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Abstract In this paper, we study the spherically symmetric
anisotropic compact stars of emending class one in f{7T) (where
T being the torsion of the spacetime) gravity. For this purpose,
we have used a particular form of the metric functions to solve
the modified equation of motion in f{7T) gravity for static
anisotropic fluid source. The constructed models represent the
class of anisotropic stars like SAXJ1808.4 —3658(SS1),
HerX — 1, VelaX — 12, PSRJ1614 — 2230 and CenX — 3.
We have calculated the physical parameters of the stars
such as pressure, density, regularity and anisotropy. We
have also discussed the stability of formulated models and
proved that in f{T) theory of gravity (with diagonal tetrad)
these models of the stars are unstable.
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1 Introduction

The current cosmological observations (Riess et al. 1998;
Perlmutter et al. 1999; Bennett et al. 2003) demonstrate
that our universe encounters the phase of accelerated
expansion. In spite of the fact that the very easy approach
to clarify this fact is the inclusion of a cosmological con-
stant (Peebles and Ratra 2003), but the challenges like fine-
tuning issue connected with cosmological constant have
drawn the attention of some authors to consider more
realistic choices to handle the issue of expansion of the
universe. Among all the possible choices, one is to discuss
the dark energy paradigm, which can be originated from
various fields, such as a scalar field (Ratra and Peebles
1988; Wetterich 1988) and a phantom field. A second
heading is to modify the theory of gravity, such as

SIR) (R is Ricci scalar) (Sotiriou and Faraoni 2010; De

Felice and Tsujikawa 2010), higher derivatives in the
activity (Nojiri and Odintsov 2005), brane world augmen-
tations (Cai et al. 2006), string theory (Tsujikawa 2010),
holographic properties (Hsu 2004; Li 2004; Huang and Li
2004; Tto 2005), UV modifications (Horava 2009; Calcagni
2009; Kiritsis and Kofinas 2009; Lu et al. 2009; Saridakis
2010) and so forth. As of late, another technique showen up
in the literature (Ferraro and Fiorini 2007; Bengochea and
Ferraro 2009; Linder 2010) is f{T) gravity. It depends on
the old thought of the teleparallelequivalent of General
Relativity (TEGR) (Hayashi and Shirafuji 1979, 1982;
Myrzakulov 2011), which instead of utilizing the curvature
can be defined via the Levi-Civita connection, with Weit-
zenbock connection that is free of curvature, and just
depends on torsion (Caldwell 2002; Feng et al. 2005;
Einstein 1928). As depicted in (Myrzakulov 2011) the
Lagrangian density can then be developed from this torsion
tensor under the presumptions of invariance under general
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coordinate transformations, global Lorentz transformations
and the parity operation, along with requiring the Lagran-
gian density to be second order in the torsion tensor.

As compared to f{R) gravity with fourth-order nonlinear
differential equations, f{7T) theory of gravity has second-
order field equations. This fact has enhanced the interest
among the researchers to study the accelerated expansion
of the universe (Bengochea and Ferraro 2009; Linder 2010)
and one can reproduce a cosmological phenomena (Dent
et al. 2011; Yerzhanov et al. unpublished) that include a
scalar field (Wu and Yu 2010a) and constrain the model
parameters (Wu and Yu 2010b) to investigate the dynam-
ical behavior of the universe (Myrzakulov 2011). A lot of
work (Jamil et al. 2012a, b, ¢, d, 2013a; Bamba et al. 2013;
Jamil et al. 2013b; Yesmkhanova et al. 2012; Houndjo
et al. 2012, 2015 Chattopadhyay et al. 2014; Rudra et al.
2012; Momeni et al. 2015; Aslam et al. 2013; Rodrigues
et al. 2013; Momeni and Myrzakulov 2014) related to
cosmological attractor solutions, cosmological models,
reconstruction and entropy corrections in f{(7T) gravity has
been done.

Currently, the study of compact stars and massive
objects has become the subject of keen interest in general
relativity as well as in modified theories of gravity (Abbas
et al. 2014, 2015b, c, d, e; Zubair et al. 2016a, b; Zubair
and Abbas 2016a, b; Yousaf et al. 2016a, b; Yousaf and
Bhatti 2016). The astrophysical compact objects having
small radii and large densities may produce very strong
gravitational effects in their surrounding. In this present
article, we have formulated the equations of motion for
static anisotropic emending class one compact object in
A(T) theory. We have investigated the physical behavior of
the compact objects in the framework of AT) gravity.

