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Abstract In this paper, we are concerned with the

numerical solutions of the inverse heat conduction prob-

lems (IHCP) in one and two dimensions with free boundary

conditions. For the one-dimensional problem, we first

apply the Landau’s transformation to replace the physical

domain with a rectangular one. Reciprocally, some non-

linear terms appear thus an iterative scheme based on the

application of the satisfier function is proposed for solving

the problem. Second, we treat with the nonlinear two-di-

mensional problem by providing a collocation technique

which takes advantage of the satisfier functions. Through-

out this work, the presented schemes make the reader free

of solving any nonlinear system of algebraic equations.

Moreover, an admissible regularization strategy, namely,

the Landweber’s iterations method is used to overcome the

numerical instability and achieve the acceptable approxi-

mations. Illustrative examples are included to show the

efficiency of the presented algorithms.
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1 Introduction

Heat conduction problems are of vital importance in many

areas of applied sciences (Beck et al. 1985; Cannon 1984;

Kirsch 2011), e.g., heat exchangers, mathematical finance,

and various chemical and biological systems (Cannon

1984; Johansson et al. 2011c, d). The multidisciplinary

features of these problems have drawn the attention of

many researchers and the practical importance is to obtain

the applicable methods for solving them from both ana-

lytical and numerical aspects (Dehghan 2001a, b, 2005;

Ebel and Davitashvili 2007; Farcas and Lesnic 2006; Fat-

ullayev 2002, 2004; Fatullayev and Cula 2009; Johansson

and Lesnic 2007, 2008; Lakestani and Dehghan 2010;

Rashedi et al. 2014; Shamsi and Dehghan 2012, 2007).

Although the task of developing the solutions for these

problems has been well studied, but for multi-dimensional

cases and especially problems with irregular domains, the

literature has been less examined (Johansson et al. 2014;

Rashedi et al. 2014). The organization of these problems is

roughly twofold. Briefly stated,

• For the direct problem, the heat flux or temperature

histories are known Beck et al. (1985) as functions of

time and finding the temperature distribution is

requested.

• For the inverse problem, insufficient detail is given in

the description of a surface condition, particularly, the

surface heat flux and temperature histories and then

approximating them from transient temperature mea-

surements at some interior locations are aimed.
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As a general description of various aspects of the IHCP, it

is pointed out that many experimental impediments may

appear in measuring or providing the boundary conditions.

For example, some data are expensive to carry out or rel-

atively inaccurate measurements are extracted by placing

the sensors in the remote locations. Thus, it makes more

sense to use the data coming from interior sensors which

are much more reliable and cost effective. An important

conclusion that has been reported is that the solution might

depend discontinuously on the data. There is increased

difficulty in approximating the heat flux Beck et al. (1985).

As is said in Beck et al. (1985), Guo and Murio (1991),

and Qian and Feng (2013), real applications of IHCP include

retrieving the thermal constants in some freezing and

quenching processes, estimation of surface heat transfer

measurements taken within the skin of a re-entry space

vehicle, the motion of a projectile over a gun barrel surface,

determination of aerodynamic heating in wind tunnels and

rocket nozzles, and infrared computerized tomography.

A number of studies dealing with analytical (Slota

2006, 2007, 2011) and numerical aspects have appeared in

the literature including the Lie-group shooting method (Liu

2011), mesh-free methods based on the radial basis func-

tions (Rashedi et al. 2014; Vrankar et al.

2006, 2007, 2010), and method of fundamental solutions

(Johansson et al. 2011a, b, c, 2013).

The application of the satisfier functions has been veri-

fied in solving the linear and nonlinear partial differential

equations (Dehghan et al. 2013; Lesnic et al. 2013; Rashedi

et al. 2013, 2014). The main task of these functions is ful-

filling all the initial and boundary conditions. Taking this

fact into account, it is known that the smaller system of

algebraic equations can be obtained. Nevertheless, for

problems with complex domains, and on top of that, for

improperly posed problems which involve noisy input data,

care enough must be taken in introducing the appropriate

satisfier functions. Since the satisfier functions take part

directly in the numerical computations. This paper presents

a framework which helps to overcome these obstacles.

The layout of this paper is as follows.

We give the presentation of the inverse problems in

Sect. 2. In Sect. 3, we describe the numerical techniques to

solve the problems. Section 4 gives the numerical examples

to observe the performance of the suggested procedures. At

last, we give a concluding remark in Sect. 5.

