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Abstract In the present paper, the linear B-spline scaling

functions operational matrix of fractional-order integration

is derived and is used to solve the fractional differential

equations, including the linear and nonlinear Ricatti and

composite fractional oscillation equations. The mentioned

matrix is utilized to reduce the initial equations into a

system of algebraic equations. Also, an error bound when

using the linear B-spline scaling functions approximation is

derived. Some examples are presented to demonstrate the

validity and the applicability of the method. Moreover,

compared with the known techniques, it is shown that the

method is much more efficient and accurate.

Keywords B-spline scaling function � Operational matrix �
Fractional differential equation

1 Introduction

In recent years, the glorious developments have been envis-

aged in the field of fractional calculus and fractional differ-

ential equations. Differential equations involving fractional-

order derivatives are used to model a variety of systems,

whose important applications lie in the field of chemical

physics, biomedical engineering (Magin 2004), viscoelastic-

ity (Freed andDiethelm2006), electricity (Vosika et al. 2013),

finance (Gorenflo et al. 2001), control theory (Wang andZhou

2011), fluid mechanics, and other sciences [see (Hilfer 2000;

Miller and Ross 1974; Chen et al. 2014) and references

therein]. In fact, it has been found that the fractional-order

models are more adequate than the previously used integer-

order models (Vyawahare and Nataraj 2013; Yu et al. 2013;

Dehghan et al. 2010), because fractional-order derivatives and

integrals enable the description of the memory and hereditary

properties of different substances.

Due to its tremendous scope and applications in several

disciplines, considerable attention has been given to exact

and numerical solutions of fractional differential equations.

The numerical approximation of fractional differentiation of

rough functions is not easy as it is an ill-posed problem. In

order to achieve the goal of highly accurate and reliable

solutions, several methods have been proposed to solve the

fractional-order differential equations. The most commonly

used methods are Adomian decomposition (Odibat and

Momani 2008; Momani and Odibat 2007), variational iter-

ation (Sweilam et al. 2007; Das 2009), homotopy analysis

(Pandey et al. 2011), convolution quadrature time

descretization (Cuesta et al. 2006), operational CAS wave-

lets (Saeedi et al. 2011; Saeedi and Mohseni Moghadam

2011), fractional differential transform (Arikoglu and Ozkol

2007), predictor–corrector (Zhao and Deng 2014), finite

difference method (Meerschaert and Tadjeran 2006), etc.

Spectral methods are powerful and widely used tools for

solving several types of differential equations, function

approximation, and variational problems (Canuto et al.

1988). Two main advantages of such methods are giving

very accurate approximations for smooth solutions and

ease of applying them, which encourage many authors to

utilize them (Canuto et al. 1988; Doha and Bhrawy 2008;

Doha et al. 2011). One of the ways of applying spectral

methods is using operational matrices. The operational

matrix of fractional derivative and integration have been

determined for several types of orthogonal polynomials
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such as Jacobi (Doha et al. 2012), Chebyshev (Bhrawy

et al. 2012; Bhrawy and Alofi 2013), Legendre (Bhrawy

et al. 2015a, b), Laguerre (Bhrawy and Alghamdi 2013),

and Bernestein polynomials (Saadatmandi 2014).

The motivation of the present work is to extend the

application of linear B-spline scaling functions to provide

approximate numerical solution of linear and nonlinear

differential equations of fractional order in an operational

matrix method.

The outline of this paper is as follows: In Sect. 2, we

introduce some necessary definitions and mathematical

preliminaries of fractional calculus and the basic formulation

of linear cardinal B-splines and linear B-spline scaling

functions. Section 3 is devoted to deriving the linear

B-spline scaling function operational matrix of fractional

integration.We discuss the error boundwhen using the linear

B-spline scaling functions approximation, in Sect. 4.

Finally, in Sect. 5, we apply the linear B-spline scaling

function and its operational matrices to solve four examples.

2 Basic Definitions

2.1 Fractional Integral and Differential Operators

Fractional calculus is an almost 300 year-old topic. The first

serious attempt to give logical definition is due to Liouville.

Since then, several definitions of fractional derivatives and

fractional integrals have been proposed. The definitions

include the Riemann–Liouville, the Caputo, the Weil, the

Hadmard, the Riesz, the Grunwald–Letnikov, and the Erde-

lyi–Kober. The Caputo fractional derivative allows the uti-

lization of initial and boundary conditions involving integer-

order derivatives, which have clear physical interpretations.

Therefore, in the present work we use the Caputo derivative,

proposed by Caputo in his work on the theory of viscoelas-

ticity (Caputo 1967).

