
RESEARCH PAPER

A New Version of Black–Scholes Equation Presented
by Time-Fractional Derivative

A. Farhadi 1
• M. Salehi 2

• G. H. Erjaee1

Received: 3 December 2016 / Accepted: 24 April 2017 / Published online: 9 May 2017

� Shiraz University 2017

Abstract In this article, a new time-fractional-order

Black–Scholes equation has been derived. In this deriva-

tion, the asset price satisfies in a fractional-order stochastic

differential equation. Here, the effect of trend memory in

financial pricing is considered. Finally, a new approximate

analytical method has been used to solve our new proposed

time-fractional Black–Scholes equation
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1 Introduction

In option pricing theory (Wilmott et al. 1994; Crack 2009),

Black–Scholes (B–S) model which was first introduced in

1973 by Black and Scholes (1973) is the best-known math-

ematical model with continuous time. B–S model is a

mathematical model to study the behavior of an asset price in

a form of linear parabolic partial differential equation which

describes the value of an option. An option is an agreement

that allows the holder to buy (call option) or sell (put option)

at a specified future time (expiration or maturity time) an

underling asset at a specified price (strike or exercise price).

By the dates on which options exercised, they have two

types: options that can be exercised only on the maturity date

(European options) and options that can be exercised on or

prior to the expiration date (American options). By reducing

the B–S equation to the heat equation, a closed form solution

to the B–S equation, known as the B–S formula, can be found

(Jiang 2003). On the other hand, many authors have solved

the B–S equation via different methods (Bohner and Zheng

2009; Gulkac 2010; Jodar et al. 2005). In the past decades,

fractional calculus has played a very important role in vari-

ous fields such as physics, mechanics, electricity, economics,

etc. (see, for example, (Kilbas et al. 2006; Podlubny 1999;

Oldham and Spanier 1974; Miller and Ross 2003) and ref-

erences therein). Indeed, there are many phenomena which

are described by differential equations containing fractional-

order derivatives. Recently, by increasing applications of

fractional differential equations (FDE), researchers have

studied B–S equation in this form too. Wyss (2000) derived a

time-fractional B–S equation to evaluate European call

options. In some recent papers, analytical approximate

solution to B–S problem has obtained using some methods

such as: homotopy perturbation method, homotopy analysis

method (Kumar et al. 2014), variational iteration method

(Ahmad et al. 2013), and reconstruction of variational iter-

ation method (RVIM) (Akrami and Erjaee 2015). By con-

sidering a model of fractional stochastic differential equation

and using Ito’s Lemma together with fractional Taylor’s

series, Guy Jumarie derived two fractional B–S equations

and obtained their solutions (Jumarie 2010). Recently, Song

and Wang (2013) have solved Jumarie’s time fractional B–S

equation to evaluate European put options using finite-dif-

ference method. Jumarie’s fractional B–S equations have

been derived from a stochastic differential equation with

fractional Brownian motion which describes the noise

memory effect of the underlying asset price. In this case, the

memory effect is measured by the memory parameter,

namely, the Hurst index. The Hurst index is denoted by
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H ð0\H\1Þ. If 0\H\1=2, then the stock price is called a

short-range memory process. If 1=2\H\1, then it is called

a long-range memory process, and if H ¼ 1=2, then it has no

dependence and no memory effect. It is well known that

fractional calculus is one of the best tools to describe memory

effects (Das 2008). Indeed, memory effects contain the trend

memory which can be described using fractional derivatives.

Therefore, by fractional calculus, we can depict memory

process of the increment in the classical stochastic differ-

ential equation. In Li et al. (2014), by considering a frac-

tional-order a in differential of underlying asset price, dS(t),

and in dt as well, a new fractional-order stochastic differ-

ential equation with classical Brownian motion has been

constructed which describes the trend memory effect of the

underlying asset price. In this article, a new time-fractional

B–S equation will be derived from this new fractional

stochastic differential equation, and then, we apply the

RVIM to solve our derived FDE model of B–S equation.

2 Fractional Calculus

Some needed concepts of fractional calculus are stated in

this section. Here, we follow the definitions and concepts

that have been used by Jumarie (2010).

