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Abstract The method of multiple scales is one of the

common perturbation techniques for exploring nonlinear

ordinary differential equations. Sitnikov has presented a

mathematics model of a negligible mass body oscillation

perpendicular to a plane in which two heavy bodies with

equal mass orbit on itself Keplerian ellipse. This problem is

well known as the Sitnikov problem. In this investigation,

the method of multiple scales is applied to the Sitnikov

problem and it presented an analytical response that is

consistent with numerical solution. At first step, the cir-

cular form of the Sitnikov equation is approximated by

MMS and then the obtained dynamic model from first step

is employed to investigate the elliptical form of the Sit-

nikov equation. Some initial conditions and eccentricities

of the primary bodies are studied and results are compared

with numerical solution. Results show that estimated ana-

lytical solution can help to discover the Sitnikov equation

behavior.

Keywords Sitnikov equation � Perturbation technique �
The Method of Multiple Scales

Mathematics Subject Classification 47A55 � 47H14 �
74G10 � 74H10 � 70F15

1 Introduction

The Sitnikov problem is a special case of the restricted

three-body problem, which has many applications in

celestial mechanics and dynamical astronomy (Kovacs and

Erdi 2007). The problem has been known for a long time

and renewed the interest in the problem by Sitnikov’s paper

in which the existence of oscillating motion for three-body

problem was proved (Sitnikov 1960). In this particular

case, two bodies with equal mass, as called primaries, orbit

around their common center of mass due to their Newto-

nian gravitational forces, and a third body with negligible

mass oscillates along a line, perpendicular to the orbital

plane of the primaries, as shown in Fig. 1. The motion of

the massive bodies can be either circular or elliptical, and

the problem is to determine the motion of the third body

along the perpendicular line under the Newtonian gravita-

tional forces of the primaries.

The problem can be presented by a nonlinear second-order

ordinary differential equation that is not integrable. Then,

exact solution of the problem is not accessible. Instead several

numerical solutions are employed by Liu and Sun (1990),

Dvorak (1993) and Kovacs and Erdi (2007) to exhibit the

problem. Due to the importance of analytical solution of the

problem, a lot ofmethods have been applied to the problemby

a number of scientists to describe its analytical solution.

Wodnar (1995) constructed an easy method to handle high

precision analytical solution for the circular Sitnikov system.

Hagel (1991) introduced a new analytic approach to the

solution of the Sitnikov problem that is valid for bounded

small amplitude solutions and eccentricities of the primary

bodies. Regular and chaotic solutions of the Sitnikov problem

around resonance orbits are provided by Jalali and Pourtak-

dost (1997). Faruque (2003) presented an approximate ana-

lytical solution of the problem for low primary eccentricities.
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Hagel and Lhotka performed a high-order perturbation

approach to the problem using Floquet theory (Hagel and

Lhotka 2005). This problem is considered by means of the

Fourier expansion by Manshadi et al. (2007). Hagel used an

original method of rewriting the couple system of second-

order differential equation as a function iteration in such away

as to decouple the two equations at any iteration step and

solved the decoupled equation by Poincare’ Lindstedt per-

turbation technique (Hagel 2009). Hagel found an exactly

integrable system that could estimate well the Sitnikov

problem with small amplitudes and small primaries eccen-

tricities (Hagel 2015).

In this paper, along all existing attempts for discovering

inside of the Sitnikov problem, the method of multiple

scales (MMS) that is one of the classical perturbation

techniques for solving nonlinear differential equation is

employed to investigate the problem. At first, the Sitnikov

equation is approximated with Taylor series expansion of

nonlinear terms and then is reformed in such a way that

nonlinear terms be negligible contrast to other terms.

Therefore, the resulting equation is summation of terms

with and without eccentricity parameter. The equation

without eccentricity parameter is known as circular form

whereas the equation with eccentricity parameter is known

as elliptical form. The MMS method is applied to nonlinear

differential equation of circular and elliptical forms at two

steps separately. Finally, summation of results of men-

tioned steps is presented as an analytical result of the Sit-

nikov problem that is compared to results of numerical

solution. Results show that MMS approximation of the

Sitnikov problem is consistent with numerical method

whereas analytic approximation contains amplitude and

frequency of third body oscillation that can help to

understand principles of physics govern to this problem.

For higher accuracy and fidelity of solution, higher-order

perturbation method can investigated in the future work.

