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Abstract The study deals with the analysis of Type-II
hybrid censored data from the modified Weibull distribu-
tion. We provide maximum-likelihood estimates of the
parameters, reliability, and hazard rate functions along with
their standard errors. The confidence intervals along with
their widths have also been obtained. Assuming gamma
and Jeffrey’s invariant priors for the unknown parameters,
Bayes estimates along with its posterior errors and highest
posterior density credible intervals are obtained. The
Markov Chain Monte Carlo technique has been used to
simulate draws from the complicated posterior densities of
the parameters. A simulation study is conducted to com-
pare the performances of classical and Bayesian methods
of estimation. Finally, a real data analysis is performed for
illustrative purpose.

Keywords Modified Weibull distribution - Type-II hybrid
censoring - Maximum-likelihood estimate - Bayes
estimate - Markov Chain Monte Carlo technique

1 Introduction

In reliability and life testing experiments, the equipments
are put on test and their failure times are recorded. These
failure time observations are then used to draw inferences
on various system reliability characteristics. However, due
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to long life times of today’s products, obtaining times-to-
failure data is very time consuming which increases the
cost of experimentation as well. To overcome this diffi-
culty, censoring is used in life testing experiments to save
the time and cost. Failure censoring schemes are broadly
classified as Type-I (time censoring) and Type-II (failure
censoring). Suppose, n items are put on test. In Type-I
censoring, we fix the time 7 to terminate the experiment in
advanced and observe the life times of those items which
fail up to time 7, whereas in Type-II censoring scheme,
time to terminate the experiment is a random variable and
required number of failed items to stop the test is fixed, say
m (m <n), so that at the time of the mth failure, the test
terminates leaving n — m partially observed failure times.
Type-I and Type-II censoring schemes have been exten-
sively studied by numerous authors, including Mann et al.
(1974), Lawless (1982), Balakrishnan and Cohen (1991),
and Harter et al. (1996).

Since major constraints in life testing experiments are
time and cost, therefore, we need a censoring
scheme which can make a trade-off between the number of
units used and the time required to stop the experimenta-
tion without sacrificing the desired efficiency of the sta-
tistical inference. Hybrid censoring is one such censoring
scheme introduced by Epstein (1954, 1960). The hybrid
censoring is also categorized as Type-I and Type-II. If the
test is terminated at the random time 7" = min{Xg.,, T},
where R and T are prefixed numbers, and Xg., indicates the
time of Rth failure in a sample of size n. Then, it is called
Type-I hybrid censoring scheme. Many studies, including
Kundu (2007), Kundu and Pradhan (2009), Dube et al.
(2011), Ganguly et al. (2012), Rastogi and Tripathi (2013),
and Gupta and Singh (2013), dealt with statistical inference
for different life time distributions using Type-I hybrid
censoring scheme. On the other hand, if the test is stopped
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at time 7" = max{Xg.,, T}, it is known as Type-II hybrid
censoring scheme (Childs et al. 2003). With Type-II hybrid
censoring scheme, one has the advantage to record the
complete life times of at least R units before the experiment
is terminated. For more details regarding statistical infer-
ences under Type-II hybrid censoring scheme, one may
refer Banerjee and Kundu (2008), Al-Zahrani and Gindwan
(2014), and Singh et al. (2014). The detail review of var-
ious hybrid censoring schemes is given in Balakrishnan and
Kundu (2013). Though many distributions have been
considered for drawing inferences with Type-I and Type-II
hybrid censored data, to the best of our knowledge, none of
the study has reported the inferential statistics on the
modified Weibull (MW) distribution under Type-II hybrid
censoring scheme. Initially, this distribution was proposed
by Lai et al. (2003), and has the following probability
density function (PDF):

@) = pe (v i) explia — pr'e): x>0 (1)

The distribution function (DF) of MW distribution is
written as:

F(x) = 1 — exp(—px"e™).

The corresponding reliability and hazard rate functions
are as follows:

R(x) = exp(—fx"e™), (2)
h(x) = px" ' (v + Jx)e™. (3)

The shape of hazard rate function A(x) of MW distri-
bution depends on the parameter v. For v>1, h(x) is
increasing in x, whereas for 0 <v <1, it has bathtub shape.
Due to the flexible shape of its hazard rate function, MW
distribution has become important life time model for
reliability engineers.