We have arranged the paper as follows: Sect. 2 inves-
tigates the matter components and equation of state
parameters. The regularity conditions, anisotropic param-
eter and stability of the compact stars are presented in Sect.
3. Finally, we discuss the results of the paper in the last
section.

2 Equations of Motion in Generalized
Telleparallel Gravity

We begin with static spherically symmetric spacetime
which is given by
ds®> = e*Ndr* — "V dr? — r*(d6* + sin®(0)d$?). (1)

We take the matter as anisotropic fluid for which energy-
momentum tensor is

TZ = (p +p)uu’ —p,é}l + (pr — Py’ (2)
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where u" and v" are the four-velocity and radial-four
vectors, respectively. Further, p, and p, are pressures along
radial and transverse directions.

The tetrad matrix for metric (1) is
an) b0

[em = diagle T, e ,r,rsin(0)). (3)

Also, e = detle] ] = ¢“*rsin(0), and using the results of
(Abbas et al. 2015a), we get

(=2 + ) @
T (r) = 27 (a" + r_12 —T(b + })), (5)

where the prime means differentiations with respect to r.
The modified field equations (Abbas et al. 2015a) for fluid
source are

l _b ! !
smp =L (1- 5= +n)), ©)
/i 1 f
47TPr§T<T—r—2)—Z, (7)
! I NV
dmp, = L+eb <“2+ <j+2) (a —b))]J;T—f, (8)
0,
ST =0 9)
Also, Eq. (9) yields
F(T) = BT + By, (10)

where f§ and f; are integration constants; the solutions are
new if f # 1 and 5, # 0; otherwise, solutions corresponds
to GR. We take the following form of metric function
Karmarkar (1948); Tolman (1939):
) =14 64BC*Fr (1 + C)°,

(11)
where B, C and F are arbitrary constants that can be
determined on some physical background. Now using
Eq. (11), field equations leads to

—[8Cr? + (1 +Cr?)|B
p =
8772 [1 + 64BC2Fr2(1 + CVZ)Z} (1+Cr)

0 = B(1+Cr),

8Cr[1 + 64BC2FP (1 + Crz)z}
Jr

2
8mr(1 + Cr2) [1 + 64BC2Fr (1 + CrZ)Z}

| 128BCFr(1 4+ Cr2)’+256B2C3Fr3 (1 + Cr2)° B

2
87r(1 + Cr2) [1 + 64BC2F2(1 + Cr2 )2}
p_ B

8nr2 161’




Iran J Sci Technol Trans Sci (2018) 42:1659-1668 1661

oy = BCr? + (1 4+ Cr)1p 3 Physical Analysis of Model
872 |1 + 64BC2Fr2(1 4+ Cr2)* | (1 + Cr?)

This section deals with the physical properties of the proposed
— i — & (13) model like regularity, anisotropic behavior and stability.

[8C(1 + Cr?) — 16C*r%)
8n(1 + Cr?)’ [1 + 64BC2Fr (1 + cﬂ)z}

[SCr{(SCrZ(l +CP)) 4201 + Crz)}{l + 64BC2 (1 + Cr2)2H[3

+ 3
32mr(1 4 Cr2)2 1+ 64BC2Fr2 (1 + Cr2) |
14
e +er)) 201+ )] [1asECrr(1 + )] "
(1+cr) 32nr[l + 64BC2Fr?(1 + Crz)z}3
- [(8C}"2(1 + Cl’z)) + 2(1 + Cr2)] y |:256BZC3F}’3(1 =+ Cr2)2:|ﬁ _ﬂ
(1+Cr) 327‘6}"[1 + 64BC?Fr3(1 + Cr2)2}3 16r’
The equation of state (EOS) parameters are
[+ 6aBc2r (14 e p1 - g sser(1+ o))
r(r) = [C,z(g —7p) + 23(1 n Cr2(1 ¥ (2 +32CF(1 + Cr2)3)ﬁ))}
B (15)
{1 — B+ 8BCF(1 + Cr2)2} [1 + 64BC2F(1 + Crz)z} (SBCF(I + Cr2)3)ﬁ
_ e =7 +28(1+ (14 (2+320F(1+ C2)) ) )|
(=3 + C(—2(3 +4C)BR(1 + )™ [1 + 64BC?Fr(1 + Crz)z} B
olr) = [1 — B+ 8BCF(1 + Cr2)X(Cr2 4 2B(1 + Cr2(1 + (2 + 32CF(1 + Cr2)3>ﬁ>>>]
G4BCF(r + CP)(5 + Cr +4C)B2(1 + C7) ' [1 + 64BC2FR (1 + €Y (16)
Jr

