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Abstract Eight basic identities of symmetry in three
variables, which are related to degenerate Euler polyno-
mials and alternating generalized falling factorial sums, are
derived. These are the degenerate versions of the sym-
metric identities in three variables obtained in a previous
paper. The derivations of identities are based on the p-adic
integral expression of the generating function for the
degenerate Euler polynomials and the quotient of integrals
that can be expressed as the exponential generating func-
tion for the alternating generalized falling factorial sums.
Those eight basic identities and most of their corollaries are
new, since there have been results only about identities of
symmetry in two variables.
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1 Introduction and Preliminaries

Let p be a fixed odd prime. Throughout this paper,
Z,,Q,,C, will denote respectively the ring of p-adic
integers, the field of p-adic rational numbers, and the
completion of the algebraic closure of Q,. For a continuous
function f : Z, — C,, the p-adic fermionic integral of f is
defined by Kim as

-1

14f) = [ @) = Jim 3761
P j=0

Then, it is easy to see that

L1 (fit) + 11(f) = 2(0), (1)
where fi(2) = f(z + 1).

Let ||, be the normalized absolute value of C, with
pl, = 111 Throughout this paper, we assume that A, € C,
satisfy

0<\/l|p§ 1, |t|p§p7ﬂ%1.

Then, as ||, <pfﬁ%l, |log(1 + 4t)|, = |4t], and hence
[Hog(1 + an)| = [, <p™77.  Thus, f(t) = (1 +ir) =
12141 5 a well-defined analytic function on Z,. Applying

(1) to this f, we obtain the p-adic integral representation of the
generating function for the degenerate Euler numbers &,,(4):

z 2
/ (U4 2 () = —2——
z, (I+a)y+1 =

(2)
Thus, we have the p-adic integral representation of the

generating function for the degenerate Euler polynomials
En(Ayx):

2
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s M
=>» &E(dx)—.
; n!
Note here that £,(1) = &,(4,0),
im &,(24,x) = En(x), (4)

where E,(x) is the ordinary Euler polynomial.

The generalized falling factorial (x| A), is defined as
(x|4),=xx—4)--- (x—(n—1)4), for n>0 and
(x| A)g = 1. Let 1(4,n) be the alternating generalized
falling factorial sum given by

n

w(Zn) =Y (=12 (n=0). (5)

i=0
As special cases, we have

(o) { 1, if n=0(mod 2),
T ,n)= .
0 0, if n=1(mod 2),

1, for k=0, (6)
‘Ck(/{? I’l) -

0, for k> 0.
In addition
lim 74 (4, n) = Ty (n), (7)

A—0
where Ti(n) denotes the alternating kth power sum of the

first n + 1 nonnegative integers, namely

n

Ti(n) = —1)i* = (=1)%*
x(n) ;( ) (=1) ®

+ (=D 4 (=1)"RR

In addition, from (1) and (2), we get: for any odd positive
integer w

o, (L arydu () 2 "
Jo, (U 20 ) kz:; k= U ®)

=

(=)' (1 + Ar)". (10)

i
=3

Many authors have done much work on identities of
symmetry in two variables involving Bernoulli polynomi-
als or Euler polynomials or g-Bernoulli polynomials or g-
Euler polynomials. The reader may refer to the papers
(Bayad et al. 2011; Deeba and Rodriguez 1991; Howard
1995; Kim 2008, 2009b; Ozden et al. 2008a, b; Ozden and
Simsek 2008; Simsek 2010; Tuenter 2001; Yang 2008).
Especially, Kim (2008) is the first paper, where a p-adic
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approach is introduced. In connection with Bernoulli
polynomials and power sums, and also with Euler poly-
nomials and alternating power sums, these results were
generalized in Kim (2011) and Kim (2009a) to obtain
identities of symmetry involving three variables in contrast
to the previous works involving just two variables. These
have been done also for the g-Bernoulli and g-Euler
polynomials (cf. Kim and Kim 2014; Kim et al. 2015) and
for the higher order Bernoulli and higher order Euler
polynomials (cf. Kim et al. 2013a, b; Kim 2011, 2012). It
turns out that this extension gives not only new identities
for three variables, but also those for two variables by
specializing one of the variables as 1.