Definition 1 Suppose that f : R �! R; x �! fðxÞ is a

continuous (but not necessarily differentiable) function,

and let h[ 0 denote a constant discretization span. Then,

the fractional difference of order a 2 R, 0\a� 1 of f(x) is

defined as follows:

Daf ðxÞ ¼
P1

k¼0ð�1Þk
a

k

� �

f xþ ða� kÞh½ �; ð1Þ

where
a
k

� �

¼ Cðaþ 1Þ
k!Cða� k þ 1Þ and Cð:Þ is the Gamma

function.

Definition 2 (Modified Riemann–Liouville Derivative).

Refer to a function as in Definition 1, fractional derivative

of order a of such a function is defined as follows:

f ðaÞðxÞ :¼ daf ðxÞ
dxa

¼

1

Cð�aÞ

Z x

0

ðx� nÞ�a�1ðf ðnÞ � f ð0ÞÞdn; a\0;

1

Cð1 � aÞ
d

dx

Z x

0

ðx� nÞ�aðf ðnÞ � f ð0ÞÞdn; 0\a� 1;

dn f ða�nÞðxÞ
� �

dxn
; n\a� nþ 1;

8
>>>>>>><

>>>>>>>:

ð2Þ

where n denotes a positive integer.

Proposition 1 Refer to a function as in Definition 1, the

following equality holds:

f ðaÞðxÞ ¼ lim
h!0

Daf ðxÞ
ha

: ð3Þ

Proof For the proof, see Jumarie (1993).

Proposition 2 Assume that a continuous function f : R �
! R; x �! fðxÞ has fractional derivative of order ka, for

any positive integer k and any a, 0\a� 1. Then, the fol-

lowing equality holds:

f ðxþ hÞ ¼
P1

k¼0

hak

Cð1 þ akÞ f
ðakÞðxÞ; ð4Þ

where f ðakÞðxÞ is ak order derivative of f(x).

Proof For the proof, see Jumarie (2005, 2006).

Corollary 1 By assuming the conditions of Proposition 2,

for 0\a� 1, we have

daf xð Þ ffi C 1 þ að Þdf xð Þ: ð5Þ

Proof From Eq. (4), one obtains

f ðxþ hÞ ¼ f ðxÞ þ ha

Cð1 þ aÞ f
ðaÞðxÞ þ

P1
k¼2

hak

Cð1 þ akÞ f
ðakÞðxÞ:

ð6Þ

Now, according to the definition of the forward operator of

order one, Df ðxÞ, we have

Df ðxÞ ¼ ha

Cð1 þ aÞ f
ðaÞðxÞ þ

P1
k¼2

hak

Cð1 þ akÞ f
ðakÞðxÞ: ð7Þ

Multiplying both sides of (7) by
Cð1 þ aÞ

ha
and taking limit

as h �! 0 yields

C 1 þ að Þ lim
h!0

Df xð Þ
ha

¼ f að Þ xð Þ: ð8Þ

Therefore, according to (3) and (8), we get

Daf ðxÞ ffi C 1 þ að ÞDf ðxÞ; ð9Þ

or in a differential form

daf ðxÞ ffi C 1 þ að Þdf ðxÞ: ð10Þ

Corollary 2 As a Relation between dxa and dx, the fol-

lowing equality holds

dxa ¼ Cð1 þ aÞCð2 � aÞxa�1dx; 0\a� 1: ð11Þ

Proof By assuming c[ 0, according to Definition 1, for

0\a� 1, the following equality holds:

da xcð Þ ¼ C cþ 1ð ÞC�1 cþ 1 � að Þxc�adxa: ð12Þ

For c ¼ 1, according to Eq. (10), we get Eq. (11).

Corollary 3 The following equality holds:
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f ðaÞx ½uðxÞ� ¼ Cð2 � aÞua�1ðxÞf ðaÞu ½uðxÞ�uðaÞx ðxÞ: ð13Þ

Proof By considering the differential form of f
ðaÞ
x ½uðxÞ�,

we have

f ðaÞx ½uðxÞ� ¼ daf ½uðxÞ�
dxa

¼ daf ½uðxÞ�
dua

dua

dxa
: ð14Þ

Replacing dua by dau in Eq. (14) and according to Eq. (12)

for c ¼ 1, we get

f ðaÞx ½uðxÞ� ¼ daf ½uðxÞ�
dua

Cð2 � aÞua�1dau

dax

¼ Cð2 � aÞua�1ðxÞf ðaÞu ½uðxÞ�uðaÞx ðxÞ:

Proposition 3 Let f : R �! R; x �! fðxÞ denote a con-

tinuous function. Then, Laplace transform of modified

Riemann–Liouville derivative of order a, 0\a� 1 is

Lff ðaÞðxÞg ¼ saLff ðxÞg � sa�1f ð0Þ: ð15Þ

Proof Using Definition 1, for 0\a� 1, Laplace trans-

form of derivative and convolution theorem, one gets

L½f ðaÞðxÞ� ¼ 1

Cð1 � aÞ L
d

dx

Z x

0

ðx� nÞ�aðf ðnÞ � f ð0ÞÞdn
� �

¼ s

Cð1 � aÞ L
Z x

0

ðx� nÞ�aðf ðnÞ � f ð0ÞÞdn
� �

¼ s

Cð1 � aÞ L½x�a�L½f ðxÞ � f ð0Þ�ð Þ

¼ saL½f ðxÞ� � sa�1f ð0Þ:

Theorem 1 Consider a fractional partial differential

equation (FPDE) as follows:

f ðx; y; uÞ o
au

oxa
þ gðx; y; uÞ ou

oy
¼ hðx; y; uÞ; 0\a� 1;

where u : R2 �! R; ðx; yÞ �! uðx; yÞ. Then, auxiliary sys-

tem of partial differential equation associated with the

FPDE is

dxa

f
¼ day

g
¼ dua

h
:

Proof For the proof, see Jumarie (2007).

3 Reconstruction of Variational Iteration Method

To illustrate a basic idea of the RVIM, we consider the

following fractional partial differential equation (FPDE)

with variable coefficients:

oauðx; tÞ
ota

¼
P2

j¼0 ajðx; tÞ
o juðx; tÞ

ox j
; 0\a� 1 ð16Þ

where oa=ota denotes fractional derivative in modified

Riemann–Liouville sense and o0uðx; tÞ=ox0 ¼ uðx; tÞ, with

initial condition uðx; 0Þ ¼ f ðxÞ; a\x\b; 0\t� T :

Now, by taking Laplace transform on both sides of

Eq. (16) with respect to time variable t and considering

Proposition 3, we get

saLfuðx; tÞg � sa�1uðx; 0Þ ¼ L
P2

j¼0 ajðx; tÞ
o juðx; tÞ

ox j

� 	

:

Then

Lfuðx; tÞg ¼ 1

s
f ðxÞ þ 1

sa
L
P2

j¼0 ajðx; tÞ
o juðx; tÞ

ox j

� 	

: ð17Þ

Taking inverse Laplace transform from both sides of

Eq. (17) and using convolution theorem, we get

uðx; tÞ ¼ L�1 1

s
f ðxÞ

� 	

þ L�1 1

sa
L
X2

j¼0

ajðx; tÞ
o juðx; tÞ

ox j

( )( )

¼ f ðxÞ þ ta�1

CðaÞ

� �

�
P2

j¼0 ajðx; tÞ
o juðx; tÞ

ox j

� �

¼ f ðxÞ þ 1

CðaÞ

Z t

0

ðt � nÞa�1 P2
j¼0 ajðx; nÞ

o juðx; nÞ
ox j

� �

dn:

Now, we can construct an iteration formula as follows:

unþ1ðx; tÞ ¼ f ðxÞ þ 1

CðaÞ

Z t

0

ðt � nÞa�1 P2
j¼0 ajðx; nÞ

o junðx; nÞ
ox j

� �

dn:

ð18Þ

Therefore, the RVIM provides a solution for problem (16)

as follows:

uðx; tÞ ¼ lim
n�!1

unðx; tÞ: ð19Þ

Obviously, the RVIM method derives a series solution.

That is, if we define an operator w½u� and components vn
for n ¼ 1; 2; :::, such that

w½u� ¼ 1

CðaÞ

Z t

0

ðt � nÞa�1 P2
j¼0 ajðx; nÞ

o juðx; nÞ
ox j

� �

dn

ð20Þ

and

v0 ¼ u0; vn ¼ w
Pn�1

j¼0 vj

h i
�

Pn�1
j¼1 vj


 �
: ð21Þ

Then, according to Eqs. (18), (20), and (21), we have u0 ¼
v0; un ¼

Pn
j¼0 vj for n ¼ 1; 2; ::: . Consequently, according

to (19), we have uðx; tÞ ¼
P1

j¼0 vjðx; tÞ:
The RVIM convergence analysis has been discussed in

Hesameddini and Rahimi (2015), and therefore, we ignore

it here.
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4 A New Fractional Black–Scholes Equation

In this section, we will derive a new time-fractional Black–

Scholes equation and then discuss the solution by means of

the RVIM under a terminal condition for the European call

option.