Definition 1 Let u 2 L1, a� 0. The Riemman–Liouville

fractional integral of order a of uðtÞ is defined as:

IauðtÞ ¼
1

CðaÞ

Z t

0

ðt � sÞa�1
uðsÞds; a[ 0;

uðtÞ; a ¼ 0:

8<
: t[ 0;

ð1Þ

where Cð:Þ is the gamma function.

Definition 2 The Caputo fractional derivative of order a
of uðtÞ is defined by:

Da
�uðtÞ ¼

In�a dn

dtn
uðtÞ; n� 1\a\n;

dn

dtn
uðtÞ; a ¼ n:

8><
>: ð2Þ

Some properties of the fractional operator are pointed out

in Podlubny (1999), as the following:

1. The fractional integral of ðt � aÞb; b[ � 1, is given

as:

Iaðt � aÞb ¼ Cðbþ 1Þ
Cðaþ bþ 1Þ ðt � aÞaþb; a� 0: ð3Þ

2. The Riemann–Liouville fractional integral is a linear

operation, namely:

IaðkuðtÞ þ lvðtÞÞ ¼ kIauðtÞ þ lIavðtÞ; ð4Þ

where k and l are constants.

3. For a; b[ 0, the fractional integral and derivatives

satisfy the following semigroup and commutative

properties, respectively:

IaIbuðtÞ ¼ IbIauðtÞ ¼ IaþbuðtÞ; ð5Þ

DaDbuðtÞ ¼ DbDauðtÞ ¼ DaþbuðtÞ: ð6Þ

4. The fractional integral and derivative operators do not

commute in general, i.e.:

IaDaf ðtÞ ¼ uðtÞ �
Xn�1

k¼0

uðkÞð0Þ t
k

k!
; ð7Þ

but in converse, we have:

DaIbuðtÞ ¼ Da�buðtÞ: ð8Þ

2.2 Linear Cardinal B-Spline Functions

The mth-order cardinal B-spline, NmðtÞ, whose knot

sequence is f. . .;�1; 0; 1; . . .g consists of polynomials of

order m (degree m� 1) between the knots. Let N1ðtÞ ¼
v½0;1�ðtÞ be the characteristic function of ½0; 1�, then for each

integer m� 2, the mth-order cardinal B-spline is defined

inductively by (Goswami and Chan 1999) as follows:

NmðtÞ ¼ ðNm�1 � N1ÞðtÞ ¼
Z 1

�1
Nm�1ðt � sÞN1ðsÞds

¼
Z 1

0

Nm�1ðt � sÞds: ð9Þ

It can be shown that NmðtÞ for m� 2 may be achieved

using the following recursive (de Boor 1978) formula:

NmðtÞ ¼
t

m� 1
Nm�1ðtÞ þ

m� t

m� 1
Nm�1ðt � 1Þ; ð10Þ

Also, supp½NmðtÞ� ¼ ½0;m�.
The explicit expression of N2ðtÞ, which is called linear

B-spline function, is (de Boor 1978):
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N2ðtÞ ¼
t; t 2 ½0; 1�;
2� t; t 2 ½1; 2�;
0; elsewhere:

8<
: ð11Þ

As in Lakestani et al. (2012), suppose that

Nj;kðtÞ :¼ N2ð2 j � kÞ; j; k 2 Z. The functions Nj;kðtÞ are

called the linear B-spline scaling functions (LBSF). If we

define Bj;k :¼ suppfNj;kg ¼ ft : Nj;kðtÞ 6¼ 0g, it is easy to

see:

Bj;k ¼ ½2�jk; 2�jð2þ kÞ�; j; k 2 Z: ð12Þ

Also, if the set of indices Sj is defined as:

Sj :¼ fk : Bj;k \ ð0; 1Þ 6¼ ;g; j 2 Z; ð13Þ

then, it can be easily seen that minjfSjg ¼ �1 and

maxjfSjg ¼ 2 j � 1, j 2 Z. Since the support of Nj;kðtÞ may

be out of ½0; 1�, we need these functions to be intrinsically

defined on ½0; 1�, so we put:

uj;kðtÞ :¼ Nj;kðtÞv½0;1�ðtÞ; j 2 Z; k 2 Sj; ð14Þ

which are called the LBSFs on ½0; 1�. For a fixed j ¼ J,

define the vector UJ as the following:

UJðtÞ ¼ ½uJ;�1;uJ;0; . . .uJ;2J�1�T : ð15Þ

It is easy to show that:

uJ;k

iþ 1

2J

� �
¼ dk;i; i ¼ �1; 0; . . .; 2 j � 1; ð16Þ

where dk;i is the Kroneker delta. An arbitrary function

uðtÞ 2 L2½0; 1� may be approximated in vector form as

follows:

uðtÞ;
X2 j�1

k¼�1

ckuJ;kðtÞ ¼ CTUJðtÞ; ð17Þ

where:

CT ¼ ½c�1; c0; . . .; c2J�1�:

By using Eq. (16), it is obvious that the coefficients ck
can be computed as:

ck ¼ u
k þ 1

2J

� �
; k ¼ �1; 0; . . .; 2 j � 1: ð18Þ

3 Operational Matrix of Fractional Integration
of LBSFs

If we define the q times repeated integration of LBSFs

vector UJðtÞ by IqUJðtÞ, then:
IqUJðtÞ ffi PqUJðtÞ; ð19Þ

where q is an integer value and Pq is the operational matrix

of integration of UJðtÞ.
The main objective of this section is generalizing the

LBSFs of integration (19) to fractional calculus.

