

ðy� y0Þ2; ð6Þ

where y and y0 are data measured in the laboratory and

predicted values by ANFIS technique, respectively. The

calculated indices are given in Table 4. The model will be

excellent, provided that the VAF is 100 and RMSE is 0.

When making a comparison between ANFIS and multi-

variate statistical methods, the predicting performance of

the ANFIS is very higher than that of the multivariate

statistic models, taking into consideration the performance

indices (see Table 4).

8 Conclusion

Although the determination of mechanical properties of

intact rocks is necessary for most rock mechanics studies

and civil engineering projects, it is difficult and expensive

to obtain them all at once. Hence, we attempted to predict

UCS and Es of Asmari limestone by other necessary and

easier measurable parameters such as regression analyses

and ANFIS technique.

Because the measured values of UCS and ES of samples

varied in a wide range, in this research, rock samples were

classified as medium- to high-strength and very high-

strength rocks and predictive models developed for each

class.

Using the results of simple regression analyses, it was

found that the relations between UCS and Es versus TS, n,

and q are not strong enough to be relied upon for prediction

of UCS and Es. Moreover, by reducing the number of data

and dividing samples in two groups of medium- to high-

and very high-strength samples, the performance of

regression models was reduced significantly and the

regression analysis gave the best performance for all

samples. Hence, two multiple regression equations for

predicting UCS and Es were developed in the next step for

all samples. According to their coefficients of determina-

tion (R2), both equations have a better predicting perfor-

mance and show more efficiency compared to simple

regression method. However, the predicted values of UCS

and Es from these equations are not very close to actual

values measured in the laboratory.

In the next step, four ANFIS models with common

inputs TS, n, and q and two outputs including UCS and Es

were developed for medium- to high- and very high-

strength rock samples. These models exhibit most reliable

predictions when compared with simple and multiple

regression models. Predicted values of UCS and Es from

these FIS’s are very closer to actual values measured in a

laboratory rather than values derived from statistical

methods.

The higher accuracy and efficiency of ANFIS models

can be easily verified by comparing the values of VAF and

RMSE. Values of VAF and RMSE for UCS predicted

through multiple regression are 30.583 and 37.856,

Fig. 13 The minimum amount

of ANFIS models after eight

training epochs to estimate Es

for the medium- to high-

strength samples and after five

training epochs to estimate Es

for very high-strength samples

Iran J Sci Technol Trans Sci (2018) 42:2005–2020 2015
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respectively; whereas the values predicted through ANFIS

are 94.886 and 8.943 for medium- to high-strength sam-

ples; and 95.661 and 7.933 for very high-strength samples,

respectively. Likewise, values of VAF and RMSE for Es

predicted through multivariate regression are 32.855 and

13.721, respectively; whereas the values predicted through

ANFIS are 89.853 and 5.021 for medium- to high-strength

samples; and 90.011 and 6.861 for very high-strength

samples, respectively.

Results show that simple and multivariate regression

analyses are not efficient for prediction of UCS and Es in

Asmari limestone, but ANFIS technique was found very

efficient for prediction of these difficult parameters, using

simple easily measurable parameters.

Fig. 14 Working scheme of designed FIS to estimate UCS and Es for the medium- to high-strength samples

2016 Iran J Sci Technol Trans Sci (2018) 42:2005–2020

123



Fig. 15 Working scheme of designed FIS to estimate UCS and Es for very high-strength samples

Iran J Sci Technol Trans Sci (2018) 42:2005–2020 2017
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Fig. 16 The relation between predicted values with FIS and measured

in laboratories UCS and Es values

Fig. 17 Testing the predictive neuro-fuzzy models, by 63 samples of

limestone, outcropped of Asmari formation in Khersan 3, and Behesht

Abad, dam site projects
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