[1 — B+ 8BCF(1 + Cr2)*(Cr? +2B(1 + Cr2(1 + (2 + 32CF(1 + Cr2)3)ﬁ)))}
16B2F(1 + Cr2)* (1 + Cr?(7 4+ 4Cr?(3 + 128CF(—1 + C2r*))))
[1 — B+ 8BCF(1 + Cr2)2(Cr? + 2B(1 + Cr2(1 + (2 + 32CF(1 + Cr2)3)ﬁ)))}
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3.1 Anisotropic Behavior

Using Egs. (12) and (13), we get

dp  2Cr[1 = B+ 16BCF(1+Cr?) (4 +2B(—1+ 128C2Fr2(1+ Cr)(1 + 4Cr2)}
dr 7(1 + Cr22(1 + 64BC2F2(1 + Cr)%)?
N Cr2(20 — 21B) — 58 — 2B(1 +2C(r* + 8F(1 + Cr2)*(—1 4 Cr2(8 4+ 33Cr?))))p
n(1 + Cr2)*(1 + 64BC2Fr2(1 + Cr?)*)’
N 128CF(B + BCr?)* (1 + Cr2(3 4 B+ 2C(r2 + 2(» + 4F(1 4+ Cr1)*)B)))
(1 + Cr2)*(1 + 64BC2Fr2(1 4 Cr2)*)?

i, 2C2r[—1 + 16BCF(1 + Cr2)2(—5 — 17 + 32BCF(1 + Crz)“)}ﬁ

dr

2
n(l+Cr2)? [1 + 64BC?Fr*(1 + Crz)z}

(17)

(18)

The above results lead to following equations:

d*p  2C*(—1+ B+ C(=3r(—1+ f) +32B°F(1 + Cr?)%))
arr (1 + Cr2) (1 + 64BC2F2(1 + Cr2)?)?

N —32B2F(1 4+ Cr2)*(—Cr*(3 + 128CF (1 + Cr¥)(2 + Cr2(5 + 39Cr2))))

(1 + Cr2)*(1 + 64BC2Fr2(1 + Cr2)*)*
L =BH20(=37 +8F(1+ CP)(1+ CP(31 +75Cr + 333C°r))) )
n(1+ Cr2)* (1 + 64BC2Fr2(1 4 Cr2)?)*
2048B3CF*(1 + Cr2)*(—(1 + Cr?) (=1 +3Cr2 (=6 + Cr(—11+
128CF(1 4+ Cr*)(1 + Cr*(5 4+ 12Cr%))))))
n(1 4+ Cr2)* (1 + 64BC2Fr2(1 + Cr2)*)*

N 2Cr2(4 + C(25r2 4 33Cr* + 16F (1 + Cr2)* (=1 + Cr2(16 + Cr3(77 + 156Cr2))))) )

n(1+ Cr2)*(1 4 64BC2Fr2(1 4 Cr2)?)*
131072B*C3F3r2(1 4 Cr2)°(5 + Cr2(22 + Cr2(35 + 18Cr?) 4 3+
3C(16F(1 4 Cr2)° + (5 4+ 12Cr2))p))
n(1+Cr2)* (1 4+ 64BC2Fr2(1 4 Cr2)?)*
16BF(1 4 Cr2)*(4 — 50 + Cr2(44 — 486 4 3Cr2(—8 + 7))
- (1 + Cr2)>(1 + 64BC?Fr2(1 + Cr2)?)*

+
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Fig. 1 Left, middle and right plots show density for SAX J 1808.4-3658(SS1), PSR J1614-2230 and Vela X-12, respectively
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Fig. 2 Left, middle and right plots show the behavior of the radial pressure for SAX J 1808.4-3658, PSR J1614-2230 and Vela X-12, respectively

2p, [ZCZ(I +C(=3r2 +16BF (1 4+ Cr2)* (5 + Cr2 (44 — 9Cr2)] B

@

n(1+Cr2)} [1 +64BC2F2(1+ Cr2) ]
6144B2C3F22(1 4+ Cr2)'B
3
n(1+Cr2)? [1 +64BC2FR(1 + Crz)z]