Definition 3 The fractional integration of LBSFs vector,

UJðtÞ, can be expanded via themselves as follows:

IaUJðtÞ ffi PaUJðtÞ; ð20Þ

where Pa is the ð2J þ 1Þ � ð2J þ 1Þ LBSF operational

matrix of fractional integration of order a in the Riemann–

Liouville sense. Pa is derived as the following process.

By using the definition of LBSFs (14), it is obvious that:

uJ;kðtÞ ¼

ð1� 2tJÞðu0ðtÞ � u 1

2J
ðtÞÞ; if k ¼ �1;

ð2J t � kÞðu k

2J
ðtÞ � ukþ1

2J
ðtÞÞ þ ð2� 2Jt þ kÞðukþ1

2J
ðtÞ � ukþ2

2J
ðtÞÞ;

if k ¼ 0; 1; . . .; 2J � 2;
ð2Jðt � 1Þ þ 1Þðu2J�1

2J

ðtÞ � u1ðtÞÞ; if k ¼ 2J � 1:

8>>>><
>>>>:

ð21Þ

where uaðtÞ is the shifted unit step function. The fractional

integration of order a of uJ;kðtÞ can be written as:

IauJ;kðtÞ ¼
1

CðaÞ ft
a�1 � uJ;kðtÞg; ð22Þ

where * is the convolution operator of two functions.

Laplace transform on (22) yields:

LfIauJ;kðtÞg ¼
1

saþ1
1� 2J

s
ð1� e�

s

2J Þ
� �

; if k ¼ �1;

2J

saþ2
e�

k

2J
s � 2e�

kþ1

2J
s þ e�

kþ2

2J
s

h i
; if k ¼ 0; 1; . . .; 2J � 2;

2J

saþ2
e�

2J�1

2J
s � e�s

h i
� e�s

saþ1
; if k ¼ 2J � 1:

8>>>>>>><
>>>>>>>:

ð23Þ

Now taking the inverse Laplace transform of the above

equation, we get:

IauJ;�1ðtÞ ¼
ta

Cðaþ 1Þ 1� 2Jt

aþ 1

� �
þ 2J

Cðaþ 2Þ ðt

� 1

2J
Þaþ1

u 1

2J
ðtÞ; ð24Þ

auJ;kðtÞ ¼
2J

Cðaþ 2Þ

t � k

2J

� �aþ1

u k

2J
ðtÞ � 2 t � k þ 1

2J

� �aþ1

ukþ1

2J
ðtÞ

"

þ t � k þ 2

2J

� �aþ1

ukþ2

2J
ðtÞ
#
; ð25Þ

for k ¼ 0; 1; . . .; 2J � 2, and:

Iran J Sci Technol Trans Sci (2017) 41:723–733 725

123



IauJ;2J�1ðtÞ ¼
2J

Cðaþ 2Þ

ðt � 2J � 1

2J
Þaþ1

u2J�1

2J

ðtÞ � ðt � 1Þaþ1
u1ðtÞ

� �

� ðt � 1Þau1ðtÞ: ð26Þ

Expanding IauJ;kðtÞ via LBSFs, we have:

IauJ;kðtÞ ffi
X2J�1

q¼�1

Pa
kquJ;kðtÞ ¼ Pa

kUJðtÞ; ð27Þ

where:

Pa
kq ¼ IauJ;kð

qþ 1

2J
Þ; q; k ¼ �1; 0; 1; . . .; 2J � 1; ð28Þ

and PaT
k is a ð2J þ 1Þ-vector. Therefore:

IaUJðtÞ ffi

Pa
�1

Pa
0

..

.

Pa
2J�1

0
BBB@

1
CCCAUJðtÞ ¼ PaUJðtÞ: ð29Þ

By using Eqs. (24), (25), (26), and (28), it can be shown

that Pa is a ð2J þ 1Þ � ð2J þ 1Þ matrix as follows:

Pa ¼

0 f1 f2 f3 � � � f2J
0 g1 g2 g3 � � � g2J

g1 g2 � � � g2J�1

..

. . .
. . .

. . .
. ..