4.1 Derivation

We first suppose dynamics of an underlying asset price,

S(t), which satisfies a fractional-order stochastic differen-

tial equation (FSDE) as follows:

daSðtÞ ¼ lSðtÞdta þ rSðtÞdBðtÞ; ð22Þ

where a ¼ 2H; 0\H\1, H is Hurst index which is an

exponent describing memory of time series (Hurst 1951),

constants l and r are expected return rate and volatility,

respectively, and B(t) is classical Brownian motion. Here,

we only consider a case that 0:25\H� 0:5, i.e.,

0:5\a� 1. For a ¼ 1, Eq. (22) reduces to a classical

stochastic differential equation. Note that in FSDE (22),

fractional derivative of order a describes trend memory of

the asset price.

To derive our new model based on FSDE (22), we first

build a new fractional version of Ito’s formula.

Let V(S, t) denote the value of an option on an under-

lying asset which its price satisfies in Eq. (22) and assume

that V(S, t) has a fractional derivative of order a with

respect to t and it is twice differentiable with respect to

S. Then, according to Jumarie’s fractional Taylor’s series

Jumarie (2010)

dV ¼ 1

Cð1 þ aÞ
oaV

ota
dta þ oV

oS
dSþ 1

2

o2V

oS2
ðdSÞ2: ð23Þ

Considering Maruyama’s notation for Brownian motion

and Eq. (5), FSDE (22) yields

dS ¼ lS
Cð1 þ aÞ dta þ rS

Cð1 þ aÞwðtÞdt
1=2; ð24Þ

where w(t) is a normalized Gaussian white noise with

E½wðtÞ� ¼ 0 and E½w2ðtÞ� ¼ 1. Here, E is mathematical

expectation. We thus obtain (Li et al. 2014)

ðdSÞ2 ¼ l2S2

C2ð1 þ aÞ
dt2a þ r2S2

C2ð1 þ aÞ
w2ðtÞdt

þ 2lrS2

C2ð1 þ aÞ
wðtÞdtaþ1=2 �! r2S2

C2ð1 þ aÞ
dt:

ð25Þ

Substituting (24) and (25) into Eq. (23), we get

dV ¼ 1

Cð1 þ aÞ
oaV

ota
dta þ lS

Cð1 þ aÞ
oV

oS
dta

þ r2S2

2C2ð1 þ aÞ
o2V

oS2
dt þ rS

Cð1 þ aÞ
oV

oS
dBðtÞ:

ð26Þ

Replacing dta by dt, according to Eq. (11), a fractional

version of Ito’s formula will be produced as follows:

dV ¼ Cð2 � aÞta�1 o
aV

ota
þ lCð2 � aÞta�1S

oV

oS

�

þ r2S2

2C2ð1 þ aÞ
o2V

oS2

�

dt þ rS
Cð1 þ aÞ

oV

oS
dBðtÞ:

ð27Þ

Now, we are ready to derive our new time fractional B–S

equation. In this derivation, we suppose underlying asset

pays no dividend, no transaction cost, and no tax, and

market is arbitrage free. Thus, we first construct a riskless

portfolio P of V(S, t) and S by the following expression:

P ¼ V � dS; ð28Þ

where d denotes shares of underlying asset and it should be

chosen, such that dPðtÞ ¼ rPðtÞdt, where the constant r is

risk-free interest rate. Therefore

dV � ddS ¼ rPdt ¼ r V � dSð Þdt: ð29Þ

Substituting (27) into (29) and due to the fact that

dS ¼ lSCð2 � aÞta�1dt þ rS
Cð1 þ aÞ dBðtÞ;

we calculate

Cð2 � aÞta�1 o
aV

ota
þ lCð2 � aÞta�1S

oV

oS

�

þ r2S2

2C2ð1 þ aÞ
o2V

oS2
� dlSCð2 � aÞta�1Þdt

þ rS
Cð1 þ aÞ

oV

oS
� d

rS
Cð1 þ aÞ

� �

dBðtÞ ¼ r V � dSð Þdt:

ð30Þ

Since the right hand side of Eq. (30) is risk free, coefficient

of random term dBðtÞ on left-hand side must be zero. That

is, we need to choose d ¼ oV=oS. By this substitution,

Eq. (30) provides the following Black–Scholes equation

presented by fractional partial differential equation:

oaV

ota
¼ rV � r2S2

2C2ð1 þ aÞ
o2V

oS2
� rS

oV

oS

� �
t1�a

Cð2 � aÞ : ð31Þ

Note that by taking a ¼ 1 in Eq. (31), we will get standard

B–S equation.
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To see the difference between our version of B–S

equation in Eq. (31) with those counterparts, we state two

main models which have been derived previously.

(1) Wyss (2000) derived a B–S equation in the form of

oaV

ota
¼ rV � r2

2
S2 o

2V

oS2
� rS

oV

oS
:

(2) Jumarie (2010) derived the following time-fractional

B–S equation:

oaV

ota
¼ rV � rS

oV

oS

� �
t1�a

Cð2� aÞ�
Cð1þ aÞ

2
r2S2 o

2V

oS2
;

where S(t) satisfies in the following stochastic dif-

ferential equation with fractional Brownian motion

(fBm) which describes a noise memory of asset

price:

dSðtÞ ¼ lSðtÞdt þ rSðtÞwðtÞdta=2; 0\a� 1:

4.2 Solution

To solve Eq. (31) for the European call option, we consider

a terminal condition as VðS; TÞ ¼ MaxfS�
E; 0g; 0� S\1, where T is expiration date and E is strike

price. Here, for solving our B–S model in Eq. (31), we first

delete the rV-term in Eq. (31). To this, we define V(S, t) in

the form VðS; tÞ ¼ e�rðT�tÞUðS; tÞ. Thus, we get the fol-

lowing equation:

oaU

ota
¼ � r2S2

2C2ð1 þ aÞ
o2U

oS2
� rS

oU

oS

� �
t1�a

Cð2 � aÞ :
ð32Þ

Now, to obtain a fractional PDE out of Eq. (32) without

coefficients S and S2, we make a change of variable

x ¼ logS. With this change, Eq. (32) reads

oaU

ota
¼
 

r2

2C2ð1 þ aÞ
� r

� �
oU

ox
� r2

2C2ð1 þ aÞ
o2U

ox2

!

t1�a

Cð2 � aÞ : ð33Þ

To guess the general form of the solution of Eq. (33), we

refer to the following equation:

oaU

ota
þ r � r2

2C2ð1 þ aÞ

� �
t1�a

Cð2 � aÞ
oU

ox
¼ 0: ð34Þ

To find the general solution of Eq. (34), according to

Theorem 1, we consider the auxiliary system associated

with it as follows:

dta

1
¼ dax

r � r2

2C2ð1 þ aÞ

� �
t1�a

Cð2 � aÞ

¼ dU
a

0
: ð35Þ

Zero in the last fraction means that U is constant along

characteristics. Therefore, according to Eqs. (5) and (11), we

get the general solution of Eq. (34) in the following form:

Uðx; tÞ ¼ F

 

xþ r2

2C2ð1 þ aÞ
� r

� �

t

!

; ð36Þ

where F is an arbitrary function. Eq. (36) suggests to look

for U(x, t) in the form:

Uðx; tÞ ¼ Rðu; tÞ; ð37Þ

where u ¼ xþ r � r2

2C2ð1 þ aÞ

� �

T � tð Þ. Substituting

Eq. (37) into Eq. (33) according to Eq. (36), we get the

following equation:

oaR

ota
¼ �mt1�a o

2R

ou2
; ð38Þ

where m ¼ r2=2C2ð1 þ aÞCð2 � aÞ and terminal condition

is Rðu; TÞ ¼ Maxfeu � E; 0g.