In this paper, we will produce eight basic identities of
symmetry in three variables wy, w;, w; related to degenerate
Euler polynomials and alternating generalized falling fac-
torial sums (cf. (48), (49), (52), (55), (59), (61), (63), (64)).
These and most of their corollaries seem to be new, since
there have been results only about identities of symmetry in
two variables in the literature (cf. Kim and Kim 2015, 2016,
2017). These abundance of symmetries shed new light even
on the existing identities in two variables. For instance, it
has been known that (12) and (13) are equal and (14) and
(15) are so (cf. [Kim and Kim 2015, Theorems 1, 2]). In
fact, (12)—(15) are all equal, as they can be derived from one
and the same p-adic integral. This was neglected to mention
in Kim and Kim (2015). All of these were obtained as
corollaries (cf. Cor. 4.9, 4.12, 4.15) to some of the basic
identities by specializing the variable ws as 1. Those would
not be unearthed if more symmetries had not been available.
The degenerate Euler polynomials were introduced in Car-
litz (1979) and Wu and Pan (2014). In view of (4) and (7),
all the symmetric identities in this paper approach to the
corresponding ones in Kim (2009a), as / tends to zero, and
hence, our symmetric identities are the degenerate versions
of the identities in Kim (2009a). Similar results about
identities of symmetry in three variables for degenerate
Bernoulli polynomials and generalized falling factorial sums
were obtained in Kim et al. (2016).

Let wi,w;, be any odd positive integers. Then, we have

- n /1 )‘ n—
Z<k>5k(w—27w1y1>1nk(w—l,wz—l>wl kwé (11)

=0
" /n A A
= < >5k <—7W2y1>‘fnk (—,W1 - 1>W§kwlf
=0 k w1 1%}
(12)
nwlfl ; y) Wy .
=w (=1)'&Ey | —, wayr +—1 (13)
i=0 Wi w1
Mz—l
)\1
—t S0 (L + 2 (14)
i=0 w2
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" , , X
= Z ( )‘c:k(Lv)’l)Tl(ian*l)Tnz(i W2*1> ftm ’5“
i k,l,m Wiwy wy wi

(18)

The derivations of identities are based on the p-adic inte-
gral expression of the generating function for the degen-
erate Euler polynomials in (3) and the quotient of integrals
in (10) that can be expressed as the exponential generating
function for the alternating generalized falling factorial
sums.

2 Several Types of Quotients of Fermionic
Integrals

Here, we will introduce several types of quotients of p-adic
fermionic integrals on Z, or Zf, from which some inter-

esting identities follow owing to the built-in symmetries in
wi, wz,w3. In the following, wy,w,, w3 are all positive
integers and all of the explicit expressions of integrals in
(21), (23), (25), and (27) are obtained from the identity in
(2). In below, du_;(x1,xp,x3) denotes du_;(x;)
dp_y (x2)dp (x3).

a) Type AL, (fori =0

yp 23 )
I(Ay)=

fZ% 1+M‘) (u WX HWIW3X2+W WaX3+Ww W) M(th"y,))dﬂ,l(xl ,XZ,Xg)

(fy, (120225 () )

1,2,3)

(19)
ERQCA (1 4 2 + 1)

(R .
(120 0+ 0+ 1)
(20)

(b) Type A, (fori=0,1,2,3)

I(A}y)=

( (g’“))
WIX]FWax2+W3x3+wiwaw. V
[11 /t) 1X1HW2 X +W3x3+wy 3 Y

=y (o) dpe g (xa)dpe g (x3)

: Torwawar i
(7, L+ 5 dp (x4))

(21)

Wy N3 :
2140 e (14 2" 1

(L4207 + D)1+ 207 + 1D)((1+ )7 +1)
(22)
(c-0)  Type A,
I(A?z) =
/ (1 + /Lt) (u.xl+w 2X2 +M;x1+wzwz)+wm;)+umz\)dﬂ_l (X|7X2,)C3)
ZB
(23)
8(1 + /J) (wz»vz+w1»vz+w1wz) .
(L4207 + D)1+ 27 + D)((L+ )7 +1)
(24)
(c-1)  Type Aj,
Ly Ja Ay () dp () dp ()
12) — fz;(] +;Lt){(wzuwm+W|wzzz+W1wzzz)d,u71 (Zl )d,u,l (Zz)d#,l (ZS)
(25)
(4 1)((1+Az)”"ﬁ F1)((1+ )T +1)
(14207 +1D)((1+a0)7 +1)((1 +ﬂr>' 1)
(26)

All of the above p-adic integrals of various types are
invariant under all permutations of w;, w,, w3 as one can
see either from p-adic integral representations in (20), (22),
(24), and (26) or from their explicit evaluations in (21),
(23), (25), and (27).