N 32BCF (14 Cr2)* (14 Cr2(41 + Cr2(163 +315Cr2)))
3
n(1+Cr2)} {1 L 64BC2FR(1 + cﬂ)z]

(20)
From Fig. 6, it is clear that at r = 0, % =0, % =0 and
dz” <0, dd’;’ <0, while at this point p and p, have maximum
values (see Figs. 1, 2). The regularity and physical behavior
of p, in Fig. 3). Also, from Figs. 4 and 5, it is clear that
O<w,(r)<1 and 0<w,(r). It is concluded that stars are
composed of ordinary matter and dark energy due to the
effects of A(T) term. The anisotropy in this model, i.e.,
=2(p, — p,) is obtained as follows:

(1+9Cr?) n 1
43 (1 4 Cr2)(1 4 64BC2Fr2(1 4 Cr2)?) 4’
C(=3+ C(—r2(3 +4Cr?)

— 64BCF(r + Cr?)* (5 + Cr? + 4C%*)))

It is clear from the Fig. 7 that for our model A >0 a
repulsive force is present which allows the formation of
super massive star.

3.2 Matching Conditions

Here, we discuss the matching of spacetime (1) to the
vacuum exterior metric given by

—1
ds* = — (1 - %’")dﬁ + (1 - 27’") dr? + r}(d0* + sin®(0)d¢?).
(22)

The matching conditions at r = R yield the following
results (Bhar et al. 2016):

2m
1 -=-=B(1 +CR? 23
= —Bl+C ), (23)
2 pp2 2)2 2m\ "~
I+ 64BCFR (14 CR?)" = (1=, (24)

4rr(1 + Cr2)*(1 + 64BC2Fr2(1 + Cr?)?)’

(21)

N 16B2F(1 + Cr2)*(1 + Cr3(7 + 4Cr*(3 + 128CF(—1 + C2r*))) B
(1

4rr(l + Crz) + 64BC?Fr?(1 + Crz)z)3
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Fig. 3 Left, middle and right plots show the behavior of the transverse pressure for SAX J 1808.4-3658, PSR J1614-2230 and Vela X-12,
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Fig. 5 Left, middle and right plots show the behavior the EOS parameter «, for SAX J 1808.4-3658, PSR J1614-2230 and Vela X-12,

respectively

(25)

(26)

N3 2m
The above equations can be simplified to the following
form
) 4
L
3
(1-%)

@ Springer

(27)

SO

For the values of M and R for a given star, the constants B,
C and F can be specified as in Table 1.

3.3 Stability

In our anisotropic model, we define sound speeds as
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Table 1 Values of constants for . - _ _ _
given Masses and Radii of Stars Compact star Mass (Mo) R (km) x1073 B C (km™) F (km™?)
(Bhar et al. 2016) Her X-1 0.98 6.7 03815 23350 x107°  83.4803
SAX J 1808.4-3658 1.435 7.07 0.1756 4.5876 x1073 104.0342
Vela X-12 1.77 9.99 0.2649 1.5889 x1073 190.9418
PSR J1614-2230 1.97 10.3 0.2150 1.8201 x1073 188.0283
Cen X-3 1.49 9.51 03413 13307 x10 1956740
2 dp, _ 22 212 2 2 1
02 = :—[(1+64BC Fr (1+Cr)) 0l = .
dp 287(1 + Cr2)? (1 + 64BC2F2(1 + Cr2)2)
_ 2\2
( 1+ 16BCF(1+Cr) x Czr[—3+C{5r2+3ZBF(1+Cr2)2
(=5 1702 +328CF(1 + ') ) ] (—8-8c2(3+ 26
2
x |1 = B+ 16BCF(1 + Cr) +6C7)) ~ B(1+ 07 (44 0
{4 +2B(1 + Crz)( 14 128C°FP (1 + CP) (19+768CF + 18C(1 +320CF)7
(1+ 4Cr2)) +Cr*(20 — 21p8) — 58 + 7168C°Fr* 4 5248C*Fr® +3072C°
, Fr*)) +3282CF (1+ ¢ (34 2
- 23(1 + 2c(r +8F
) (22+Cr (61 +8C(9r + 64F (1 + Cr?)
(1+Cr) ( —1+CrR8+ 33Cr2))))
. i ( 1+ Cr( 5+4Cr2)>)>)))}]ﬁ+
B+ 128CF(B + BCr?) (1+Cr (3+/5 X o .
1 [(1+64BCFr(1+Cr)><71+16BCF(1+Cr)
2 2 2\4 B
(29) X [1 — B+ 16BCF(1 + Cr2)2{4 +2B(1 + Cr?)
2 dp; _ 1
=gy = (f 1+ 128C?F(1 + Cr)

287(1 + Cr2)? (1 + 64BC2F2(1 + Cr2)2>4

x Czr{ 34 C{Sr2 +32BF(1 + Cr)?