In lieu of above considerations, we explore the infer-
ential properties of the modified Weibull distribution with
Type-II hybrid censoring data. We provide maximum-
likelihood estimators of the parameters, reliability, and
hazard functions of MW distribution with Type-II hybrid
censored data. Fisher information matrix has been given to
construct confidence intervals of the parameters as well as
reliability and hazard functions. Bayes estimates and
highest posterior density (HPD) intervals of the parameters
have been obtained using gamma and Jeffrey’s priors.
Markov Chain Monte Carlo (MCMC) technique has been
used to generate draws from complex posterior densities of
the parameters. The coverage probabilities of confidence
and HPD intervals have also been provided. To illustrate
the application of MW distribution, a real data analysis is
presented. A simulation study is also carried out to access
the performances of ML and Bayes methods of estimation.
At the end, some concluding remarks are given.
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2 Estimation and Confidence Intervals
under Type-II Hybrid Censoring Scheme

2.1 Maximum-Likelihood Estimators

Let n units are put on test. Then, under the Type-II hybrid
censoring scheme, we have one of the following three types
of observations:
Case I: {x1,,<xpn<- - <xgn} if xgn >T.
Case I {x;.,<xp,<:+ <Xpin<XRi1:n <+ <Xgp
<T<Xpi1.n} f R<k<n, and X, <T <Xpi1m
Case IL: {x1., <xp.p, < -+ <Xpn<T}.
Graphically, it can be presented as shown in Fig. 1:
The likelihood functions for the above three different
cases are as follows:
Case I:

R R
| R L) xi—f ) x i v xe1n—R
Li(x) = —f ] H ﬁx;‘il (v+ Axi)e 'ZI: 'le [efﬁxke XR} .
(” R)‘ i=1

Case II:

K K

Ly(x) :n—!ﬁﬁx“l(t'—i-ix,-)e)v; e :
(n=K)eg

Case III:

n 2 " xi—f , x! eHi
Li(x) = Hﬂxl?’l(v + Ax;)e Z: Zl: . (6)
i=1

On combining three likelihood functions, one gets

1-st failure 2-nd failure R-th failure (experiment stops)
/ / / Case |
O O
Yin Yon T Yrn
1-st failure 2-nd failure K-th failure  experiment stops

/ / / / Case II
= % PR

1-st failure 2-nd failure
i /‘ /‘
Yin Yon

Fig. 1 Graphical presentation of Type-II hybrid censoring scheme
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[ ﬁUvB,;u}n D — f(n—D)U" log er:O, (13)
and
(7)
D D
Here, D denotes the number of failure, that is Z x;
— (v + Ax, —
R forcasel = =
D =< k forcasell , - B fo“gb’f +(n D)U”lew] =0. (14)
n  forcaseIll i=1
and The MLE of f say ﬁ can be obtained by Eq. (12), but
Egs. (13) and (14) are very complicated, so they cannot be
U_ Xg; D=R expressed explicitly. Thus, some suitable iterative method
T; D>R’ is required to get (7, j) Now, using the general theory of

The log-likelihood function is

D
logL =1logC+ Dlogfi + (v —1) Zlogx,-
i=1

+Zlog v+ Ax;) +22x, ﬁva i ®)
— B(n—D)U"e"Y.

The first derivatives of (8) with respect to f3, v, and A are
as follows:

- D)UY =0, (9)

d D D 1
—logL = 1 f —
ov 08 ;ng+;(v+mi)

D
—ﬁleV logx;e™ — B(n — D)U"logU e =0, (10)
i—1

=1

_ﬁ § XlH—le'bc
i=1

—0. (11)

D
logL 21: —l—bc,—’_zx’
D

D) Uv+le/1U

Therefore, for fixed v and /, the MLE of f say B can be
obtained as:

o D

18: D * (12)
SxleXi+ (n— D)UY
=1

The MLE of v and A can be obtained by solving the
following non-linear equations:

MLEs, the distribution of
~ ~ /
(ﬁ—ﬁ V—v /1—/1) is N3(0, Z7'). Where A is the

Fisher’s information matrix whose elements are as follows:

asymptotic

o log L] O logL
Ay =E|—- A =E|— =
11 aﬁz _a 12 |: @ﬂ@v :| 21,
0 log L] o*logL
3=E opoi 31, A E[ a2 ]7
0 log L] 0 logL
A23 =F|— W_ = A32, and A33 =F |:— a)vz :l .

The second derivative with respect to f3, v, and A are as:

2
-D
o D 1
loglL =
o 2y

+(n—D)U"(logU)*e™ |,

(16)

D
- B (Z leZe/Lx; +(n—D) Uv+26).U> . (17)

af;ﬁlogL = — éxiv logx;e™ + (n—D)U"logUe™ |,
' (18)

o2 (& :
575 logL = — ;xl‘f“e“" + (n—D) U"Hew] ,  (19)
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+(n—D)U" " log er}

(20)

Using the invariance property of maximum-likelihood
estimates, we get the MLEs of the reliability and hazard
rate functions as follows:

R(x) = exp(—fr'e™),
h(x) = px" (0 + /:Lx)e;“

The asymptotic sampling distributions of [f(’(x) — R(x)]
and [A(x) — h(x)] are N(O,R'>."'R) and N(0,k' 3" h),
R — (aze( x)  OR(x) aR_@) and W=

op * v 7 04
Oh(x) Oh(x) Oh(x)
op v ov 0 04 )"

where

2.2 Bayesian Estimation

In Bayesian inference, one of the tedious tasks is how to
construct prior models for the unknown parameters as there
is no unique approach of choosing a priori, and that the
choice of a wrong priori may lead to the inappropriate
inference. The prior distribution is the key to Bayesian
inference and its determination is, therefore, the most
important step in drawing the inference (Robert 2007). In
practice, informative and non-informative priors are used
to represent uncertainties about the model parameters.
Berger (1985) pointed out that when there is no informa-
tion or very difficult to gather regarding the prior variations
in the parameters, it is better to use non-informative prior
distribution. However, non-informative priors generally
lack invariance property under one-to-one transformation,
thereby leading to incoherent analysis. On the other hand,
informative priors are based on the investigator’s experi-
ence about the random behavior of the process under
consideration. In lieu of this, we consider the Bayesian
method of estimation with both informative and non-in-
formative priors. First, we assume that the parameters f3, v,
and A have Gamma(a;,b;), Gamma(ay,b;), and
Gamma(as, b3) priors, respectively, with PDFs:

g1(p)
gz(V) X vﬂz—le—hz\’7

g3(4) x J@3 L ombst,

-1 _—b
ﬁal e 1[3’
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Based on the above priors, the joint distribution of data
and parameters f3, v, and A is given by,

h(xv ﬁ>v’}') = L(x|ﬁ’va/l) 'gl(ﬁ) 'gZ(V) . g3()“)7

D ;Zx’ /jz\u,
o pPra= 11_[3811_[ (v + Ax;)e = =1
i=1 i=1

'efﬁ(nfD)U & o I;L -1 7b B—byv— hm (21)

For drawing Bayesian inference, we need joint posterior
distribution of the parameters f3, v, and 4 which are very
difficult to compute analytically due to multidimensional
parameter space. Therefore, Gibbs sampler proposed by
Geman and Geman (1984) is used for this purpose. One
important advantage with Gibbs sampler is that we only
require full conditional posterior distributions of each of
the parameters. The full conditional posterior of parameters
B, v, and 4 are given by the following:

D
—B> xjeRi—B(n—D)U"e* —by B

W(B|x,v, 2) oc fPF 7t e 1T (22)

W(vlx, B, 2) ocve! ﬁxf’l 12[ (v + Jxp)e ﬁ;x‘ i
,e—ﬂ(lr:D)U" /‘»‘illazv,
(23)
b D
W(i X, v, ﬁ) o AT [+ )in)eii <b3f§T‘Xi>

i=1 (24)
-B |:§D: x;‘e)“"' +(n—D) U‘ew:|
e .

i=1
2.2.1 Gibbs Algorithm

1. Set starting values for v and 4, and generate f§ from the

conditional density W(f ’x, v, ) given in (22).

2. Generate v from the conditional density W(v‘x, B, 1) in

(23) for the above given simulated value of f and
starting value of A.

3. Generate 4 from the conditional density W(/l‘x, v, ) in

(24) for the above simulated values of § and v.

4. Repeat steps 1-3 N times and stored the generated
draws of f, v, and /1 after the first M-iterations to
nullify the effect of the starting values.

5. Bayes estimates of the parameters f3, v, and 4 are then
given by the following:
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B = B, vi=—— v; and 1*
N - Mi:M+1 N - Mi:M+1
1 N
= .

N - Mi:M+l

6. HPD intervals for f, v and 4 are obtained using the
method proposed by Chen and Shao (1999).

7. For computing Bayes estimates and HPD intervals of
reliability and hazard functions, we first substituted the
generated values of f3, v, and A in (2) and (3) and then
used the procedures as in steps 5 and 6, respectively.

The posterior results under Jeffrey’s priors can be
obtained in the same way by setting all gamma priors’
parameters equal to zeroi.e.,a; = by = 0,a, = b, = 0 and
as = bz = 0. Here, it is to be noted that the simulation in
steps 2 and 3 is not easy as the inverse distribution function
method of generating draws from the posterior densities of
v and 1 is not applicable here. Therefore, for simulating
parametric draws from these densities, one needs an
advanced simulating algorithm. Therefore, we utilize
Metropolis—Hastings (MH) algorithm (Metropolis and
Ulam 1949; Hastings 1970), one of the MCMC techniques
to generate v and /.