3 Identities for Degenerate Euler Polynomials

In the following, wi,w,, w3 are all odd positive integers
except for (a-0) and (c-0), where they are any positive
integers.

First, let us consider Type A§3, for each i =0,1,2,3.
The following results can be easily obtained from (3), (10),
and (11).

(a-0)

I(AY;) = / (14 2y qy () (27)
Z

P
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« / (1+ )t)_w”” (r2+way2) 4 1 (x2) (2) Invoking (10), (30) can also be written as
Zp w3—1
| HAR) =Y (1) [ ()
x / (L4 Aol gy () DT, | |
Zp « / (1 +it)%wlvv;(xz+»¢"zyz+:%i)dﬂ7] (xz)
o Ep( 2, wy z,

B k wzqu 1)1 k wi—1 ) o0 (W w l)k
ZT (wawst) = Z(_l)l<26k< WYL 2k'3 )
k=0 i=0 =0 ;

. > 2 (W1W3t)l
© & (mw: ; 2)’2) , X ZS, Wle,Wzszrw—3 7
X Z ] (wiwst) L ,
— I :Z W (n)gk< J wm)
(i y ) S\ s\« waws’
oo
M\ywiwy 2 w3y3 m wi—1 2 /
X <r;) m' (WIWZt) ) > (_1)15n7k<w]w , 2y2+_l>wrl1—kw12c>_'
> n A 31
S5 (el o
n=0 \k+l+m=n k’ l’ m waws3
2 (a-2)  Here, we write I(A3,) in three different ways:
& ,Wz)’2)
wiws (1
/’L l+m k+m k—+1 1 1
X Em —- , W33 wy w5 ](/\%3) - / (14 /‘{[)ZW2W3(X1+W1)’1)d/J_1 (x1)
z,
(28) (32)
where the inner sum is over all nonnegative inte- Lyywsry
gers k, I, m, with k + [+ m = n, and fz + )y du_ (x2)
n n! fz + A ()
<k, l,m> " Km! fz 1+ 20" g (x3)
M]WszX;;
(a-1)  Here, we write I(A);) in two different ways: fZ (L+ Ar) dpy (xs)
o > y) (W2W3t)k
M - (;&(MM o ) )
[(Aés) — / (1 + )J)%wzwz(xﬁmyl)d'u_l(xl> 00 , (W1W3t)l
z, x Z gl w2 — 1
=0 wiws 1!
(29) o0 m
] % <me( A Wa — ]) (wiwat) )
X / (14 2y sEatldy () m=0 Wiwa m!
pr ( +} )lwm’zxzd ( ) i Z " E /1
1) AN
s Ho1 (X3 2\ e k.1 m k w2W37W1y1 T
fZ ( + )t) W|V»2W‘4X4dﬂ ( ) /’L
(S ) ()
2 k Waws’ 1 Xl l/‘L 3 y
o ) (W W t)l % Tm( W3 — 1) Wll+mW]£+mW§+l) .
X (;&(m,Wzyz) ll!? ) wiwp I’l'
) (i < , 1) (wlwzt)m> (33)
m 3 - 3
=0 \WIW2 m 2) Invoking (10), (33) can also be written as
o0 n ;L
= El ———, _
51< . 7W2YZ> (34)
wiws
« Tm(Wl/LW Wi — 1> I+m l;+mwlé+l) :l' )
(30)

s @ Springer
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fz (1422 dy | (x3) identities. Indeed, if we substitute
f 1+ 21) Bt g ) Wows, Wiws, wiwy, respectively, for wl , Wy, w3 in
o (20), this amounts to replacing A by and ¢ by

(e ety

S5O L=
C

wi,
swiyr+—i
w3 w2

l)l
X Tp_k W371) wi™ kw§>ﬂ.
(35)
(3) Invoking (10) once again, (35) can be
written as
1(A33)
wr—1w3—1 o
SDIDNCN
i=0 j=0
/Z (] + )J)%“"ZM(’C]+M\|+71+ T])d/l 1(xl)
A
wr—1 wy—1
=> > (=07
i=0 j=0
(o9 j’ t n
Zé'n <—7W1y1 + mi + &j) —(W2W,3 )
=0 Wows 4%} w3 n:
00 wr—1wy—1 .
SO (U1 9 e
n=0 i=0 j=0
A wi . "
En|l —— 1}l+*l+*lf>>7'~
Wows3 w ni
(36)