.

g1 g2
0 � � � 0 g1

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð30Þ

where:

fi ¼
1

2JaCðaþ 2Þ ði
aðiþ aþ 1Þ þ ði� 1Þa�1Þ; i

¼ 1; 2; . . .; 2J ;

g1 ¼
1

2JaCðaþ 2Þ ; gi

¼ 1

2JaCðaþ 2Þ ði
aþ1 � 2ði� 1Þaþ1 þ ði� 2Þaþ1Þ; i

¼ 2; . . .; 2J :

Suppose that the arbitrary function uðtÞ 2 L2½0; 1� is

given. From Eq. (17), the linear B-spline scaling approxi-

mation of uðtÞ is given by uðtÞ ffi CTUJðtÞ. Thus, the

fractional-order integration of the function uðtÞ can be

approximated as the following:

IauðtÞ ffi CT IaUJðtÞ ffi CTPaUJðtÞ:

The function uðtÞ ¼ t was selected to verify the cor-

rectness of matrix Pa. The a-order integration of the

function f ðtÞ ¼ t is easily obtained as Eq. (3). When a ¼ 1
2

and J ¼ 4; 6; 8; 10, the comparison results for the errors of

fractional integration are shown in Fig. 1.

4 Error Bound

In this section, an error bound for the linear B-spline

scaling functions approximation will be found. To this end,

let us define N :¼ 2J þ 1 for a fixed J 2 N and according to

(17) suppose that uNðtÞ is the approximation of uðtÞ.

Fig. 1 The comparison results for the errors of fractional integration for D
1
2t
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Theorem 1 If we assume that uðtÞ 2 C2½0; 1� is approx-
imated by the linear B-spline scaling functions as:

uðtÞ ffi
X2J�1

k¼�1

ckuJ;kðtÞ ¼ uNðtÞ; ð31Þ

then:

uðtÞ � uNðtÞk k2 	
1

2ð2JÞ2
M þ Oðð 1

2J
Þ3Þ; t 2 ½0; 1�; ð32Þ

where ju00ðtÞj 	M, for t ¼ kþ1
2J

; k ¼ �1; 0; 2 j � 2.

Proof For t ¼ kþ1
2J

; k ¼ �1; 0; 2 j � 1, the relation (32) is

obviously obtained. If kþ1
2J

\t\ kþ2
2J
, by using the defini-

tion of linear B-spline scaling function (14) and (31), we

have:

uNðtÞ ¼ u
k þ 1

2J

� �
uJ;kðtÞ þ u

k þ 2

2J

� �
uJ;kþ1ðtÞ

¼ u
k þ 1

2J

� �
ð2� ð2Jt � kÞÞ þ u

k þ 2

2J

� �
ð2 jt � k � 1Þ

¼ u
k þ 1

2J

� �
þ t

uðkþ2
2J

Þ � uð kþ1
2J
Þ

1
2J

 !
� k þ 1

2J
uðkþ2

2J
Þ � uðkþ1

2J
Þ

1
2J

 !

¼ u
k þ 1

2J

� �
þ t � k þ 1

2J

� �
uðkþ2

2J
Þ � uðkþ1

2J
Þ

1
2J

 !
:

ð33Þ

As J ! 1, from (33), we get:

uNðtÞ ffi u
k þ 1

2J

� �
þ t � k þ 1

2J

� �
u

0 k þ 1

2J

� �
: ð34Þ

Considering the Taylor series of function uðtÞ at point

t ¼ kþ1
2J
, we have:

uðtÞ ¼
X1
j¼0

ðt � kþ1
2J
Þ j

j!
uðjÞ

k þ 1

2J

� �
: ð35Þ

By using Eqs. (34) and (35), we get:

juðtÞ � uNðtÞj ffi j
X1
j¼2

ðt � kþ1
2J
Þ j

j!
uðjÞ

k þ 1

2J

� �
j

	 1

2
ðt � k þ 1

2J
Þ2ju00 k þ 1

2J

� �
j þ O t � k þ 1

2J

� �3
 !

	 1

2ð2JÞ2
M þ O

1

2J

� �3
 !

; ð36Þ

where the last inequality is derived from this fact that t �
kþ1
2J

\ 1
2J

and the assumption ju00 ðkþ1
2J
Þj 	M. Finally, by

using the definition of 2-norm and Eq. (36), we have:

uðtÞ � uNðtÞk k22¼
Z 1

0

juðtÞ � uNðtÞj2dt

¼
X2J�2

k¼�1

Z kþ2

2J

kþ1

2J

juðtÞ � uNðtÞj2dt

	
X2J�2

k¼�1

Z kþ2

2J

kþ1

2J

1

2ð2JÞ2
M þ O ð 1

2J
Þ3

� � !2

dt

¼ 1

2ð2JÞ2
M þ O ð 1

2J
Þ3

� � !2

:

ð37Þ

So, Eq. (37) yields:

uðtÞ � uNðtÞk k2 	
1

2ð2JÞ2
M þ Oðð 1

2J
Þ3Þ; ð38Þ

and this completes the proof of the theorem.