2.2.2 MH Algorithm

Suppose we want to simulate draws (6, 0,,...0y) from
the distribution g(6). Given the target density g(6) and an
arbitrary proposal density or jumping distribution
q(0)0") = P(0' — 0), i.., the probability of returning a
new sample value 0 given a previous sample value 0, the
algorithm is as follows:

Set initial value 6° satisfying target density g(6°) > 0.
For t = 1,2,...N, repeat the following steps.

Set 0 = 0",

Using current 0 value, sample a point 0" ~ ¢(0*|0“).
Here, we assume normal distribution as the proposal
density thatis ¢(0*|0"~") = N(0"~V 64). The standard
deviation gy is chosen, so that the chain explores the

el e

whole area of the target density with sufficient accep-
tance probability.
5. Compute the acceptance probability

* 0= — mi { (gw*)qw“*”w*) )}
p(@ 79 ) min 17 log g(@iil)q(f)*\ﬁ(kl)) .
. Generate u from U(0, 1) and take z = logu.
7. If z<p(0",0"), accept 0 and set 0¥ = 0" with
probability p(0*,0""). Otherwise, reject 0* and set
00 — g1,

3 Real Data Analysis

In this section, an analysis of a real data set is performed.
The data set is taken from Lawless (2003), which contains
60 observations on electrical appliance failure times (1000s
of cycles) as follows:

0.014, 0.034, 0.059, 0.061, 0.069, 0.08, 0.123, 0.142,
0.165, 0.21, 0.381, 0.464, 0.479, 0.556, 0.574, 0.839,
0.917, 0.969, 0.991, 1.064, 1.088, 1.091, 1.174, 1.270,
1.275, 1.355, 1.397, 1.477, 1.578, 1.649, 1.707, 1.893,
1.932, 2.001, 2.161, 2.292, 2.326, 2.337, 2.628, 2.785,
2.811, 2.886, 2.993, 3.122, 3.248, 3.715, 3.79, 3.857,
3.912, 4.1, 4.106, 4.116, 4.315, 4.510, 4.584, 5.267, 5.299,
5.583, 6.065, 9.701.

First, we compare the fitting of three-parameter MW
distribution with some two-parameter distributions, such as
Weibull, gamma, and log-normal to this data set. The
Kolmogorov—Smirnov (K-S) test, log-likelihood criterion,
and Akaike information criterion (AIC) are applied for this
purpose. For complete data set, the MLESs of the parameters
and fitting summaries of considered models are given in
Table 1. While obtaining the MLEs of the three-parameter
MW distribution, we found the MLE of f in closed form,
whereas MLEs of the other two parameters v and A are
obtained using the optimization function maxLik() of R-
software. To check the convergence of this algorithm, the
contour plot of the two-dimensional log-likelihood surface
for v and A corresponding to the considered data set has been
drawn in Fig. 2a. The surface is well behaved with a unique
maximum. The MLEs of v and 4 are shown in the contour

Table 1 MLE along with SE, K-S statistics with corresponding P value, logL, and AIC of the models fitted to the real data

Model PDF MLEs (SE) K-S statistics (P value) logL AIC
p v A
x . . . . . . . . —105. .

MW x) 0.387 (0.079) 0.749 (0.154) 0.116 (0.059) 0.0652 (0.946) 105.26 216.52
Weibull vix e Y 0.455 (0.081) 1.001 (0.106) - 0.0776 (0.8343) —-107.12 218.24
Gamma B o—Bxyv—1 0.424 (0.088) 0.931 (0.148) - 0.0897 (0.6857) —107.02 218.03

i3
Log-normal 1 e—z/ﬁ(lngx—v)z 1.439 (0.131) 0.160 (0.185) - 0.1653 (0.0667) —116.57 237.14

Bxv2n

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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plot. The difference in curvature in the log-likelihood sur-  The values of the log-likelihood and AIC also suggested the
face along with v and / directions can be easily observed.  same. The fitted density plots and the P-P plots of Kaplan—
We also draw the individual profile plots of log-likelihood =~ Meier estimator (KME) (Kaplan and Meier 1958) versus
function for v and 4 in Fig. 2b, c, respectively. The values of  fitted survival functions of the considered models are dis-
K-S statistics and associated P values clearly indicate that  played in Fig. 3a and b. From these plots, it can be seen that
the MW distribution is a better model for the given data. =~ the MW distribution is superior to the other distributions in

Fig. 2 . (@) contour plot of log-likelihood (b) Profile plot for v (c) Profile plot for &
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terms of model fitting. More so, the plots of the cumulative
hazard function superimposed on nonparametric counter-
part given in Fig. 3c confirm that MW distribution is an
adequate model for considered data set.

Now for analyzing this data with MW distribution under
Type-II hybrid censoring scheme, three artificially hybrid
censored data sets are formed from the complete data with
the following censoring schemes:

Scheme 1: R = 48, T = 4 (20 % censored data).