( — 8- 8cr? (8 LR+ 6Cr2)>

—B(1+Cr) (4 +Cr (19 +768CF + 18C

(14 320CF)r* + T168C*Fr* 4 5248C*Fr® + 3072C°
Fr*)) +3282CF(1+ ) (3 4+ 2

(22 +C? (61 +8C(972 + 64F(1 + Cr?)

(— 1+ CA (=5 +4Cr2)>))))>}]ﬁ.

The above equations lead to

(1+ 4Cr2)) +Cr2(20 - 218) — 58

_ 23(1 +2c(r2 +8F

(1+ Cr2)2< —1+CR8 33Cr2))))[3

+ 128CF(B + BCr)? (1 +cr? (3 +B+2C

(r2 1202 +4F(1+ cﬂ)ﬁﬁ))) }] -

(31)

By using the cracking concept (introduced by Herrera
(1992)) we found that the region where vy > Vg > g 1S
potentially stable; otherwise, unstable. In present case,
Fig. 8 indicates that there is no change of sign for the term

2, @) Springer
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v, — v2, within the interior of star, so proposed models are

unstable.

4 Summary

This paper deals with the modeling of spherical compact
stars of emending class one in f(7T) gravity with diagonal
tetrad field. In this case, the assumption of diagonal tetrad
field leads to linear form of function f{T) in T from the
equations of motion. In order to solve the field equations
analytically, we have assumed the particular form of the
metric components, which is compatible with the stars of
embedding class one. This form of the metric functions

involves some unknown constants which can be deter-
mined by matching the interior fluid source with the vac-
uum exterior solution. This matching is smooth as in both
geometries metric tensor components are continuous.
Further, both the theories, standard GR and modified
A(T) theory, have equations of motion upto second order so
both are compatible for smooth matching of interior and
exterior solutions. We apply the observed masses and radii
of some compact stars in order to determine the constant in
the metric potential functions.

Further, we have investigated the explicit expression for
matter density and pressure components as given in
Egs. (12)—(13). It is clear from the expression of metric
functions that these are regular at r = O; further density as

dp dp,
dr dr
L L L L L L L L .
4 5 6 1 2 3 4 5 6
—0.00002 | -0.00001 |
=0.00004 ~0.00002
~0.00006 ¢ ~0.00003 |
—0.00008 |
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6 1 1 1 1 1 1
r
—5.% 1076 1 2 3 4 5 6
~0.00001 sx106k
—0.000015
~0.00002 —0.00001
—0.000025
Fig. 6 Here only data of Her X-1 have been used
A A A
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Fig. 7 Left, middle and right plots show the behavior of anisotropy A for SAX J 1808.4-3658, PSR J1614-2230 and Vela X-12, respectively

@ Springer



Iran J Sci Technol Trans Sci (2018) 42:1659-1668

1667

2_2
v:( - VM

2.0F

1 2 3 4 B 6 7 " 2 4
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Fig. 8 Left, middle and right plots show the behavior of v, — v?, for SAX J 1808.4-3658, PSR J1614-2230 and Vela X-12, respectively

well as pressures is non-singular at r = 0 shown in Figs. 1, 2,
3. The EOS w, and w; are less than one and greater than one
(see Figs. 4, 5), which indicates that matter has been modi-
fied from ordinary to exotic form. Figure 6 implies the
maximality of radial pressure at center r = 0. The aniso-
tropic parameter A is positive (as shown in Fig. 7) at all
points inside the star that explains the repulsive behavior of
force and plays a key role to produce more mass of the stars.
We have presented the stability of the compact as given in
Fig. 8; this figure shows that our proposed strange star
models are unstable. This work can be extended by using the
non-trivial tetrad and electromagnetic field explicitly.
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