2 Problem statements

Case 1: The one-dimensional inverse heat conduction

problem

Inverse problem 1 (IP1): In a 1D phase change problem

Liu and Guerrier (1997), let us consider the moving

boundary domain (Fig. 1a) corresponding to the solid phase

X1 ¼ fðy; tÞ 2 R2j0\y\nðtÞ; 0\t\tf g with the solid/

liquid interface position nðtÞ and the heat conduction

equation:

oAðy; tÞ
ot

¼ o2Aðy; tÞ
oy2

; in X1; ð1Þ

with the boundary conditions:

oAðy; tÞ
oy

jy¼0 ¼ zðtÞ; AðnðtÞ; tÞ ¼ 0; in ð0; tf Þ;

ð2Þ

and the an initial condition:

Aðy; 0Þ ¼ f ðyÞ; 0\y\nð0Þ: ð3Þ

The inverse problem studied here deals with retrieving nðtÞ
from the Dirichlet boundary data:

Fig. 1 a Physical domain of

IP1. b Physical domain of IP2

828 Iran J Sci Technol Trans Sci (2018) 42:827–840

123



Að0; tÞ ¼ gðtÞ þ aðtÞ: ð4Þ

Since the observation obtained from a real experiment is

always noisy, a particular assumption aðtÞ as contamina-

tions with the internal data is made. Moreover, we suppose

that nð0Þ ¼ n[ 0 is either known or available as a priori

information. This problem in the physical applications is

referred as the inverse boundary Stefan problem (Jo-

hansson et al. 2011a, b); however, the initial temperature

(3) may also be unknown in some cases (Wang et al. 2010;

Wei and Yamamoto 2009).

Inverse problem 2 (IP2): Consider the following math-

ematical formulation satisfying the heat equation (Liu and

Wei 2011):

oAðx; y; tÞ
ot

¼ o2Aðx; y; tÞ
ox2

þ o2Aðx; y; tÞ
oy2

; in X3; ð5Þ

oAðx; y; tÞ
ox

jx¼0 ¼ g1ðy; tÞ; 0� y� pð0; tÞ; 0� t� 1; ð6Þ

oAðx; y; tÞ
ox

jx¼1 ¼ g2ðy; tÞ; 0� y� pð1; tÞ; 0� t� 1; ð7Þ

Aðx; 0; tÞ ¼ f ðx; tÞ; 0� x� 1; 0� t� 1; ð8Þ

oAðx; y; tÞ
oy

jy¼0 ¼ qðx; tÞ; 0� x� 1; 0� t� 1; ð9Þ

which is set up on the physical domain (Fig. 2a)

X3 ¼ fðx; y; tÞ 2 R3j0\x\1; 0\y\pðx; tÞ; 0\t\1g;

and the goal is mainly devoted to approximate the free

boundary p(x, t) from the measured boundary data:

Aðx; pðx; tÞ; tÞ ¼ A0 þ aðx; tÞ; ð10Þ

where aðx; tÞ denotes an error function that naturally exists

with the measurement. Both problems IP1 and IP2 are ill-

posed in the sense that the solution (if it exists) does not

depend continuously on the data (Liu and Wei 2011; Liu

2011; Liu and Guerrier 1997; Wang et al. 2012). Here,

assuming the sufficient constrains for the existence and

uniqueness of the solution for each problem, our main

struggle is to present an appropriate numerical scheme for

approximating their solution. The sufficient condition for

obtaining the unique solution for IP1 is investigated in (Liu

and Guerrier 1997).

3 The Numerical Approximations

3.1 The Solution of IP1

First, we assume that the initial and boundary conditions

are sufficiently smooth to guarantee a unique solution

(Johansson et al. 2011a; Liu 2011; Liu and Guerrier 1997).

Besides, by applying the Landau’s coordinate

transformation

x ¼ y

nðtÞ ; Wðx; tÞ ¼ Aðy; tÞ; ð11Þ

Liu (2011); Liu and Guerrier (1997), the moving boundary

X1 and Eqs. (1)–(4) are transformed into the rectangular

domain X
0

1 ¼ fðx; tÞ 2 R2j0\x\1; 0\t\tf g.
Thus, we have

0.2 0.4 0.6 0.8 1.0
t

1.0

1.5

2.0

2.5

tξFig. 2 Graph of the

approximate solutions when

(triple open square

k ¼ 0), (triple filled square

k ¼ 1), (triple star

k=2), (þþþ : k ¼ 6), (triple

filled circle k ¼ 7), (triple filled

inverted triangle k ¼ 9) for nðtÞ
with the exact solution, i.e.,

triple open triangle, and the

noise level, i.e., k ¼ 1%
discussed in Example 4.1
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o2Wðx; tÞ
ox2

¼ nðtÞ2 oWðx; tÞ
ot

� xnðtÞ dnðtÞ
dt

oWðx; tÞ
ox

; ð12Þ

oWðx; tÞ
ox

jx¼0 ¼ nðtÞzðtÞ; 0\t\tf ; ð13Þ

Wð1; tÞ ¼ 0; 0\t\tf ; ð14Þ

Wðx; 0Þ ¼ f ðnxÞ; 0\x\1; ð15Þ

Wð0; tÞ ¼ aðtÞ þ gðtÞ; 0\t\tf : ð16Þ

Noting (13)–(16), the following compatibility conditions

hold:

f ðnÞ ¼ 0; f 0ð0Þ ¼ zð0Þ; f ð0Þ ¼ að0Þ þ gð0Þ:
ð17Þ

Here, both functions ðWðx; tÞ; nðtÞÞ are unknown and the

advection–diffusion equation (12) contains the product of

terms n2ðtÞ, nðtÞ dnðtÞ
dt

, and W(x, t). Hence, we have to deal

with a nonlinear problem. We try to iteratively calculate

nðtÞ and W(x, t) upon using the satisfier function and

solving a linear system of algebraic equations for each

iteration. At the first step, we set

nð0ÞðtÞ ¼ n; Bð0Þðx; tÞ ¼ ð1� xÞðgðtÞ þ aðtÞÞ;