Scheme 2: R = 36, T = 4 (40 % censored data).

Scheme 3: R = 24, T = 1.5 (60 % censored data).

In all the cases, the unknown parameters are estimated
using the ML and Bayes methods of estimation. Bayes
estimates of f§, v, and A, and HPD intervals are obtained
using gamma and Jeffrey priors. The different estimates
of the parameters along with their standard errors and
95 % confidence/HPD intervals are summarized in
Table 2.

4 Comparison Study

Here, some simulation results for accessing the perfor-
mances of the classical and Bayesian methods of estima-
tion under various Type-II hybrid censoring schemes for
different choices of (R, T) are presented. The comparisons
are made on the basis of the average standard errors/pos-
terior errors (ASEs/APEs) of the estimates, average inter-
val lengths (AILs) of the confidence/HPD intervals, and
coverage probabilities (CPs). Assuming
p=05v=2 1=0.2, two sets of data containing,
respectively, n = 30 and 100 observations were generated
from (1). We replicate the process 1000 times and obtain
average estimates, ASEs/APEs, average confidence/HPD
intervals, average interval lengths, and coverage probabil-
ities with different combinations of R and T. For Bayesian
estimation, 5000 realizations of the parameters 5, v, and A
from the posterior densities in (22), (23), and (24) are

Table 2 MLEs, Bayes estimates along with their estimated errors (SE/PE), and 95 % confidence/HPD intervals under various Types II hybrid

censoring schemes for real data

Estimates, SE/PE and CI/HPD intervals

Scheme 1

Scheme 2

Scheme 3

MLE [SE] and CI {length}

Bayes estimates along with Gamma prior
[PE] and HPD interval {length}

Bayes estimates along with Jeffrey priors
[PE] and HPD interval {length}

B = 0.3641[0.0954]

B € (0.1770, 0.5512){0.3742}
¥ = 0.6989[0.1737]

v € (0.3584, 1.0394){0.6810}
/. =0.1417[0.1081]

7 € (0, 0.3537){0.3537}

B* = 0.3845[0.0462]

B € (0.2933, 0.4748){0.1815}
Vv =0.8935[0.0911]

v € (0.7278, 1.0811){0.3533}
7* =0.1301[0.0263]

J € (0.0755, 0.1787){0.1032}
B* = 0.4210[0.0905]

B € (0.2487, 0.6031){0.3544}
Ve = 0.8130[0.1523]

v € (0.4869, 1.0845){0.5976}
2* = 0.0599[0.0798]

/ € (0.00001, 0.2310){0.2309}

B =0.3502[0.1217]

B € (0.1116, 0.5888){0.4772}
¥ = 0.6832[0.1987)

v € (0.2936, 1.0727){0.7791}
£ =0.1724[0.1984]

€ (0, 0.5613){0.5613}

B = 0.3931[0.0463]

B € (03029, 0.4832){0.1803}
V' = 0.9874[0.1086]

v € (0.7839, 1.2025){0.4186}
2 =0.1519[0.0317]

J € (0.0937, 0.2135){0.1198}
B" = 0.4150[0.0943]

B € (0.2324, 0.6065){0.3741}
Vv = 0.7764[0.1513]

v € (0.4821, 1.0811){0.599}
7 = 0.0633[0.1080]

J € (0.00002, 0.3093){0.3092}

B = 0.3089[0.1339]

B € (0.0464, 0.5714){0.525}
¥ =0.6411[0.2110]

v € (0.2274, 1.0547){0.8273}
/. =0.2965[0.3146)

J € (0,0.9133){0.9133}

B = 0.4179[0.0484]

B € (03227, 0.5118){0.1891}
Ve = 1.1129[0.1336]

v € (0.8484, 1.3709){0.5225}
¥ = 0.1693[0.0368]

J € (0.1028, 0.2451){0.1423}
B* = 0.4017[0.1032]

B € (0.1775, 0.5965){0.419}
Vv =0.7612[0.1692]

v € (0.4199, 1.0989){0.679}
7 =10.0931[0.1717]

J € (0.00001, 0.4920){0.4919}

(a) MCMC iteration plot of B

(b) Autocorrelation plot of B
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generated using Gibbs sampler. While simulating posterior
densities of v and 4, we use MH algorithm as discussed in
Sect. 2.2. In this algorithm, the initial guess values of the
parameters v and A are taken as their MLEs. The first 1000
burn-in iterations have been discarded to eliminate the

effect of the stating values of the parameters. The graphical
diagnostic tools, such as trace and autocorrelation plots,
have been employed to check the convergence of the
chains. The trace plots of 5, v, and A in Figs. 4a, 5a, and
6a, respectively show well mixing of the chains. More so,