(a-3)
[Z +)t M'awxnfd” 1(X1 fzﬁ(] +)~t)w1w3x2td”71 (xz)
Jo, U ) ™50y () [ (120) "5 ()
x Jo, (120" (x3)
T, (20 0 ()

oo 5 k
t
= E ‘L'k< ‘ 7W1*1> (WZW'3 ) >
=0 Wows k!
1

(Sl
0 Wiwy m:
> n A
2 () )
n=0 k+l+m=n k"l’m waws
A

1
w
A{ t”
X Ty wy— 1wk tmy bt )
Wiws n!

(b) For Type A"13(i =0,1,2,3), we may consider the
analogous things to the ones in (a-0), (a-1), (a-2),
and (a-3). However, these do not lead us to new

1(A3) =

(37)

W1W2vv3
wiwpywst in (22). Therefore, upon replacing
wi, wo, w3, respectively by wows, wiws, wiws,
and then replacing A by wiwowsA and dividing
by (wiwows3)", in each of the expressions of
Theorem 4.1 through Corollary 4.15, we will get
the corresponding symmetric identities for Type
A3(i=0,1,2,3).

(c-0)

’(/\?z):/z (1+ 2™ O dy (x))

[ e )
:

< [ g )
Z,

n=0 ) =0

) A
Wz)’) & (* W3)’>
1 w2

(38)

(c-1)
S, (1) ) ()
fz +At Wlw.‘dd,u ](Z%)
fz (14 20" dp_ ()
jz () G T )
fz (1+ )»t)_wmdu 1(x3)
fz (14202 dp (z2)

P

(G155
= Zrk —,wy =1
=0 \WI

(o))
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4 Main Theorems

As we noted earlier in the last paragraph of Sect. 2, the
various types of quotients of p-adic fermionic integrals are
invariant under any permutation of wy,w,,ws. Therefore,
the corresponding expressions in Sect. 3 are also invariant
under any permutation of wj,w,, ws. Thus, our results
about identities of symmetry will be immediate conse-
quences of this observation.

However, not all permutations of an expression in the
above yield distinct ones. In fact, as these expressions are
obtained by permuting wi,w,, w3 in a single equation
labeled by them, there is a natural transitive action of the
group S3 on those set of expressions, and hence, they are in
bijective correspondence with a quotient of S3. In partic-
ular, the number of possible distinct expressions are 1, 2, 3,
or 6. Indeed, (a-0), (a-1(1)), (a-1(2)), and (a-2(2)) give the
full six identities of symmetry, (a-2(1)) and (a-2(3)) yield
three identities of symmetry, and (c-0) and (c-1) give two
identities of symmetry, while the expression in (a-3) yields
no identities of symmetry.

Here, we will just consider the cases of Theorems 4.8
and 4.17, leaving the others as easy exercises for the
reader. As for the case of Theorem 4.8, in addition to (54)—
(56), we get the following three ones:

n A p)
)3 &= )
k+l+m=n k,l,m waws3 wiwy

(40)
)\/
X rm< W — 1)wlf”"wé’q”w’;’q7
wiws
n Y s
> ( )51«(—7W2)’1>71( ,W1—1>
i Nk, l,m wiws waw
(41)
A
% Tm( W3 — 1>Wl+mwk+mwk+l7
2
n ! A
= (L)oot
k- lrm=n k, l,m wiwp Wiw,
A
X ’L‘m< S W — 1>wé+mw§+mwlf+l.
Wows3 i
(42)

72, €\ Springer

However, by interchanging / and m, we see that (41),
(42), and (43) are, respectively, equal to (54), (55), and
(56).