W ð0Þðx; tÞ ¼ f ðnxÞ þ Bð0Þðx; tÞ � Bð0Þðx; 0Þ: ð18Þ

Now, by integrating (12) over [0, 1] and [0, t], respec-

tively, utilizing (14)–(16) and after a simple calculation, we

getZ
½0;t�

oWðx; sÞ
ox

jx¼1ds ¼
Z
½0;t�

zðsÞnðsÞds� n2

Z
½0;1�

f ðnxÞdxþ n2ðtÞ
Z
½0;1�

Wðx; tÞdx

�
Z
½0;t�

Z
½0;1�

nðsÞ dnðsÞ
ds

Wðx; sÞdxds; 0\t\tf : ð19Þ

Defining

Wxð1; tÞ ¼
XN
i¼1

citwiðtÞ þ nf 0ðnÞ; ð20Þ

as an approximation for
oWðx;sÞ

ox
jx¼1 and substituting both

(20) and (18) into (19), we get

Z
½0;t�

W
ð1Þ
x ð1; sÞ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{¼
PN

i¼1
c
ð1Þ
i
swiðsÞþnf 0ðnÞ

ds ¼
Z
½0;t�

zðsÞnð0ÞðsÞds� n2
Z
½0;1�

f ðnxÞdx

þ ðnð0ÞðtÞÞ2
Z
½0;1�

W ð0Þðx; tÞdx�
Z
½0;t�

Z
½0;1�

nð0ÞðsÞ dn
ð0ÞðsÞ
ds

W ð0Þðx; sÞdxds; 0\t\tf : ð21Þ

Solving the Volterra integral Eq. (21) of the first kind by

taking N collocation points over the interval ð0; tf Þ, we find
the unknown coefficients fcð1Þi gi¼1;N . To obtain the

stable solution, we use the Landweber’s iterations as an

admissible regularization strategy (Kirsch 2011). For the

next iterations, i.e., k� 1, we introduce

BðkÞðx; tÞ ¼ xðx� 1ÞW ðkÞ
x ð1; tÞ þ ðx� 1Þ2ðgðtÞ þ aðtÞÞ;

W ðkÞðx; tÞ ¼ f ðnxÞ þ BðkÞðx; tÞ � BðkÞðx; 0Þ;

W
ðkÞ
x ð0; tÞ ¼ zðtÞnðkÞðtÞ; nðkÞðtÞ ’

XN
i¼1

d
ðkÞ
i twiðtÞ þ n:

ð22Þ

Again, by taking N collocation points over the interval

ð0; tf Þ and employing the Landweber’s iterations, we find

nðkÞðtÞ from (22). By inserting W ðkÞðx; tÞ and nðkÞðtÞ in (19)

and resolving the following Volterra integral equation for

the elements c
ðkþ1Þ
i , we find W

ðkþ1Þ
x ð1; tÞ.

Z
½0;t�

W
ðkþ1Þ
x ð1; sÞ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{¼
PN

i¼1
c
ðkþ1Þ
i

swiðsÞþnf 0ðnÞ

ds ¼
Z
½0;t�

zðsÞnðkÞðsÞds� n2
Z
½0;1�

f ðnxÞdx

þ ðnðkÞðtÞÞ2
Z
½0;1�

W ðkÞðx; tÞdx

�
Z
½0;t�

Z
½0;1�

nðkÞðsÞ dn
ðkÞðsÞ
ds

W ðkÞðx; sÞdxds; 0\t\tf :

ð23Þ

Similarly, using

W
ðkþ1Þ
x ð0; tÞ ¼ zðtÞnðkþ1ÞðtÞ; nðkþ1ÞðtÞ ’

XN
i¼1

d
ðkþ1Þ
i twiðtÞ þ n;

ð24Þ

we can find nðkþ1ÞðtÞ. The presented scheme will continue

until for some values of r� 1 and ef , we have

knðrÞðtÞ � nðr�1ÞðtÞk1 � ef þ kaðtÞk1: ð25Þ

Assuming the sufficient conditions for the existence and

uniqueness of the solution for IP1 and defining

LW ðiÞ ¼
Z
½0;t�

zðsÞnðiÞds� n2
Z
½0;1�

f ðnxÞdxþ ðnðiÞðtÞÞ2

Z
½0;1�

W ðiÞdx�
Z
½0;t�

Z
½0;1�

nðiÞ
dnðiÞ

ds
W ðiÞdxds;