2 The Sitnikov Problem

The Sitnikov problem presents one case of the elliptic

restricted problem of three bodies. Two heavy primary

bodies with equal mass (m1 ¼ m2 ¼ m) move on two

elliptical orbits according Kepler’s laws. A third massless

body (P3) moves on an axis perpendicular to the primaries

plane. In this configuration, P3 is only affected by a force

perpendicular to the primaries plane and, therefore, the

motion remains on the central axis denoted by Z in Fig. 1.

Let Z be the coordinate describing the position of the third

body, where Z ¼ 0 corresponds to the center of mass.

Then, the normalized equation of motion of third body can

be presented as follows (Liu and Sun 1990):

d2Z=dt2 ¼ �Z=ðZ2 þ r2ðtÞÞ3=2; ð1Þ

where

rðtÞ ¼ að1� e cos tÞ þ oðe2Þ: ð2Þ

Up to the e order, we have

d2Z=dt2 ¼ �Z=ðZ2 þ a2Þ3=2 � 3a2Ze cos t=ðZ2 þ a2Þ5=2;
ð3Þ

where rðtÞ is distance of primaries to their center of mass

and a is half of normalized elliptic diameter (a ¼ 1=2). The

time is normalized so that the period of the primaries is 2p.
With applying Taylor series expansion on nonlinear terms

of Eq. (3) in the point (t = 0, Z = 0), the Sitnikov equation

can present as follows:

€Z þ 1

a3
Z � 3

2a5
Z3 þ 3

a3
eZ cos t � 15

2a5
eZ3 cos t ¼ 0; ð4Þ

where e (0 B e\ 0.1) is eccentricity value from physics of

the Sitnikov problem that at this paper is introduced as

perturbation parameter. This equation with following initial

conditions is investigated by MMS method:

Zð0Þ ¼ Z0 _Zð0Þ ¼ _Z0 : ð5Þ

3 The Method of Multiple Scales

Multiple-scale analysis is a global perturbation scheme that

is useful in systems characterized by disparate time scales,

such as weak dissipation in an oscillator. These effects

could be insignificant on short-time scales but become

important on long-time scales (Nayfeh and Mook 1995).

The underlying idea of MMS is to consider the response to

be a function of multiple independent variables or scales

instead of a single variable (Nayfeh and Mook 1995). With

the method of multiple scales, changing the original ordi-

nary differential equation into a system of partial

Fig. 1 Schematic of the Sitnikov problem (Kovacs and Erdi 2007)
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differential equations permits enough generality in the

form of the solution to obtain an excellent approximation

(Nayfeh 1993). Suppose the anharmonic oscillator model

as follows:

€xþ
X

n¼1

anx
n ¼ 0; xð0Þ ¼ x0; _xð0Þ ¼ _x0 ; ð6Þ

where an, Taylor series coefficients of nonlinear term of

dynamic model, are constant. Substituting the multiple

scales expansion: T0 ¼ t; T1 ¼j et; T2 ¼ e2t; . . ., and

applying the chain rule for differentiation, yields

d

dt
¼

X1

n¼0

o

oTn

oTn

ot
¼ o

oT0
þ e

o

oT1
þ e2

o

oT2
þ � � �

¼ D0 þ eD1 þ e2D2 þ � � �
ð7Þ

d2

dt2
¼ o2

oT2
0

þ e½ o2

oT1oT0
þ o2

oT0oT1
� þ e2½ o

2

o2T1
þ o2

oT0oT2
þ o2

oT2oT0
�

þ � � � ¼ � � �D2
0 þ 2eD1D0 þ e2ðD2

1 þ 2D2D0Þ þ � � �
ð8Þ

Expanding xðtÞ in an asymptotic series of e,

xðtÞ ¼ x0 þ ex1 þ e2x2 þ � � � ð9Þ

And separating into individual orders in e, yields the

sequence of problem,

oðe0Þ : D2
0x0 þ x2

0x0 ¼ 0; a1 ¼ x2
0

oðe1Þ : D2
0x1 þ x2

0x1 ¼ �2D0D1x0 � a2x
2
0

oðe2Þ : D2
0x2 þ x2

0x2 ¼ �2D0D1x1 � D2
1x

2
0 � 2D0D2x0

� 2a2x0x1 � a3x
3
0

..

. ..
. ..
. ..
.