As to Theorem 4.17, in addition to (64) and (65), we
have

n ) A
Z ( )Tk(—,wz—1>fl<—,ws—1)
k+I+m=n k’ l’ m wi w2

p (43)
) s -1 k. 1. m
T <W3,w1 )wlwzw37
n A A
Z ( )Tk(_7w3_1>71<_7wl_1>
k+I1+m=n k7 l7 m w2 w3 (44)
A
ol — -1 k. 1. m
T <w1 W )v1/2w3w1 ,
n A A
Z ( )Tk(—7W3—1>‘51(—,W2—1)
k+Il+m=n k’ l’ m Wi w3 (45)
T i,wl -1 w’l‘wéwg‘,
w2
n A A
Z ( )Tk(—,W21>Tl(—,W11)
k+1+m=n k’ l’ m w3 w2 (46)

A
T | —,w3 — 1 wkwlzw'l”.
3
wi

However, (44) and (45) are equal to (64), as we can see by
applying the permutations k — [,] — m,m — k for (44)
and k — m,l — k,m — [ for (45). Similarly, we see that
(46) and (47) are equal to (65), by applying permutations
k — 1, - m,m — k for (46) and k — m,l — k,m — [ for
(47).

Theorems 4.1, 4.2, 4.5, 4.8, 4.11, 4.14, 4.16, and 4.17
follow respectively from the considerations in (a-0), (a-
1(1)), (a-1(2)), (a-2(1)), (a-2(2)), (a-2(3)), (c-0), and (c-1)
in Sect. 3.

Theorem 4.1 Let wi,wy, w3 be any positive integers.
Then, the following expression is invariant under any
permutation of wi,wy,ws, so that it gives us six
symmetries:
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)L
I+m_ k+m_ k+l
, Wzyz) Em < Y W33 JWTw, W

n A A
> | ——win |&
ke mm—n \ K, L,m waw3 wiws3 wiwz
A

n A A
= Z ( > k < 7W1y1>51 < ,W3Y2> Em < , W2y3> whtmyhrmy kel
ki Nk, [,m wiwy Wiw3
n A A A
= Ek swayt | € ;w12 | Em L w3ys | wh WA
X _ k,l,m wiws Wows3 Wiwy
+l+m=n '
n A 2 A (47)
= Z ( >Ek< ,wzy1>51< - ,w;y2>£m< ,w1y3> w12+mw§+mw1{+l
ki Nk, [,m wiw3 wiwy Wows
n A A A
= ( >5k< 7W3y1>51< 7W1y2)5m< ,W2y3>wlg+mwlf+mwlﬁ+l
ki Nk, [,m wiwy Wows wiws
n A A A
= ( > Ex < : W3y1> & < ; W2y2> Em ( ; W1y3> Wi WA T
ktltm=n k,l,m wiws wWiws Wow3
Theorem 4.2 Let wy, wy, w3 be any odd positive integers. Putting w3 = 1 in (49), we get the following corollary.

Then, the following expression is invariant under any
permutation of wi,wy, w3, Sso that it gives us six
symmetries:

Corollary 4.3 Let wi,wy be any odd positive integers:

A A
I+m_ k+m. k+1
s W22 | T S, W3Y3 [Wy W,y Wy
1W3 wWiwyp

n 2 A
= > ( ) Ek ( ; W1y1> & < ; W3y2> Tm <— ; W2y3> Wit
k+ltm=n k, l, m Waws3 wWiwy wWiw3
n A A A
= Ex s wayr )€ WY | T ,ways | whTwh WA
k _ k.l.m wiws Wows WwWiwy
+Il+m=n 5
n ) J A (48)
= ( ) Ex < ; W2y1> & ( —, W3)’2> T ( ; W1Y3) gkt e
k+ltm=n k, l,m WwWiws wiwy Wows
n A A A
= ( ) &k ( , W3y1> & ( , Wz)’z) T ( ; w1y3> whmwA A
ktltm=n k, l,m wiwp wiws Wows
n A A A
= ( >Ek< ,W3y1>51< 7lez> Tm< ,W2y3>w’3*mw’f*mw’§”~
i, Nk, L,m wiwy Wows3 wiws

@ Springer
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" /n A A
E ( )gk (_7W1y1>5nk <_7W2y2) erl_kwlé
— k Wo wi

" /n A A
= ( >5k<_,W2)’l>5n—k(—7wl)’2>wgkWIf
=0 k w1 %)
n A A
= ( >5k< ,)’1)51 (—7W2y2> T (—7W1 - 1>Wk+mwlf+l
k+l+m=n k’ l’m wiwz wi
n 2 A A (49)
= ( >Ek <,wzy1)5;< ,y2> T (,wl - 1>w12+mw]f+l
k+14+m=n k’ l’ m wiw w2
n A A A
= ( >5k< »)’1)51 (—7W1Y2> Tm( JWy — 1>Wlf+mwk+l
k+l+m=n k’ l’ m wiwa w2
n s ) 3
= ( >5k (ivwlyl)gl( - ,y2> T (—7W2 - 1>W11+mwk+l
i Nk, [,m w2 wiwy wi