ð26Þ

the following theorem guarantees the convergence of the

solution presented by (18)–(24).
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Theorem 3.1 Define Lk ¼ lim supi�!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k ok

otk
LW ðiÞki

q
;

k ¼ 1; 2 and suppose that both following conditions:

(i) maxfL1; L2g\1,

(ii) zðtÞ 2 M ¼ fsðtÞ : C1½0; tf � �! R; k 1
sðtÞ k1\1; k

d 1
sðtÞ
dt
k1\1g,

hold, then sequences fwðnÞðx; tÞgn; fnðnÞðtÞgn;
dnðnÞðtÞ

dt
con-

verge to the solution of the problem in the complete Hilbert

spaces L2ð½0; 1� � ½0; tf �Þ; L2ð½0; 1�Þ.

Proof Suppose that the arbitrary �[ 0 is given, now for

m[ n[N�

kW ðmÞðx; tÞ �W ðnÞðx; tÞk ¼ kBðmÞðx; tÞ � BðnÞðx; tÞ
þ BðnÞðx; 0Þ � BðmÞðx; 0Þk

� kBðmÞðx; tÞ � BðnÞðx; tÞk þ kBðnÞðx; 0Þ � BðmÞðx; 0Þk�U�

¼ kW ðmÞ
x ð1; tÞ �W ðnÞ

x ð1; tÞk
þ kW ðmÞ

x ð1; 0Þ �W ðnÞ
x ð1; 0Þk:

On the other hand, if (i) holds, then there exists

N� 2 N; d\1; s:t 8n[N�k o

ot
LW ðnÞk\dn:

Thus, setting M� ¼ kxðx� 1Þk

U� � 2M��dðn�1Þ
1 þ dðm�1Þ

2

�
� 4M� supfd1; d2ginffm�1;n�1g

� 4M� supfd1; d2gN
��1 ¼ 4M�

inff 1
d1
; 1
d2
gN��1

;

now it is sufficient to take N� � ½ log
�
4M�
�

�
log
�
inff 1

d1
; 1d2

g
�� þ 2 to find

kW ðmÞðx; tÞ �W ðnÞðx; tÞk\�: ð27Þ

This implies that fW ðnÞðx; tÞgn is uniformly Cauchy. Sim-

ilarly, using (i) and (22), we can see that fW ðnÞ
x ð0; tÞgn

defined by

W ðkÞ
x ð0; tÞ ¼ W ðkÞ

x ð1; 0Þ �W ðkÞ
x ð1; tÞ þ nf 0ð0Þ

þ 2
�
gð0Þ þ að0Þ � gðtÞ � aðtÞ

�
;

is uniformly Cauchy. Thus, for the given �[ 0

9N1 2Ns:t8m[n[ maxfN1;N
�g;kW ðmÞ

x ð0; tÞ �W ðnÞ
x ð0; tÞk\�;

ultimately, using (ii), we have

knðmÞðtÞ � nðnÞðtÞk ¼ W
ðmÞ
x ð0; tÞ �W

ðnÞ
x ð0; tÞ

zðtÞ

�����
�����

\kW ðmÞ
x ð0; tÞ �W ðnÞ

x ð0; tÞk\�:

Paying attention to the definition of fnðkÞðtÞgk and using

L2\1, it is easy to see that the uniform Cauchy property of

it concludes that fdn
ðkÞðtÞ
dt

gk is uniformly Cauchy and finally

since every uniformly Cauchy sequences converges in the

complete Hilbert space L2, so are the three sequences

fnkðtÞ; dn
kðtÞ
dt

;wðkÞðx; tÞgk in L2ð½0; 1�Þ; L2ð½0; 1� � ½0; tf �Þ. In
addition, since the operator LW ðiÞ is continuous, then it

tends to LW, as the solution of the problem. h

3.2 The Solution of IP2

We calculate both unknown functions
�
Aðx; y; tÞ; pðx; tÞ

�
from the given boundary conditions (6)–(10). The mea-

surement (10) produces the nonlinear property of the

problem. On top of that the overspecification (10) contains

some kind of errors (e.g., aðx; tÞ) that if it contributes

directly to the solution scheme including the differential

operators, a strong propagation of errors can be expected,

and ultimately, the produced solution is unacceptable.