Also, the above theorem shows that when J increases,

the absolute error tends to zero. This shows the conver-

gency of the approximation introduced in Eq. (31) in L2-

norm.

5 Numerical Illustrations

In this section, the LBSFs and the operational matrices of

fractional integration are used to solve the several kinds of

fractional differential equations. This procedure is called

the linear B-spline scaling function method (LBSFM).

Example 1 Consider the following linear fractional dif-

ferential equation which has been considered before by

Kumar and Agrawal (2006), Diethelm et al. (2002) and

Rehmana and Khan (2011):

DauðtÞ þ uðtÞ ¼ 0; 0\a	 2; ð39Þ

such that: uð0Þ ¼ 1; u
0 ð0Þ ¼ 0. The exact solution of

Eq. (39) is given by:

uðtÞ ¼ Eað�taÞ; ð40Þ

where EaðwÞ ¼
P1

k¼0
wk

Cðakþ1Þ is the Mittag–Leffler function

of ordera a. The exact solutions of the problem for a ¼ 1

and a ¼ 2 are uðtÞ ¼ e�t and y ¼ cosðtÞ, respectively. Let:

DaðtÞ ffi CTUJðtÞ; ð41Þ

by using relation (7) in the above equation, we have:

uðtÞ ffi CTPaUJðtÞ þ 1: ð42Þ

Employing Eqs. (41) and (42) in Eq. (39), we get:

CTUJðtÞ þ CTPaUJðtÞ ffi �1TUJðtÞ: ð43Þ

where �1T is a ð2J þ 1Þ-vector as: �1 ¼ ½�1; . . .;�1�T .
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By collocating Eq. (43) in points ti ¼ iþ1
2J

for i ¼
�1; 0; . . .; 2J � 1 and using the property (16), we get the

following system of linear equations:

CT þ CTPa ffi �1T : ð44Þ

Vector C can be found by solving the system (44), thus

the approximate solution of the main problem can be

obtained by (42). Figure 2 shows the numerical results for

J ¼ 8 and various 1	 a	 2. The comparisons show that:

when a ! 1 and a ! 2, then the approximate solutions

tend to uðtÞ ¼ e�t and uðtÞ ¼ cosx, which are the exact

solutions of the equation in the cases a ¼ 1 and a ¼ 2,

respectively. A comparison between the absolute errors of

the LBSFM and the Legendre wavelet method (LWM)

(Rehmana and Khan 2011), for some points in ½0; 1� is

given in Fig. 3.

Example 2 Consider the following composite multi-term

fractional oscillation equation:

aDauðtÞ þ bDbuðtÞ þ cuðtÞ ¼ gðtÞ; t[ 0; 1\a	 2; 0\a	 2;

ð45Þ

with uð0Þ ¼ u0; u
0 ð0Þ ¼ u1, where a 6¼ 0 and b; c 2 R. Let:

Fig. 2 The numerical results

for J ¼ 8 and various 1	 a	 2

(Example 1)

Fig. 3 The comparison between the absolute errors of the LBSFM and the (LWM) (Rehmana and Khan 2011) (Example 1)
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DauðtÞ ffi CTUJðtÞ; ð46Þ

thus:

DbuðtÞ ffi Ia�bDauðtÞ ffi CTPa�bUJðtÞ; ð47Þ

and:

uðtÞ ffi CTPaUJðtÞ þ u1t þ u0: ð48Þ

Substituting Eqs. (46)–(48) into Eq. (45), then collo-

cating it in points ti ¼ iþ1
2J

for i ¼ �1; 0; . . .; 2J � 1 and

using the property (16), we have the following system of

linear equations:

aCT þ bCTPa�b þ cCTPa ¼ HT ; ð49Þ

where H is the coefficient vector of the function

hðtÞ ¼ gðtÞ � cðu1t þ u0Þ. The system of equations given

in Eq. (49) is solved for the vector C and the output

response uðtÞ is calculated by (48). For

a ¼ b ¼ c ¼ 1; a ¼ 2; b ¼ 0:5; u0 ¼ u1 ¼ 0, gðtÞ ¼ 8 and

t 2 ½0; 1�, this problem has been solved in Arikoglu and

Ozkol (2007), Rehmana and Khan (2011), Li and Sun

(2011), Momani and Odibat (2007), Yi and Huang (2014),

and Li and Zhao (2010). The comparisons between our

results and the results given in Arikoglu and Ozkol (2007),

Rehmana and Khan (2011), Li and Sun (2011), Momani

and Odibat (2007), Yi and Huang (2014), and Li and Zhao

(2010), at different node points, are shown in Tables 1 and

2, respectively. Also, the comparison of absolute errors for

J ¼ 4; 6; 8 and 10 is shown in Fig. 4. Here, the absolute

errors are obtained by the results of high-order methods

mentioned in Bhrawy et al. (2012). Clearly, the results

show the solutions obtained by LBSFM are in good

agreement with other numerical methods.