ð10Þ

The oðe0Þ equation is simple linear harmonic oscillator,

and it is convenient to write the solution in the following

form:

x0 ¼ AðT1; T2Þeix0T0 þ �AðT1; T2Þe�ix0T0 ; ð11Þ

where A is an unknown complex function and �A is the

complex conjugate of A. Here, A is only constant with

respect to the fastest timescale T0 and will in general

depend on all slower timescales Ti; i ¼ 1; 2; . . .. The

explicit time dependence of A on these slower timescales

will appear at progressively higher orders in e.
By substituting x0 in second equation (oðe1Þ) and

removing secular terms, A will be defined based on order of

timescale and these activities can continue to required

order of e. Finally, by applying initial conditions on xðtÞ, A
and xðtÞ will obtain.

4 The Sitnikov Equation Investigation by MMS

Any perturbation theory is applicable if the problem cannot

be solved exactly, but can be formulated by adding a

‘‘small’’ term to the mathematical description of the exactly

solvable problem. So, Eq. (4) is reformed as follows to

decrease effect of nonlinear term compare with linear

terms.

€zþ 1

a3
z� 3

2a5�2k
z3 þ 3

a3
ez cos t � 15

2a5�2k
ez3 cos t ¼ 0;

ð12Þ

where z ¼ a�kZ and k is an integer bigger than two that can

be selected arbitrary.

Above equation which is explained before contains two

parts: one of them is unperturbed (without e) and other is

perturbed (with e). If e ¼ 0, Eq. (12) will represent the

circular Sitnikov problem. Authors assume that the equa-

tion of circular Sitnikov problem is basic of three bodies’

dynamic model where deviation from circular to elliptical

form can present with two last terms of the Eq. (12) that is

cleared with eccentricity parameter e. Base on perturbation

theory, solution of the Eq. (12) can be presented as small

perturbation of circular form solution. Then, at first step

solution of circular form of the Sitnikov problem is

examined by MMS and then is used to find solution of

elliptical form of the Sitnikov problem in next step by

applying MMS to the Eq. (12) directly.

4.1 The Circular Form of the Sitnikov Problem

When e ¼ 0, the Eq. (12) will be simplified to the fol-

lowing form without perturbation term.

€zþ 1

a3
z� 3

2a5�2k
z3 ¼ 0: ð13Þ

This ordinary differential equation is nonlinear and there

is not exact solution; MMS method is employed to solve

this equation. For this purpose, we suppose that nonlinear

term is negligible compared to other terms and can con-

sider it with g parameter as small perturbation parameter

whereas g is equal 1. This parameter is considered to apply

the MMS method to the Eq. (13). We rewrite Eq. (13) as

follows:

€zþ 1

a3
z� 3

2a5�2k
gz3 ¼ 0: ð14Þ

We apply MMS method such as explained before step

by step to find response of this equation. Suppose first-

order estimation of z is enough then consider

zðt; gÞ ¼ z0ðT0; T1; . . .Þ þ gz1ðT0; T1; . . .Þ þ Oðg2Þ: ð15Þ
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And apply chain rule operator on z and substitute in the

Eq. (14),

D2
0 þ 2gD0D1 þ � � �

� �
z0 þ gz1 þ g2z2. . .
� �

þ 1

a3
z0 þ gz1 þ g2z2. . .
� �

� � � �
3

2a5�2k
g z0 þ gz1 þ � � �ð Þ3¼ 0:

ð16Þ

Separate into individual orders in g, yields the sequence
of problem,

oðg0Þ : D2
0z0 þ x2

0z0 ¼ 0 ð17Þ

oðg1Þ : D2
0z1 þ x2

0z1 ¼ �2D0D1z0 þ
3

2a5�2k
z30; ð18Þ

where x0 ¼ 1=a3=2 and assume result of the Eq. (17) as

follows:

z0 ¼ AðT1Þeix0T0 þ �AðT1Þe�ix0T0 : ð19Þ

With substituting z0 in right hand side of Eq. (18),

D2
0z1 þ x2

0z1 ¼ �2ix0D1Aþ 9A2 �A

2a5�2k

� �
eix0T0

þ 3A3

2a5�2k
e3ix0T0 þ cc; ð20Þ

where cc denotes the complex conjugate of the preceding

terms. The secular term should be removed to have steady

state solution. Therefore

�2ix0D1Aþ 9A2 �A

2a5�2k
¼ 0; ð21Þ

where A, that is convenient to write it in the polar form

A ¼ 1
2
aeib:, a is constant and b is function of T1, can pre-

sent as follows:

A ¼ 1

2
aei � 9x0a

2

16a2�2kT1þb0

� �
: ð22Þ

z1 From Eq. (20),

z1 ¼ � 3A3

16a2�2k
e3ix0T0 þ cc ð23Þ

Finally refer to Eq. (15) and some simplification con-

sidering g ¼ 1, solution of the circular form of the Sitnikov

equation is:

zðtÞ ¼ a cosðxt þ bÞ � 3a3

64a2�2k
cos 3ðxt þ bÞ; ð24Þ

where

x ¼ x0 �
9a2

16a2�2k
x0: ð25Þ

By imposing initial condition Eq. (5) and straightfor-

ward technique, we have

a0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2kZ2

0 þ a�2kþ3 _Z2
0

q
� sign ð _Z0Þ

b0 ¼ cos�1ða�kZ0=a0Þ

a ¼ a0 þ
3a30

64a2�2k
2 cosð2b0Þ � cosð4b0Þð Þ

b ¼ b0 þ
3a20

64a2�2k
2 sinð2b0Þ þ sinð4b0Þð Þ:

ð26Þ

4.2 The Elliptical Form of the Sitnikov Problem

Equation (24), that is the solution of the circular form of

the Sitnikov problem, can be presented as the solution of

following equivalent linear ordinary differential equation:

€zþ x2z� 3a3x2

8a2�2k
cos 3ðxt þ bÞ ¼ 0: ð27Þ

So, comparison the Eq. (27) with the Eq. (13) yields

€zþ x2
0z�

3

2a5�2k
z3 � €zþ x2z� 3a3x2

8a2�2k
cos 3ðxt þ bÞ;

ð28Þ

where

x ¼ x0 �
9a2

16a2�2k
x0: ð29Þ

With this consistent approximation, the elliptical Sit-

nikov Eq. (12) can present as following form:

€zþ x2zþ 3

a3
ez cos t � 15

2a5�2k
ez3 cos t

¼ 3a3x2

8a2�2k
cos 3ðxt þ bÞ: ð30Þ

We apply MMS method such as used before step by step

to find solution of this equation. We assume that the

solution can be represented by following expansion form

zðt; eÞ ¼ z0ðT0; T1; . . .Þ þ ez1ðT0; T1; . . .Þ þ e2z1ðT0; T1; . . .Þ
þ oðe3Þ:

ð31Þ

Apply chain rule operator on z and substitute in

Eq. (30), then

D2
0 þ 2eD0D1 þ e2 D2

1 þ 2D0D2

� �� �
z0 þ ez1 þ e2z2. . .
� �

þ � � �

x2ðz0 þ ez1 þ e2z2. . .Þ þ
3

a3
e z0 þ ez1 þ e2z2. . .
� �

cos T0 � � � �

15

2a5�2k
e z0 þ ez1 þ e2z2
� �3

cos T0 ¼
3a3x2

8a2�2k
cos 3ðxT0 þ bÞ

ð32Þ
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Separate into individual orders in e, yields the sequence

of problem,

oðe0Þ : D2
0z0 þ x2z0 ¼

3a3x2

8a2�2k
cos 3ðxT0 þ bÞ ð33Þ

oðe1Þ : D2
0z1 þ x2z1

¼ �2D0D1z0 �
3

a3
z0 cos T0 þ

15

2a5�2k
z30 cos T0; ð34Þ

where the Eq. (33) is same as Eq. (27), the equivalent

linear ordinary differential equation of circular form.

According to what was mentioned on the previous section,

solution of it can present as follows:

z0 ¼ AðT1; T2ÞeixT0 �
3AðT1; T2Þ3

16a2�2k
e3ibe3ixT0 þ cc; ð35Þ

where A is an unknown complex function and �A is the

complex conjugate of A. We use the fact that

cos T0 ¼
eiT0 þ e�iT0

2
: ð36Þ

Substituting for z0 from (35) into (34) gives

D2
0z1 þ x2z1 ¼ �2ixD1Ae

ixT0 þ 27

8a2�2k
ixA2D1Ae

i3xT0

þ � � � 45A2 �A

4a5�2k
� 135A3 �A2

64a7�4k
� 3A

2a3

� �
eiT0ðx�1Þ

þ � � � 129A
3

32a5�2k
e3ibeiT0ð3x�1Þ

� 135A5

64a7�4k
e3ibeiT0ð5x�1Þ þ cc; ð37Þ

where � denotes two separate terms þ and � with same

coefficients. Any particular solution of (37) has a secular

term containing the factor eixT0 unless

D1A ¼ 0 ! A ¼ A0 þ oðe2Þ; A0 ¼ a ¼ constant: ð38Þ

Then, the solution of (37) is

z1 ¼ ð 45a
3

4a5�2k
� 135a5

64a7�4k
� 3a
2a3

Þ 1

x2�ðx� 1Þ2
eiT0ðx�1Þ

þ � � � 129a3

32a5�2k

1

x2�ð3x� 1Þ2
e3ibeiT0ð3x�1Þ

� 135a5

64a7�4k

1

x2�ð5x� 1Þ2
e3ibeiT0ð5x�1Þ þ cc:

ð39Þ

By recalling that T0 ¼ t, z0 and z1 can be obtained as

follows

z0 ¼ a cosðxtÞ � 3a3

8a2�2k
cosð3xt þ 3bÞ ð40Þ

z1 ¼
45a3

2a5�2k
� 135a5

32a7�4k
� 3a

a3

� �
1

x2 � ðx� 1Þ2
cos ðx� 1Þtð Þ

þ � � � 129a3

16a5�2k

1

x2 � ð3x� 1Þ2
cos ð3x� 1Þt þ 3bð Þ

� � � � 135a5

32a7�4k

1

x2 � ð5x� 1Þ2
cos ð5x� 1Þt þ 3bð Þ

ð41Þ

Finally, Sitnikov first-order solution can be presented as

following form

zðt; eÞ ¼ z0ðtÞ þ ez1ðtÞ: ð42Þ

5 Results and Discussion

Figures 2 and 3 illustrate the solution of MMS compare

with numerical solution for the circular form of the Sit-

nikov problem, e ¼ 0. Evaluations verify that the MMS

results are consistent with numerical solution and for

higher accuracy, order of MMS solution can increase. With

increasing initial velocity of third body, _Z0, the error of

approximate solution will increase slowly. We should point

that peaks of error graph in all figures is due to small value

of ZNum when crossing the line Z ¼ 0.

Figures 4 and 5 illustrate the results of MMS compare

with numerical solution for the circular form of the Sit-

nikov problem, e 6¼ 0. For different value of initial condi-

tions and e the approximation is evaluated that MMS

solution is consistent with numerical solution and for

Fig. 2 The Sitnikov problem evaluation by MMS at e = 0, _Z0 ¼ 0:1
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higher accuracy, order of MMS solution can increase. It is

obvious that MMS covers only the Sitnikov problem with

very small e and equilibrium point should be at z ¼ 0.

Percentage fit error (PFE) with respect to numerical data

can be used to judge the suitability of the MMS analytical

solution and accuracy of approximation:

PFE ¼ ð1=NÞ
PN

k¼1 zk � ẑkð Þ2

ð1=NÞ
PN

k¼1 z
2
k

� 100;N : number of data;

ð43Þ

where z and ẑ are respectively numerical and MMS value

of ZðtÞ. PFE of ZðtÞ approximation with MMS method with

different e and _Z0 is summarized in Table 1.

6 Conclusion

In this paper, the Sitnikov problem with a new approach

based on perturbation technique, the method of multiple

scales, is investigated and it presented a semi-analytical

solution that can help to understand principles of physics

governed in this problem. Evaluation of results depicts

that MMS solution is consistent with numerical solution

for small eccentricity value. Further, in comparison to

numerical solution, MMS presented semi-analytical

solution with definition of amplitude and frequency of

third body oscillation. Accuracy of MMS solution is

dependent on order of scales that the Sitnikov equation

can investigate more accurate at higher order scaling.

With increasing eccentricity value, difference between

zðtÞ from MMS and numerical method will grow up that

until e ¼ 0:05 can be acceptable but velocity of third

mass oscillation will be significantly different with

numerical estimation. This inconsistency and higher-

order approximation solution should be investigated at

future activities.

Fig. 3 The Sitnikov problem evaluation by MMS at e = 0, _Z0 ¼ 0:2

Fig. 4 The Sitnikov problem evaluation by MMS at e = 0.001,
_Z0 ¼ 0:1

Fig. 5 The Sitnikov problem evaluation by MMS at e = 0.010,
_Z0 ¼ 0:1

Table 1 The PFE (%) of Z(t) approximation with MMS

_Z0 e

0 0.001 0.005 0.010 0.050

0.1 0.0008 0.0050 0.1165 0.4716 12.650

0.2 0.0137 0.0161 0.1031 0.3894 10.229

0.3 0.0907 0.0916 0.1475 0.3411 7.3670
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