Taking these considerations into account, we introduce a

procedure to pass these difficulties and conclude the

effective solution:

(i) If the known functions g1ðy; tÞ; g2ðy; tÞ are at most of

degree one with respect to the variable y:

Take the satisfier function for (6)–(9) as

B1ðx; y; tÞ ¼ f ðx; tÞ þ yqðx; tÞ; SFðx; y; tÞ
¼ xðx� 1Þ2g1ðy; tÞ þ x2ðx� 1Þg2ðy; tÞ
þ B1ðx; y; tÞ �

�
xðx� 1Þ2B1ð0; y; tÞ

þ x2ðx� 1ÞB1ð1; y; tÞ
�
;

ð28Þ

and the approximations for p(x, t) and A(x, y, t) as

pðx; tÞ :¼
XN1;N2

i1;i2¼1

ci1;i2wi1;i2
ðx; tÞ;

Aðx; y; tÞ :¼
XN1;N2;N3

i1;i2;i3

x2ðx� 1Þ2y2
�
y� pðx; tÞ

�

ci1;i2;i3wi1;i2;i3
ðx; y; tÞ þ SFðx; y; tÞ;

ð29Þ

respectively. By applying (29) in (10), we find an

approximation for p(x, t) by solving a linear system of

equations with respect to the elements ci1;i2 .

(ii) For the general form of g1ðy; tÞ and g2ðy; tÞ, we use

the piecewise linear basis functions:

Y�
i ðsÞ ¼

s;
i� 1

Q
\s\

i

Q
; i ¼ 1;Q;

0; Otherwise

8<
:

and suppose the approximations for g1ðy; tÞ; g2ðy; tÞ as
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g1ðy; tÞ ’ GðtÞ
XQ
i¼1

gi1Y
�
i ðyÞ þ bi1

 !
; g2ðy; tÞ

’ GðtÞ
XQ
i¼1

gi2Y
�
i ðyÞ þ bi2

 !
:

ð30Þ

Now, by applying the approximations (30) in Eqs. (28),

(29), we find the linear system of equations as

XN1;N2

i1;i2¼1

ci1;i2wi1;i2
ðx; tÞHiðx; tÞ ¼ Riðx; tÞ: ð31Þ

The unknown parameters ci1;i2 ; ij2f1;2g ¼ 1;Nj can be found

by using an interpolation technique on ðx; tÞ 2 ð0; 1Þ �
ð0; 1Þ for Riðx;tÞ

Hiðx;tÞ ; i ¼ 1;Q. The investigated functions given

by Eq. (31) are

Hiðx; tÞ ¼ xðx� 1Þ2
XQ
i¼1

gi1GðtÞ� qð0; tÞ
( )

þ qðx; tÞþ x2ðx� 1Þ
XQ
i¼1

gi2GðtÞ� qð1; tÞ
( )

; i¼ 1;Q;

Riðx; tÞ ¼ aðx; tÞþA0þ xðx� 1Þ2 f ð0; tÞ�GðtÞ
XQ
i¼1

bi1

( )
;

þ x2ðx� 1Þ f ð1; tÞ�GðtÞ
XQ
i¼1

bi2

( )
� f ðx; tÞ:

After employing the Landweber’s iterations to find the

stable solution for p(x, t) and inserting this approximation

in (29), we apply the Galerkin equations Rashedi et al.

(2013); Yousefi et al. (2013):

Z
ð�1;1Þ

�
Residualðx; y; tÞ

�
dðx� xiÞdx ¼ 0;

xi 2 X3; i ¼ 1;N1N2N3; ð32Þ

where x ¼ ðx; y; tÞ and

residualðx; y; tÞ :¼ A0 þ aðx; tÞ � f ðx; tÞ � pðx; tÞqðx; tÞ

�
Z
½0;pðx;tÞ�

Z
½0;y�

� oAðx; s; tÞ
ot

� o2Aðx; s; tÞ
ox2

�
dsdy:

ð33Þ

In a similar way, to derive the stable solution for A(x, y, t),

we use the Landweber’s iterations to solve the final linear

system of equations resulted from (32). Considering the

linear system of equations as Kx ¼ yd, the regularized

solution xm;d is computed by the iterations:

x0;d ¼ 0; xm;d ¼
�
I � aKtK

�
xm�1;d þ aKtyd; ð34Þ

where Kt is the transpose of the matrix K, I denotes the

identity matrix, yd is the right hand side vector of the

equations that supposed to contain errors basically gener-

ated from input perturbed data and 0\a\ 1

kKk2. Indeed,

these iterations define a regularization strategy in which for

m ¼ 1; 2; . . . subject to mðdÞ �! 1ðd �! 0Þ with

d2mðdÞ �! 0ðd �! 0Þ is admissible. Equivalently, the

linear and bounded operator:

Rm ¼ a
Xm�1

r¼0

ðI � aKtKÞrKt; m ¼ 1; 2; . . .

as the approximation of K�1 is used to find

xm;d ¼ Rmy
d; ð35Þ

where kRmk�
ffiffiffiffiffiffi
am

p
. For more details, see Kaltenbacher

et al. (2008), Kirsch (2011), Landweber (1951), and Wang

and Yagola (2010).