Example 3 Consider the following Riccati differential

equation which is a nonlinear case (Abbasbandy 2007;

Genga et al. 2009; Li 2010):

DauðtÞ ¼ 2uðtÞ � u2ðtÞ þ 1; 0	 t	 1; 0	 a	 1; ð50Þ

with uð0Þ ¼ 0. The exact solution of this problem is:

uðtÞ ¼ 1þ
ffiffiffi
2

p
tanh

ffiffiffi
2

p
t þ 1

2
ln

ffiffiffi
2

p
� 1ffiffiffi

2
p

þ 1

� �� �
: ð51Þ

Table 1 The approximate solution uðtÞ at different node points in comparison with some references (Example 2)

t uðtÞLBSFM uðtÞLWM

Rehmana and Khan (2011)

uðtÞBPF
Li and Sun (2011)

uðtÞFDTM
Arikoglu and Ozkol (2007)

uðtÞADM
Momani and Odibat (2007)

0.0 0 0.000000 0.000000 0.000000 0.000000

0.1 0.039750 0.039750 0.039754 0.039750 0.039750

0.2 0.157036 0.157035 0.157043 0.157036 0.157040

0.3 0.347370 0.347370 0.347373 0.347370 0.347370

0.4 0.604695 0.604695 0.604699 0.604695 0.604700

0.5 0.921767 0.921767 0.921768 0.921768 0.921770

0.6 1.290456 1.290456 1.290458 1.290457 1.290500

0.7 1.702000 1.702007 1.702007 1.702008 1.702000

0.8 2.147286 2.147286 2.147286 2.147287 2.147300

0.9 2.617000 2.617000 2.616998 2.617001 2.617000

11.0 3.101905 3.101905 3.101902 3.101906 3.101900

Table 2 The approximate solution uðtÞ at different node points for a ¼ 2;b ¼ 0:5 in comparison with some references (Example 2)

t LBSFM

ðJ ¼ 3Þ
Yi and Huang (2014)

ðm ¼ 8Þ
Li and Zhao (2010)

ðm ¼ 8Þ
LBSFM

ðJ ¼ 4Þ
Yi and Huang (2014)

ðm ¼ 16Þ
Li and Zhao (2010)

ðm ¼ 16Þ

0.0625 3.6548e-9 6.8166e-008 9.2040e-008 4.9092e-10 5.5745e-010 7.4471e-010

0.1875 6.1032e-7 6.2025e-006 1.2422e-005 1.5202e-8 6.4280e-007 8.3627e-007

0.3125 4.2721e-7 5.7883e-005 4.6183e-007 1.7824e-7 8.1457e-006 3.9354e-007

0.4375 2.8900e-5 1.9796e-004 8.8140e-004 1.1775e-6 3.8396e-005 8.1461e-004

0.5625 1.0159e-4 4.1838e-004 5.7552e-003 6.5719e-6 1.1637e-004 5.1642e-003

0.6875 3.2232e-4 5.2079e-004 2.0001e-002 2.9035e-5 2.9048e-004 1.7360e-002

0.8125 1.1397e-4 1.1363e-004 4.5151e-002 9.5231e-5 6.4027e-004 3.8760e-002

0.9375 1.7382e-4 3.1379e-003 5.9717e-002 2.2030e-4 1.0678e-003 5.0103e-002
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To solve the problem by using the present method, let:

DauðtÞ ffi CTUJðtÞ; ð52Þ

so:

uðtÞ ffi CTPaUJðtÞ: ð53Þ

Substituting Eqs. (52) and (53) in Eq. (50), we have:

CTUJðtÞ ffi 2CTPaUJðtÞ � ðCTPaUJðtÞÞ2 þ 1: ð54Þ

Now, if the Eq. (54) is collocated at ti ¼ iþ1
2J

for

i ¼ �1; 0; . . .; 2J � 1, we have a system of nonlinear

equations which can be solved for the unknown vector C,

using Newton’s iterative method. The numerical results for

uðtÞ with J ¼ 6, and a ¼ 0:6; 0:7; 0:8; 0:9; 1 are presented

in Fig. 5. This figure shows that as a approaches to 1, the

corresponding solutions of the equation approach to the

solutions of integer-order differential equation. Also, the

comparison of absolute errors for J ¼ 2; 3; 4; 5 and a ¼ 1 is

shown in Fig. 6.