(a) MCMC iteration plot of p (b) Autocorrelation plot of p (c) Posterior density of p
- 4
o] o | o
o W oo ‘ % N
* o~ Qe = | c o
- =2 5 <
2 -1 o L4 “ll-l-. === OPeITITIN o
T T T T T © F T T T T 1T CEE T T T 1
0 1000 2000 3000 4000 0 S 10 15 20 25 30 35 14 16 18 20 22 24
Time Lag v
Fig. 5 .
(@) MCMC iteration plot of 7. (b) Autocorrelation plot of 5. (c) Posterior density of 5.
w g 7] z ©
N L — S
s =) :
g . o 7] ||||uuuuu e
© 5 T T T T © 5T T T T T T T i e N L L L L
0 1000 2000 3000 4000 0 S 10 15 20 25 30 35 0.05 0.15 0.25 0.35
Time Lag A
Fig. 6 .
Taple 3 Average ML R T AML estimates [ASEs] Average confidence intervals and AlLs CPs
estimates, the ASEs, average
confidence intervals along with 30 25 1.9 5
AlLs, and CPs with Type-II . /f = 0.5967 [0.4947] B € (0.0001, 1.5663){1.5662} 0.87
hybrid censoring for 1 = 30 ¥ = 2.0800 [0.9026] v € (0.4196, 3.8493){3.4297} 0.96
1 —0.2729 0.7419] 2 € (0.0124, 1.7271){1.7146} 0.96
1.7 [} = 0.5495[0.4981] p € (0,1.5258){1.5258} 0.86
v = 1.9815[0.9093] v € (0.3182,3.7638){3.4455} 0.95
1 =03710 [0.7615] A € (0.0227,1.8637){1.8410} 0.97
30 15 1.5 ﬁ: 0.5632[0.5148] f € (0.0005, 1.5722){1.5717} 0.84
v =2.0100[0.9147] v € (0.3344,3.8029){3.4685} 0.92
1 —03315 [0.7657] A € (0.0229, 1.8325){1.8096} 0.95
1.3 B = 0.5750 [0.5176] B € (0.0026, 1.5896){1.5869} 0.83
v = 2.1261[0.9567] v € (0.3811,4.0013){3.6202} 0.93
i — 02885 0.7876] 2 € (0.0182,1.8323){1.8140} 0.95
30 10 1.1 [3 =0.6183[0.5659] p € (0.0004, 1.7275){1.7271} 0.81
v =2.1171]0.9659] v € (0.3701, 4.0104){3.6403} 0.91
7 =0.3084 [0.7977] A € (0.0298, 1.8720){1.8422} 0.94
0.9 B =0.6123 [0.5787] B € (0.00005, 1.7467){1.7466} 0.80
v = 2.0940[0.9507] v € (0.3856, 3.9574){3.5718} 0.92
7 —0.3396 0.8000] 2 € (0.0373, 1.9077){1.8704 } 0.91

» @ Springer
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the chains are scattered around their mean values. The
autocorrelation plots of ff, v, and 4 in Figs. 4b, 5b, and 6b
clearly revel that the chains have low autocorrelations.
Finally, we have drawn the simulated posterior densities of

B, v, and 4 in Figs. 4c, 5c, and 6¢, and we found that all
posterior distributions are unimodal. The results of the
comparison study have been summarized in Tables 3, 4, 5,
6, 7, and 8. The results for reliability and hazard functions