Letting further w, = 1 in (50), we have the following Theorem 4.5 Let wi, wy, w3 be any odd positive integers.
corollary. Then, the following expression is invariant under any

L permutation of wy,wy,w3, Sso that it gives us six
Corollary 4.4 Let wy be any odd positive integer:

n n i
Z ( % > Ex(Awiy1)En—i <Wl ; yz) wik

k=0

" /n 2
= Ex (- ,y1)5nk(l,W1Y2)Wk
k=0 (k> wi ! (50)

n A yl
= Z ( >5k<’)’1>51< ,yz)
k+1+m=n k7 l7 m wi w1

symmetries:

n n y) wi—1 )
= w/ ( )&( ,Wzyl) (=1)'&,- ( W3y + —i) whkwh
=0 \k Wiws i=0 Wi !
" /n A = A wi\
=W, Ek W3y (—=1)'Enk wiyy +—i |wifwh
=0 k Wiwp =0 wWows Wy 51
. n n A wy—1 ; ) ws | bk ( )
=w, &k S, WIVL (=1)'Enx W3y2 +—1 | W] wy
=0 k Wows3 =0 wWiwy wo
" (n ) N J w
=wj ( >5k( aWZYI) (1)1511—k< S W12 +—1i)W§ka
=0 k wiws pary Wows 3
" /n ) el ) wa\ -
= wj ( )&( 7W1y1) (_l)lgnk< , W2Y2 +—l) wikuk.
—\k Wow pry wiws3 w3
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Letting ws = 1 in (52), we obtain alternative expres-
sions for the identities in (50).

Corollary 4.6 Let wi,wy be any odd positive integers:

- A
Z( >5k< W1y1>gn—k< W2y2> nkyk
im0 \K Wi
1 A A
= ( 5k<—7w2yl>5n k<_ W1Yz>W" i
=0 w1 w2

Putting further w, = 1 in (53), we have the alternative
expressions for the identities for (51).

Corollary 4.7 Let w; be any odd positive integer:

n n )u .
Z ( ' > 51((;1 1) En—k (2 wiy2)wh

k=0

- ( >€k< ay2>5n—k(}~7W1)’1)W]f

k=0 k

u n n /I Wlfl ; )L ~
:WI; k Ex wi’yl ;(*1)5%1( —, 2+ — "

Theorem 4.8 Let wi, wy, w3 be any odd positive integers.
Then, we have the following three symmetries in wy, wy, wWs:

n A A
Z Ek yWIYL | T ’ -1
k-+1l+m=n k’ l’ m Wwaws3 Wiw.

(53)
% Tm( A w3 — 1) [+m 1§+m 13<+l
wiw
2 () ) =)
———, Wy w3 —1
ket Tomn \ K L wiws3 wiwz
(54)

( A
X Tm
wow
A A
> (i) o)1)
k+1+m=n k l m wiwa waws
X‘cm( wzl) I+m llc+m k+l.
Wiws
(55)

Putting w3 =1 in (54)—(56), we get the following
corollary.

Wi — 1) l+mW§+mW/]<+l

Corollary 4.9 Let wi,w, be any odd positive integers:

" /n A A
Z( >5k(— W1y1>‘5n k<_ wy — 1) 1Rk
=0 k %) w1
_Z( > < W2y|>‘E,,_k</L W]—l) - kW’f
w

n A A
= > Ek y)ul—wi—1
k+Il+m=n k’ l’ m wiwz w2

T <i,wz — 1) whtmyAt, (56)
wi

Letting further w, =1 in (57), we get the following
corollary.