Example 4 Following Li and Zhao (2010), consider the

following nonlinear multi-order fractional differential

equation:

aD2:2uðtÞ þ bDa2uðtÞ þ cDa1uðtÞ þ e½uðtÞ�3
¼ f ðtÞ; 0\a1 	 1; 1\a2 	 2; ð55Þ

Fig. 4 The comparison of absolute errors for J ¼ 4; 6; 8 and 10 (Example 2)

Fig. 5 The numerical results

for uðtÞ with J ¼ 6, and some

0:6	 a	 1 (Example 3)
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and:

f ðtÞ ¼ 2a

Cð1:8Þ t
0:8 þ 2b

Cð4� a2Þ
t3�a2 þ 2c

Cð4� a1Þ
t3�a1

þ e
t3

3

� �3
;

ð56Þ

subject to uð0Þ ¼ u0ð0Þ ¼ u00ð0Þ ¼ 0. The exact solution of

this problem is uðtÞ ¼ 1
3
t3. Suppose that:

D2:2uðtÞ ffi CTUJðtÞ: ð57Þ

By using the linear B-spline scaling function operational

matrix of fractional integration and the initial conditions,

we get:

Da1uðtÞ ffi CTP2:2�a1UJðtÞ; ð58Þ

Da2uðtÞ ffi CTP2:2�a2UJðtÞ; ð59Þ

and:

uðtÞ ffi CTP2:2UJðtÞ: ð60Þ

Substituting Eqs. (57)–(60) into Eq. (55), we have:

CTUJðtÞ þ aCTP2:2�a1UJðtÞ þ bCTP2:2�a2UJðtÞ
þ e½CTP2:2UJðtÞ�3
ffi f ðtÞ: ð61Þ

Now, if the Eq. (61) is collocated at ti ¼ iþ1
2J

for

i ¼ �1; 0; . . .; 2J � 1, we have a system of nonlinear

equations which can be solved for the unknown vector C,

using Newtons iterative method. For a ¼ b ¼ c ¼ e ¼ 1,

a1 ¼ 0:75 and a2 ¼ 1:25, the absolute errors with a

Fig. 6 The comparison of absolute error for J ¼ 2; 3; 4; 5 and a ¼ 1 (Example 4)

Table 3 The approximate solution uðtÞ at different node points in comparison with Ref. (Li and Zhao 2010) (Example 6)

t LBSFM

ðJ ¼ 3Þ
Li and Zhao

(2010)ðm ¼ 8Þ
LBSFM

ðJ ¼ 4Þ
Li and Zhao

(2010)ðm ¼ 16Þ
LBSFM

ðJ ¼ 5Þ
Li and Zhao

(2010)ðm ¼ 32Þ

00.1 1.0322e-4 1.1e-3 5.7557e-5 2.0e-4 4.7903e-6 6.960e-5

00.2 4.7369e-4 1.7e-3 4.3190e-5 5.0e-4 1.6906e-5 1.174e-4

00.3 7.1609e-4 2.5e-3 2.6509e-5 8.0e-4 1.9505e-5 1.748e-4

00.4 4.1935e-4 4.0e-3 1.6212e-4 9.0e-4 8.3933e-5 2.736e-4

00.5 8.4338e-4 5.3e-3 2.7810e-4 1.4e-3 8.8549e-5 3.519e-4

00.6 4.0691e-4 5.9e-3 2.2341e-4 1.2e-3 1.1097e-5 3.872e-4

00.7 1.3891e-3 5.3e-3 5.7427e-5 1.7e-3 4.2964e-5 3.575e-4

00.8 1.6667e-3 5.8e-3 5.6659e-5 1.9e-3 5.1254e-5 3.960e-4

00.9 8.0329e-3 8.0e-3 3.6975e-4 1.6e-3 8.6571e-6 5.356e-4
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comparison to the method in Li and Zhao (2010) are given

in Table 3. From Table 3, we can see clearly that the

numerical solutions are much closer to the exact solution

when J increases. Compared with the method in Li and

Zhao (2010), our method is more accurate.

6 Conclusion

In the present work, we construct the fractional-order linear

B-spline scaling functions operational matrices of integra-

tion and use them to solve fractional linear and nonlinear

differential equations numerically. Also, when using the

linear B-spline scaling functions approximation, an error

bound is derived and used to show the convergency of the

mentioned approximation. The obtained results are com-

pared with exact solutions and with the solutions obtained

by some other numerical methods mentioned in Examples

1–4. Our method gives almost the same results as these

methods but is a little more accurate than them. The

authors are very grateful to the editors and the referees for

carefully reading the paper and for their comments and

suggestions which have improved the paper.
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pp 171–180