Remark 3.2 It should be clarified that the notations

wiðtÞ;wi1;i2
ðx; tÞ ¼ wi1

ðxÞwi2
ðtÞ;wi1;i2;i3

ðx; y; tÞ ¼ wi1
ðxÞwi2

ðyÞwi3
ðtÞ

used in this section imply the general form of the basis

functions. Here, we employ the Bernstein basis functions

which can be seen all over the approximation theory (De-

hghan et al. 2013; Idrees Bhatti and Bracken 2007; Rivlin

1969). Other basis functions, such as the orthogonal ones,

e.g., Legendre or Chebyshev polynomials can be applied as

an alternative by the interested reader. In addition, the func-

tion G(t) which appeared in Eq. (30) can be considered as the

combination of the basis functions, i.e., GðtÞ ¼
PW

s¼0 zswsðtÞ.

4 Numerical Experiments

To test the effectiveness of the proposed techniques, we

solve four benchmark test examples. They are chosen for

reporting the results of implementing the proposed meth-

ods for IP1–IP2, respectively. For all computational

experiments, the exact solution is available. We investi-

gated the stability of the numerical solution by performing

the mentioned methods in the presence of various amount

of noise levels k% ¼ k� 10�3. The numerical implemen-

tation is carried out in MATHEMATICA 7, with hardware

configuration: desktop 32-bit Intel Core 2 Duo CPU, 4 GB

of RAM, 32-bit Operating System (Windows 7).

4.1 Example 1

Consider IP1 given by Eqs. (1)–(4) with the following

properties Johansson et al. (2011b):
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zðtÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt þ t0Þ

p
erf ða�Þ

; f ðyÞ ¼ 1�
erf
�

y
2
ffiffiffi
t0

p
�

erf ða�Þ ;

gðtÞ ¼ 1; aðtÞ ¼ k sinð t
k2
Þ; k 2 f1; 3g%;

where

erf ðyÞ ¼ 2ffiffiffi
p

p
Z
½0;y�

expð�s2Þds; a� ¼ 0:620063;

t0 ¼ 0:162558; tf ¼ 1:

We aim to approximate the solutions for both continuous

functions:

Table 1 Maximum absolute

errors between exact solution

and nðkÞðtÞ discussed in

Example 4.1 for exact data

Iterations k ¼ 0 k ¼ 3 k ¼ 5 k ¼ 7 k ¼ 8 k ¼ 9

Max0\t\1jnðtÞ � nðkÞðtÞj 0.8 0.14 0.06 0.01 0.0007 0.0002

Table 2 Approximate solutions

of Wð i
10
; i
10
Þ s.t i ¼ 0; 10,

discussed in Example 4.1 for

exact data

Function W(r, r) W ðkÞðr; rÞ W ðkÞðr; rÞ WðkÞðr; rÞ W ðkÞðr; rÞ W ðkÞðr; rÞ W ðkÞðr; rÞ
r Exact k ¼ 1 k ¼ 3 k ¼ 5 k ¼ 7 k ¼ 8 k ¼ 9

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.1 0.8871 0.8923 0.8860 0.8871 0.8872 0.8872 0.8872

0.2 0.7752 0.7868 0.7712 0.7753 0.7754 0.7753 0.7752

0.3 0.6650 0.6746 0.6570 0.6655 0.6654 0.6651 0.6650

0.4 0.5573 0.5520 0.5451 0.5587 0.5579 0.5574 0.5572

0.5 0.4528 0.4200 0.4370 0.4555 0.4537 0.4530 0.4527

0.6 0.3523 0.2845 0.3341 0.3564 0.3534 0.3525 0.3522

0.7 0.2563 0.1566 0.2378 0.2614 0.2575 0.2564 0.2561

0.8 0.1653 0.0519 0.1492 0.1706 0.1664 0.1654 0.1652

0.9 0.0798 -0.0088 0.0693 0.0837 0.0805 0.0798 0.0797

1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2 0.4 0.6 0.8 1.0
t

1.0

1.5

2.0

2.5

tξFig. 3 Graph of the

approximate solutions when

(triple open square

k ¼ 0), (triple plus

k ¼ 2), (triple star

k ¼ 5), (triple filled circle

k ¼ 7), (triple filled inverted

square k ¼ 8) for nðtÞ with the

exact solution, i.e., triple open

triangle, and the noise level,

i.e., k ¼ 3% discussed in

Example 4.1
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�
nðtÞ;Aðy; tÞ

�
¼
�
2a�

ffiffiffiffiffiffiffiffiffiffiffi
t þ t0

p
; 1�

erf
�

y

2
ffiffiffiffiffiffi
tþt0

p
�

erf ða�Þ
�
;

ðy; tÞ 2
�
0; nðtÞ

�
� ð0; 1Þ:

Utilizing the method presented in Eqs. (11)–(24) and using

the Bernstein basis functions of degree one Rashedi et al.