Now, we obtain an initial condition, and then, we take

change of variable s ¼ T � t. Therefore, according to

Eq. (13), we get

oaR

osa
¼ Cð2 � aÞðT � sÞa�1 o

aR

ota
oaðT � sÞ

osa

¼ Cð2 � aÞðT � sÞa�1 o
aR

ota
0 � s1�a

Cð2 � aÞ

� �

:

In this case, Eq. (38) will be transformed into the following

equation:

sa�1ðT � sÞ1�a o
aR

osa
¼ mðT � sÞ1�a o

2R

ou2
;

or

oaR

osa
¼ ms1�a o

2R

ou2
; ð39Þ

with initial condition Rðu; 0Þ ¼ Maxfeu � E; 0g.

Now, by taking Laplace transform on both sides of

Eq. (39) with respect to time variable s and considering

Eq. (15), we get

LfRðu; sÞg ¼ 1

s
Rðu; 0Þ þ 1

sa
L ms1�a o

2R

ou2

� 	

: ð40Þ

Taking inverse Laplace transform from both sides of

Eq. (40) and using convolution theorem, we get
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Rðu; sÞ ¼ Rðu; 0Þ þ m

CðaÞ

Z s

0

ðs� nÞa�1n1�a o
2Rðu; nÞ
ou2

dn:

ð41Þ

Now, we can construct an iteration formula as follows:

Rnðu; sÞ ¼ R0ðu; sÞ

þ m

CðaÞ

Z s

0

ðs� nÞa�1n1�a o
2Rn�1ðu; nÞ

ou2
dn;

n ¼ 1; 2; :::;

ð42Þ

where R0ðu; sÞ ¼ Maxfeu � E; 0g. Thus, from Eq. (42),

approximations are obtained as follows:

Rnðu; sÞ ¼ Maxfeu � E; 0g

þ eu
Xn

j¼1

Cð2 � aÞ:::Cðjþ 1 � aÞ
Cð2Þ:::Cðjþ 1Þ ðmsÞ j;

n ¼ 1; 2; . . .:

ð43Þ

Note that in the above approximations, we have used the

following integral formula:

1

CðaÞ

Z x

a

ðx� tÞa�1ðt � aÞbdt ¼ Cðbþ 1Þ
Cðaþ bþ 1Þ ðx� aÞaþb;

b[ � 1:

Now, according to Eq. (43) and the following theorem, we

will find the solution of Eq. (39).

Theorem 2 Suppose X ¼ ðu; sÞ : juj � umax; 0� s� Tf g
be the solution domain of Eq. (39), where umax is a realistic

and practical approximation to infinity and also mT\1.

Then, there exists R�ðu; sÞ satisfies in Eq. (39).

Proof First, we find an upper bound for Rnðu; sÞ�j
Rn�1ðu; sÞj; n ¼ 1; 2; . . . on X. Here, we can rewrite

Eq. (43) for n ¼ 1; 2; . . . as follows:

Rnðu; sÞ ¼ Rn�1ðu; sÞ þ eu
Cð2 � aÞ:::Cðnþ 1 � aÞ

Cð2Þ � � �Cðnþ 1Þ ðmsÞn:

ð44Þ

Therefore

Rnðu; sÞ � Rn�1ðu; sÞj j � eumaxðmTÞn: ð45Þ

Since X is compact and sequence fRnðu; sÞg1n¼0 is contin-

uous on X, fRnðu; sÞg1n¼0 � CðXÞ, where CðXÞ denotes the

sets of continuous and bounded functions on X. Noting that

with supremum norm, CðXÞ is a complete metric space so,

every Cauchy sequence in CðXÞ is convergent. Therefore,

it is sufficient to show that sequence fRnðu; sÞg1j¼0 is a

Cauchy sequence. To see this, suppose n	m. Then,

according to Eq. (45) and assumption h ¼ mT\1, we get

Rnðu; sÞ � Rmðu; sÞj j � eumax

Xn�1

j¼m

hjþ1

� eumax

X1

j¼m

hjþ1 ¼ eumaxhmþ1

1 � h
:

ð46Þ

Since limm�!1 ¼ eumaxhmþ1=ð1 � hÞ ¼ 0, for every e[ 0,

there is an integer N, such that m	N implies

eumaxhmþ1=ð1 � hÞ\e. Therefore, if n	m	N, then

Rnðu; sÞ � Rmðu; sÞj j\e and kRnðu; sÞ � Rmðu; sÞk� e,
where k:k is supremum norm. That is, sequence

fRnðu; sÞg1n¼0 is a Cauchy sequence in CðXÞ, and thus, it is

convergent. In other words, there is R�ðu; sÞ, such that

limn�!1 Rnðu; sÞ ¼ R�ðu; sÞ. Note that, according to

Eq. (43), we can write R�ðu; sÞ as follows:

R�ðu; sÞ ¼ Maxfeu � E; 0g

þ eu
X1

j¼1

Cð2 � aÞ:::Cðjþ 1 � aÞ
Cð2Þ:::Cðjþ 1Þ ðmsÞ j: ð47Þ

Now, we also verify that Eq. (47) is an exact solution of

fractional PDE (39). First note that according to Eqs. (20)

and (21), we have

w½R� ¼ 1

CðaÞ

Z s

0

ðs� nÞa�1n1�a m
o2R

ou2

� �

dn; ð48Þ

v0 ¼ R0; vn ¼ w
Pn�1

j¼0 vj

h i
�

Pn�1
j¼1 vj


 �
: ð49Þ

Then, as we discussed in Section (4), Eq. (47) is equal to
P1

j¼0 vj. Therefore, to show our verification, it is sufficient

to show that
P1

j¼0 vj satisfies in Eq. (39).

To start with, according to the definition of w½R� (2007),

we obtain the following equality:

oaw½R�
osa

¼ ms1�a o
2R

ou2
: ð50Þ

Since
P1

j¼0 vj is convergent, we have

lim
j!1

vj ¼ 0;
X1

j¼0

ðvjþ1 � vjÞ ¼ lim
j!1

ðvjþ1 � v0Þ ¼ �v0:

ð51Þ

Thus, Eq. (49) yields

v1 ¼ w½v0�; vjþ1 ¼ w
Xj

k¼0

vk

" #

� w
Xj�1

k¼0

vk

" #

; j ¼ 1; 2; ::::

ð52Þ

Now, according to Eqs. (50) and (52), we get
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oaðv1 � v0Þ
osa

¼ oaðw½v0� � v0Þ
osa

¼ ms1�a o
2v0

ox2
� oav0

osa
;

ð53Þ

oaðvjþ1 � vjÞ
osa

¼ oa

osa
w
Xj

k¼0

vk

" #

� oa

osa
w
Xj�1

k¼0

vk

" #

� oavj

osa

¼ ms1�a o2

ox2

Xj

k¼0

vk � ms1�a o2

ox2

Xj�1

k¼0

vk �
oavj

osa

¼ ms1�a o
2vj

ox2
� oavj

osa
; j ¼ 1; 2; :::;

ð54Þ

From Eqs. (53) and (54), we get the following result:

oa

osa
X1

j¼0

ðvjþ1 � vjÞ ¼ ms1�a o2

ox2

X1

j¼0

vj �
oa

osa
X1

j¼0

vj: ð55Þ

On the other hand, Eq. (51) implies that

oa

osa
X1

j¼0

ðvjþ1 � vjÞ ¼
oav0

osa
¼ 0: ð56Þ

Therefore

oa

osa
X1

j¼0

vj ¼ ms1�a o2

ox2

X1

j¼0

vj; ð57Þ

i.e. Eq. (47) is an exact solution of fractional PDE (39).

Remark By transforming back s ¼ T � t,

u ¼ xþ ðr � r2

2C2ð1 þ aÞ
ÞðT � tÞ, x ¼ logS and VðS; tÞ ¼

e�rðT�tÞUðS; tÞ into Eq. (47), we will get the solution in

terms of original variables (S, t) as

VðS; tÞ ¼ MaxfSe�r2ðT�tÞ=2C2ð1þaÞ � Ee�rðT�tÞ; 0g

þ Se�r2ðT�tÞ=2C2ð1þaÞ
X1

j¼1

Cð2 � aÞ:::Cðjþ 1 � aÞ
Cð2Þ:::Cðjþ 1Þ


mðT � tÞ j;
ð58Þ

where m ¼ r2=2C2ð1 þ aÞCð2 � aÞ.

5 Conclusion

In this article, first, we have derived a new time-fractional-

order Black–Scholes equation based on a fractional

stochastic differential equation which describes the trend

memory effect. Then, we have found an exact solution of

this equation using RVIM. Furthermore, by taking a ¼ 1 in

Eq. (58), we could find a solution of classical B–S equation

in the form of a convergent series with easily

computable components.
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