Goswami J, Chan A (1999) Fundamentals of wavelets theory,

algorithms and applications. Wiley, New York

Hilfer R (2000) Applications of fractional calculus in physics. World

Scientific, New Jersey

Kumar P, Agrawal O (2006) An approximate method for numerical

solution of fractional differential equations. Signal Process

86(260):2–10

Lakestani M, Dehghan M, Irandoust-pakchin S (2012) The construc-

tion of operational matrix of fractional derivatives using B-spline

functions. Commun Nonlinear Sci Numer Simul 17:1149–1162

Li Y (2010) Solving a nonlinear fractional differential equation using

Chebyshev wavelets. Commun Nonlinear Sci Numer Simul

15:2284–2292

Li Y, Sun N (2011) Numerical solution of fractional differential

equations using the generalized block pulse operational matrix.

Comput Math Appl 62(3):1046–1054

Li YL, Zhao WW (2010) Haar wavelet operational matrix of

fractional order integration and its applications in solving the

fractional order differential equations. Appl Math Comput

216:2276–2285

Magin RL (2004) Fractional calculus in bioengineering. Crit Rev

Biomed Eng 32(1):1–104

Meerschaert M, Tadjeran C (2006) Finite difference approximations

for two sided space fractional partial differential equations. Appl

Numer Math 56:80–90

Miller KS, Ross B (1974) An introductional the fractional calculus

and fractional differential equations. Academic, New York

Momani S, Odibat Z (2007a) Numerical approach to differential

equations of fractional orders. J Comput Appl Math 207(1):96–110

Momani S, Odibat Z (2007b) Numerical comparison of methods for

solving linear differential equations of fractional order. Chaos

Solitons Fract 31(12):48–55

732 Iran J Sci Technol Trans Sci (2017) 41:723–733

123

http://dx.doi.org/10.1186/1687-1847-2013-307
http://dx.doi.org/10.1186/1687-1847-2013-307
http://dx.doi.org/10.1007/s10092-014-0132-x
http://dx.doi.org/10.1007/s11075-015-9990-9
http://dx.doi.org/10.1007/s11075-015-9990-9


Odibat Z, Momani S (2008) Numerical methods for nonlinear partial

differential equations of fractional order. Appl Math Model

32:9–28

Pandey R, Singh O, Baranwal V (2011) An analytic algorithm for the

space–time fractional advection-dispersion equation. Comput

Phys Commun 182(11):34–44

Podlubny I (1999) Fractional differential equations. Academic press,

New York

Rehmana M, Khan RA (2011) The Legendre wavelet method for

solving fractional differential equations. Commun Nonlinear Sci

Numer Simul 16:4163–4173

Saadatmandi A (2014) Bernstein operational matrix of fractional

derivatives and its applications. Appl Math Model

38(4):1365–1372

Saeedi H, Mohseni Moghadam M (2011) Numerical solution of

nonlinear Volterra integro-differential equations of arbitrary

order by CAS wavelets. Commun Nonlinear Sci Numer Simul

16:1216–1226

Saeedi H, Mohseni Moghadam M, Mollahasani N, Chuev GN (2011)

A CAS wavelet method for solving nonlinear Fredholm integro-

differential equations of fractional order. Commun Nonlinear Sci

Numer Simul 16:1154–1163

Sweilam N, Khadar M, Al-Bar R (2007) Numerical studies for a

multi-order fractional differential equation. Phys Lett A

371:26–33

Vosika ZB, Lazovic GM, Misevic GN, Simic-Krstic JB (2013)

Fractional calculus model of electrical impedance applied to

human skin. PLoS One 8(4):1–12

Vyawahare VA, Nataraj PSV (2013) Fractional-order modeling of

neutron transport in a nuclear reactor. Appl Math Model

37:9747–9767

Wang JR, Zhou Y (2011) A class of fractional evolution equations

and optimal controls. Nonlinear Anal Real World Appl

12:262–272

Yi M, Huang J (2014) Wavelet operational matrix method for solving

fractional differential equations with variable coefficients. Appl

Math Comput 230:383–394

Yu Q, Liu F, Turner I, Burrage K, Vegh V (2013) The use of a Riesz

fractional differential-based approach for texture enhancement in

image processing. ANZIAM J 54:590–607

Zhao L, Deng W (2014) Jacobian-predictor-corrector approach for

fractional differential equations. Adv Comput Math

40(1):137–165

Iran J Sci Technol Trans Sci (2017) 41:723–733 733

123


	The Linear B-Spline Scaling Function Operational Matrix of Fractional Integration and Its Applications in Solving Fractional-Order Differential Equations
	Abstract
	Introduction
	Basic Definitions
	Fractional Integral and Differential Operators
	Linear Cardinal B-Spline Functions

	Operational Matrix of Fractional Integration of LBSFs
	Error Bound
	Numerical Illustrations
	Conclusion
	References