Table 4 Average Bayes

estimates (ABEs) with gamma R T ABEs with Gamma priors [APEs] Average HPD intervals and AlLs CPs
priors, the APEs, and average 30 25 1.9 5
HPD intervals along with AlLs [§A— 4824 [0.0575] f € (0.3723, 0.5956){0.2232} 1.0
and CPs with Type-II hybrid v = 1.7855[0.1910] v € (1.4198, 2.1584){0.7386} 1.0
censoring for n = 30 J =0.1945[0.0418] A € (0.1173, 0.2769){0.1596 } 1.0
L7 = 0.5006 [0.0590] ﬂ € (0.3888, 0.6179){0.2290} 1.0
v =2.0103 [0.2107] € (1.6033, 2.4182){0.8149} 1.0
1= 0.1949 [0.0421] € (0.1166, 0.2779){0.1612} 1.0
3 15 15 B = 0.5481[0.0627] ﬁ € (0.4282,0.6722){0.2439} 1.0
v =1.9727[0.2239] € (1.5422,2.4087){0.8664} 1.0
. =0.2164 [0.0464] € (0.1304,0.3084){0.1780} 1.0
1.3 B = 0.5304[0.0615] B € (0.4129, 0.6517){0.2387} 1.0
v = 1.9602 [0.2157] v € (1.5490, 2.3843){0.8352} 1.0
J = 0.2061[0.0442) 2 € (0.1233, 0.2926){0.1693} 1.0
30 10 1.1 B = 0.5549[0.0635] S € (0.4340, 0.6806){0.2466} 1.0
v = 2.0667 [0.2293] v € (1.6311, 2.5173){0.8861} 1.0
/. =0.2145[0.0463) 2 € (0.1281, 0.3051){0.1770} 1.0
0.9 B = 0.5545[0.0632] B € (0.4341, 0.6793){0.2451} 1.0
v = 2.2318[0.2558] v € (1.7460, 2.7337){0.9877} 1.0
4=0.2201[0.0476] 2 € (0.1327, 0.3151){0.1823} 1.0
Taple 5 AYerage Ba):es . n R T ABEs with Jeffrey’s prior [APEs] Average HPD intervals and AlLs CPs
estimates with Jeffrey’s prior,
the APEs, and average HPD 30 25 1.9 5
intervals along with AILs and ' ﬁA 0.5155[0.0579] € (0.1398, 0.8396){0.6998} 10
CPs with Type-II hybrid v = 1.7984[0.2058] € (0.7157, 2.6340){1.9182} 1.0
censoring for n = 30 j = 0.2267 [0.0408] S (0.00017 1.0158){1.0157} 0.95
L7 B = 0.5350[0.0589] € (0.1877, 0.8386){0.6508 } 1.0
v = 2.0552[0.2155] € (1.0736, 2.8810){1.8074} 1.0
J.=0.1490 [0.0410) € (0.0001, 0.7649){0.7648} 0.89
30 15 1.5 B = 0.4396[0.0610] € (0.0658, 0.8737){0.8079} 0.98
v = 1.4979[0.2214] € (0.2543, 2.6221){2.3677} 0.97
J = 0.7470[0.0454] € (0.0159, 1.9654){1.9494} 0.93
1.3 B =0.6970[0.0619) € (0.2699, 1.0735){0.8035} 1.0
v =1.9103[0.2122] € (1.0595, 2.6624){1.6029} 1.0
J. = 0.1348 [0.0450] € (0.0001, 0.7159){0.7158} 0.87
30 10 1.1 B = 0.3238[0.0604] € (0.0417,0.7034){0.6616} 0.84
v = 1.4618[0.2406] € (0.2405,2.8400){2.5995} 0.89
/= 1.1470[0.0452 € (0.1398,2.4961){2.3562} 0.84
0.9  §=0.3821][0.0640] € (0.0478, 0.8528){0.8050} 0.80
v = 1.3908 [0.2547] € (0.2116, 2.7391){2.5274} 0.87
J = 1.3359(0.0477] € (0.1909, 2.8073){2.6164} 0.79

2
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for varying values of the mission time x are listed in
Tables 9 and 10, respectively. Note that, in Tables 2, 3, 4,
5, 6, 7, and 8, the entries in the bracket [] represent ASEs/
APEs and those in the brackets () and {}, respectively,

Table 6 Average ML
estimates, the ASEs, and
average confidence intervals
along with AILs and CPs with
Type-II hybrid censoring for
n =100

Table 7 Average Bayes
estimates with gamma priors,
the APEs, and average HPD
intervals along with AILs and
CPs with Type-II hybrid
censoring for n = 100

@ Springer

represent average confidence/HPD intervals and their
lengths. For all the numerical computations, the programs
are developed in the R-software. From the results given in
Tables 3,4, 5,6,7, 8,9, and 10, the following is observed:

= 0.2173[0.0453]