Corollary 4.10 Let wy be any odd positive integer:

En(4, lel) = Z<k>5k( 7Y1>7~'nk(ivwl - I)Wlf

k=0
(57)

Theorem 4.11 Let wi,w,, w3 be any odd positive inte-
gers. Then, the following expression is invariant under any
permutation of wy,wy, w3, Sso that
symmetries:

it gives us six

% @ Springer
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n n wi—1 ) /1 W
=w] (k) (_l)lgk(w Wz’Wgy] —|—W—l>‘5n_k< W3’W2_ 1>W§_kw§
k=0 i=0 1
n n wr—1 ) /1
— Wg (k) (_1)’€k (W2W3 ,Wiy1 + W—;l) Th—k <W s , W3 — l>w’ll—kwg
k=0 i=0 1
n n wr—1 /1 (58)
=w) ( ) (—1)’51(( W3yl —l——l) rnk< JWp — 1>w§_kw]{
o \k/) = wiwa wy Wows3
n n wi—1 ) )
=wj ( ) (—l)lé'k( S WIYI +—l> Tnk< S, Wy — 1)w7kw§
= \k/ = waws w3 wiws
n n wi3—1 ) )
=w; (—1)'& s WoyL +—1 | Tk i — 1wy wh
oo \k/) = wiw3 w3 Wows3

Putting w3 = 1 in (59), we obtain the following corol-
lary. In Sect. 1, the identities in (57), (60), and (62) are
combined to give those in (12)—(19):

Corollary 4.12 Let wy,w, be any odd positive integers:

wp—
w1 Z < , Way1 +—l>

Il
I\Jgﬁ
MNT
L
\5_,
—
ge
=
=
+
‘ =
N

i=0 w2
" /n A A
= ( >5k <*7W2yl>7n—k <*7W1 - 1>W§_kwlf
=0 k Wi wo
- n )' n—k_ . k
= E| —,wiy )tk ywo — 1w wy
im0 \k w2
n n wi—1 ; i )
= w) 2 (k) Z(—l) & (w " D1 +W_I>Tn—k <W—I7W2 - 1>W2
= i=0
n n wr—1 ) . j.
=wj ( ) (_1)15k< 1 +L>‘5n—k <—7W1 - 1>W|
—0 k i—0 A%) %) %)

Letting further w, =1 in (60), we get the following
corollary. This is the multiplication formula for Euler
polynomials (cf. [Kim and Kim 2015, Page 6]) together
with the new identity mentioned in (58).

Corollary 4.13 Let wy be any odd positive integer:

22, Q) Springer

Theorem 4.14 Let wi,w,, w3 be any odd positive inte-
gers. Then, we have the following three symmetries in
Wi, W2, W3t

wi—1wy—1

D yE

1), (— w3y —l——z +—J>
wiw

i=0 j=0
wr—1 w3—1 o j) w w
= (waw3)" (=)™, (77W1y1 +—i +*lj>
=0 =0 Wwows3 w2 w3
wi3—1lw;—1 j. w
i+j 2., W2,
(wswy)" (—1)"e, (—:W2)’1 +—=i+ —J>-
i=0 j=0 w3wi w3 w1

(60)

Letting w3 = 1 in (61), we have the following corollary.

Corollary 4.15 Let wi,w, be any odd positive integers:

wi— 1
wi Z ( , Wayi +J>

) i
7yl+7+7 .

wiwz wr w2

(61)

Theorem 4.16 Let wi,wy, w3 be any positive integers.
Then, we have the following two symmetries in wi, wy, Ws:
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n A A
Z ( )&«(-;Wl)’)gl(—,wz)’)
k+1+m=n k’ l’ m w3 w1

A
ko 1
Em (— S W3y | wawiwy'
w2

n A A
= Z ( >5k<—7W1y>51<—7W3)’>
k+l+m=n k’ l7m w2 Wi
Em i way | whwl w.
W’ 21 W3
(62)

Theorem 4.17 Let wi,w,, w3 be any odd positive inte-
gers. Then, we have the following two symmetries in
Wi, W2, Wa!

n A A
Z ( )Tk(—7W1—1>T1<—7W2—1)
k+1+m=n k’ l’m w3 w1

. (63)
T <W2 W3 )w3w1w2
n A
k+14+m=n k’ l’ m w2 (64)

A A
T w3 — 1)t —,wy — 1 éw[lwgﬂ.
Wi w3

Putting w3 =1 in (64) and (65), we get the following
corollary.

Corollary 4.18 Let wi,w, be any odd positive integers:

Z<Z>Tk<wi]’wz — l)rnk(i,wl — l)w’f

k=0

n n /L
= ( )‘L’k (—,W1 — I)Tn_k()», wy — l)wé
im0 \K w2
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