(2013), we obtain the results which are tabulated in

Tables 1 and 2. The approximations in the presence of the

exact input data, i.e., aðtÞ ¼ 0, are derived using the

Landweber’s iterations with a ¼ 1;m ¼ 104. Following

them, it is seen that the approximations are improved by

increasing the number of iterations k. Moreover, for the

perturbed values of the boundary conditions with

k 2 f1; 3g%, we find the approximations illustrated in

0.2 0.4 0.6 0.8 1.0
t

0.4

0.6

0.8

1.0

tξFig. 4 Graph of the

approximate solutions when

(triple open square

k ¼ 0), (triple filled square

k ¼ 1), (triple star

k ¼ 2), (triple plus

k ¼ 3), (triple filled circle

k ¼ 4), (triple filled inverted

triangle k ¼ 5) for nðtÞ with the

exact solution, i.e., triple open

triangle, and the noise level,

i.e., k ¼ 1% discussed in

Example 4.2

0.2 0.4 0.6 0.8 1.0
t

0.6

0.8

1.0

tξFig. 5 Graph of the

approximate solutions when

(triple open square k=0), (triple

filled square k=1), (triple star

k=2), (triple plus k=3), (triple

filled circle k=4), (triple filled

inverted triangle k=5) for nðtÞ
with the exact solution, i.e.,

triple open triangle, and the

noise level, i.e., k ¼ 5%
discussed in Example 4.2
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0.2 0.4 0.6 0.8 1.0
t

0.4

0.6

0.8

1.0

tξFig. 6 Graph of the

approximate solutions when

(triple open square

k ¼ 0), (triple filled square

k ¼ 1), (triple star

k ¼ 2), (triple plus

k ¼ 3), (triple filled circle

k ¼ 4), (triple filled inverted

triangle k ¼ 5) for nðtÞ with the

exact solution, i.e., triple open

triangle, and the noise level,

i.e., k ¼ 9% discussed in

Example 4.2

0.00 0.02 0.04 0.06 0.08
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Noise

M
ax 1

A
x,
t

A
x,
t

Fig. 7 Graph of the maximum absolute errors between the exact solutions for Aðx; tÞ against the amount of noise levels k 2 f1; 5; 9g% with

k ¼ 5 for Example 4.2

Table 3 Maximum absolute

errors between the exact and

numerical solutions of p(x, t),

discussed in Example 4.3 for

exact data

Ni2f1;2;3g 3 4 5 6 7 8

Max½0;1��½0;1�jpðx; tÞ � pðx; tÞj 0.05 0.016 0.0035 5� 10�4 7� 10�5 6� 10�6
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Figs. 2 and 3. In fact, starting with the initial guess ðhÞ,
one can observe that after a few number of iterations, the

figures of the numerical solution tend to overlap until we

reach the final iteration ðHÞ. They show the fair agreement

between the numerical and the exact solutions in both

views of accuracy and stability. However, it should be

noted that for the large amount of errors with the input data

(i.e., k� 5%), we faced to drawback and could not get

acceptable solutions.

4.2 Example 2

As the secondexample of IP1, the algorithmgivenby (11)-(24)

is tested for approximating the pair Johansson et al. (2011a):

�
nðtÞ;Aðy; tÞ

�
¼
�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2t

p
;� y2

2
� 2y� 1

2
� t
�
;

ðy; tÞ 2
�
0; nðtÞ

�
� ð0; 1Þ;

by taking the boundary conditions

zðtÞ ¼ �2; f ðyÞ ¼ � y2

2
� 2y� 1

2
; gðtÞ ¼ � 1

2
� t; aðtÞ

¼ k sinð t
k2
Þ; k 2 f1; 5; 9g%:

By applying the Bernstein basis functions of degree two

(Rashedi et al. 2013) and solving the final linear system of

equations using the Landweber’s iterations with

a ¼ 1;m ¼ 105, we arrive at the consequences depicted by

Figs. 4, 5, 6, and 7. Similar to the previous example, we

observe that the produced results are fair and accurate. It

can be seen that as the percentage of the imposed errors

decreases gradually, the agreement between exact and

approximate solutions becomes uniformly good. In addi-

tion, the stability of the solutions encounters less difficulty.

The exhibited approximate solutions corresponding to the

noise levels greater than 5% verify this fact.

4.3 Example 3

Take the exact solution for IP2 given by Eqs. (5)–(10) as

Liu and Wei (2011)

Aðx; y; tÞ ¼ expð�4tÞ sinð2x� 1Þ � yþ 1;

pðx; tÞ ¼ expð�4tÞ sinð2x� 1Þ þ 1;

ðx; y; tÞ 2 X3;

along with the following specifications:

g1ðy; tÞ ¼ g2ðy; tÞ ¼ 2 cosð1Þ expð�4tÞ; f ðx; tÞ
¼ 1þ expð�4tÞ sinð2x� 1Þ; qðx; tÞ ¼ �1;A0 ¼ 0:

ð36Þ

By applying the numerical technique presented by (28)–

(33) and using the Bernstein basis functions when

Ni¼1;3 2 f3; 4; 5; 6; 7; 8g, we get the results shown by

Table 3. Of special interest is testifying the numerical

convergence of the solution of this problem and following

the demonstrations, one observes that for the exact input

data (aðx; tÞ ¼ 0), the accuracy of the numerical solution

grows as the number of basis increases gradually. In

0.0
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x
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Fig. 8 a Exact and approximate solutions. b Contour lines corresponding to absolute error of the exact solution and its approximation for

pðx; tÞ; ðx; tÞ 2 ½0; 1� � ½0; 1�. All plots were obtained with a ¼ 1;m ¼ 106; k ¼ 9% for Example 4.3

836 Iran J Sci Technol Trans Sci (2018) 42:827–840

123



addition, for the contaminated input data, we apply the

proposed technique with

Ni¼1;3 ¼ 3; a ¼ 1;m ¼ 106; aðx; tÞ ¼ k sinðxþ t

k2
Þ; k 2 f1; 3; 9g%:

For the sake of brevity, only the results with k ¼ 9% are

shown by Figs. 8a, b and 9a, f. They imply that the stability

is maintained for the solution with respect to the boundary

conditions.

4.4 Example 4

As the last example Liu and Wei (2011), we consider IP2

with the following properties:

0.2 0.4 0.6 0.8 1.0
t

0.4

0.6

0.8

1.0

p 0, t

(a)
0.2 0.4 0.6 0.8 1.0

t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p 0.1, t

(b)

0.2 0.4 0.6 0.8 1.0
t

1

1

p 0.5, t

(c)
0.2 0.4 0.6 0.8 1.0

t

1.05

1.10

1.15

1.20

p 0.6, t

(d)

0.2 0.4 0.6 0.8 1.0
t

1.1

1.2

1.3

1.4

1.5

1.6

1.7

p 0.9, t

(e)
0.2 0.4 0.6 0.8 1.0

t

1.2

1.4

1.6

1.8

p 1, t

(f)

Fig. 9 Graphs of the exact triple open square and approximate triple filled triangle solutions for pð i
10
; tÞ, i 2 f1; 2; 5; 6; 9; 10g. All plots for

k ¼ 9%; a ¼ 1;m ¼ 106 for Example 4.3
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g1ðy; tÞ¼
1

4
exp

t

8
þ y�1

4

� �
; g2ðy; tÞ¼

1

4
exp

t

8
þ y�1

4
þ1

4

� �
;

ð37Þ

f ðx; tÞ ¼ exp
t

8
þ x

4
� 1

4

� �
� 1; qðx; tÞ ¼ 1

4
exp

t

8
þ x

4
� 1

4

� �
;

ð38Þ

Aðx; y; tÞ ¼ �1þ exp
t

8
þ x

4
þ y� 1

4

� �
;

pðx; tÞ ¼ 1� x� t

2
:

ð39Þ

In this example, the known functions g1ðy; tÞ and g2ðy; tÞ
are nonlinear with respect to y. First, by setting Q ¼ 3, we

take the linear approximations for g1ðy; tÞ; g2ðy; tÞ. These
approximations are valid on ðy; tÞ 	 ½0; xf � � ½0; xf � which,
without loss of generality, we assume that a priori infor-

mation about the unknown bounded function p(x, t) is

available subject to

sup
0� x;t� 1

pðx; tÞ ¼ xf :

Hereafter, by applying the procedure given by Eqs. (28)–

(33) and taking into account the perturbed noisy data with

k ¼ 1% and solving the final linear system of equations

using the Landweber’s iterations method with

a ¼ 1;m ¼ 106, we obtain the results shown by Figs. 10a, b

and 11a–f. Considering the ill-posedness of the problem

and the size of the data that should be retrieved, the

approximation is good. In addition, results are stable for the

noise levels k� 1%.

5 Concluding Remarks

The paper addresses two numerical techniques for

boundary identification of the inverse heat conduction

problems in one and two dimensions. Apart from the ill-

posedness of the problems, they include some nonlinear

terms that make it difficult to find the acceptable solu-

tions. For the one-dimensional problem, we first apply the

Landau’s transformation to replace the physical domain

with a rectangular one. Reciprocally, some nonlinear

terms appear thus an iterative scheme based on the

application of the satisfier function is proposed for solving

the problem. Second, we treat with the nonlinear two-

dimensional problem by providing a collocation tech-

nique which takes advantage of the satisfier functions.

Throughout this work, the presented schemes make the

reader free of solving any nonlinear system of algebraic

equations. Moreover, an admissible regularization strat-

egy, namely, the Landweber’s iterations method is used to

overcome the numerical instability and achieve the
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Fig. 10 a Exact and approximate solutions. b Contour lines corresponding to absolute error between the exact and numerical solutions for

pðx; tÞ; ðx; tÞ 2 ½0; 1� � ½0; 1�. All plots were obtained with a ¼ 1;m ¼ 106; k ¼ 1% for Example 4.4
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acceptable approximations. Applicability of the presented

schemes with both views of numerical convergence and

numerical stability while solving several test problems is

verified in the presence of noisy input data.
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