n R T AML estimates [ASEs] Average confidence intervals and AlLs CPs
100 80 1.9 B =0.4842[0.2121] B € (0.0750, 0.8999){0.8249} 0.87
¥ = 1.9175[0.4651] v € (1.0058, 2.8292){1.8234} 0.97
=0.3198 [0.3835] 2 € (0.0159, 1.0715){1.0556} 0.97
L7 B = 0.5134]0.2209] B € (0.0826, 0.9464){0.8638} 0.91
¥ = 1.9816 [0.4644] € (1.0713, 2.8920){1.8206} 0.95
1 =0.2520 [0.3751] S (0.0148, 0.9874){0.9725} 0.96
100 60 L5 B =0.5321[0.2251] € (0.0940, 0.9734){0.8794} 0.90
¥ = 2.0104[0.4633] € (1.1023, 2.9186){1.8163} 0.97
1 =0.2259 [0.3725] € (0.0188, 0.9561){0.9373} 0.95
1.3 B = 0.5009 [0.2202] B € (0.0751, 0.9326){0.8574} 0.89
¥ = 2.0241[0.4833] v e (1.0768, 2.9714){1.8945} 0.95
— 0.2630(0.3882] 4 € (0.0274, 1.0240){0.9965} 0.92
100 40 1.1 B =0.5173[0.2249] B € (0.0795, 0.9581){0.8786} 0.86
¥ = 1.9821[0.4700] € (1.0609, 2.9033){1.8424} 0.93
— 0.2691[0.3836] 2 € (0.0148, 1.0211){1.0063} 0.94
0.9 =0.5397[0.2416) B € (0.0721, 1.0132){0.9411} 0.85
¥ = 2.0603[0.4886] v e (1.1026, 3.0181){1.9154} 0.96
1=0. 2376[0.3969] 2 € (0.0222, 1.0156){0.9933} 0.92
n R T ABEs with Gamma priors [APEs] Average HPD intervals and AlLs CPs
100 80 1.9 f=0.4949(0.0473] B € (0.4045, 0.5886){0.1840} 1.0
¥ = 2.0065[0.1549] ve (1.7117, 2.3092){0.5974} 1.0
7 = 0.20240.0426] A€ (0.1232, 0.2864){0.1632} 1.0
L7 B = 0.4694[0.0457) B € (0.3823, 0.5600){0.1777} 1.0
¥ =1.9639[0.1555) € (1.6648, 2.2639){0.5990} 1.0
J = 0.2008 [0.0423] € (0.1216, 0.2835)0.1619 1.0
100 60 15  p=0.5089[0.0481] € (0.4165, 0.6038){0.1872} 1.0
¥ =1.9983[0.1567 € (1.6959, 2.3008){0.6049} 1.0
7 = 0.20860.0437] € (0.1273, 0.2941){0.1668} 1.0
L3 B = 0.5332[0.0500] € (0.4375, 0.6320){0.1944} 1.0
¥ = 1.9059 [0.1524) € (1.6133, 2.2020){0.5886} 1.0
= 0.2163[0.0449] A € (0.1326,0.3042){0.1715} 1.0
100 40 1.1 B = 0.5819[0.0531] € (0.4803, 0.6871){0.2068} 1.0
¥ =1.93131[0.1527] € (1.6388, 2.2294){0.5906} 1.0
/. = 0.2228[0.0463] € (0.1363, 0.3137){0.1773} 1.0
0.9  §=0.5562[0.0514] € (0.4577, 0.6577){0.2000} 1.0
¥ =2.0523[0.1602] € (1.7430, 2.3620){0.6190} 1.0
i= € (0.1333, 0.3069){0.1735} 1.0




Iran J Sci Technol Trans Sci (2018) 42:1395-1407

1405

Table 8 Average Bayes
estimates with Jeffrey’s prior,
the APEs, and average HPD
intervals along with AILs and
CPs with Type-II hybrid
censoring for n = 100

n R T  ABEs with Jeffrey’s prior [APEs] Average HPD intervals (AHPD) and widths CPs
100 80 1.9 §=0.5323 [0.0468] f € (0.2481, 0.7508){0.5027} 1.0
¥ = 2.0659[0.1545] v € (1.3630, 2.6004){1.2374} 1.0

1.7 ﬁ = 0.3865[0.0476] /3 € (0.1065, 0.6865){0.5800} 0.98

v = 1.8355[0.1584] € (0.8334, 2.7239){1.8904 } 0.97

7= 0.5690 0.0437] € (0.0070, 1.4092){1.4022} 0.95

100 60 1.5 fj_ 0.4857 [0.0476] S € (0.1746, 0.7576){0.5830} 0.99
v = 1.8642[0.1580) v € (1.0157, 2.5333){1.5175} 1.0

1 =023315 [0.0411] 2 € (0.0001, 1.0232){1.0230} 0.99

1.3 /}— 0.4206 [0.0494] f € (0.1321, 0.7658){0.6337} 0.97

¥ = 1.4889 [0.1506) v € (0.7047,2.2596){1.5548} 0.98

100 40 1.1 ﬁ = 0.7259[0.0518] € (0.3533,0.9979){0.6446} 0.89
v =1.9194[0.1609] € (1.2973,2.3956){1.0982} 1.0

1 =0.1536 [0.0467] € (0.0001,0.6672){0.6671} 0.94

0.9  f=0.6598[0.0513] p € (0.3123,0.9171){0.6047} 0.92

v = 2.0769 [0.1647] v € (1.3932,2.5947){1.2015} 1.0

] =0.1612 [0.0438] 2 € (0.0001,0.7179){0.7178} 0.95

Table 9 Average ML estimates, ASEs, average confidence intervals along with their AILs, average Bayes estimates with their APEs, average
HPD intervals, and CPs of reliability function for fixed n = 50 and varying x

Estimates X

0.25 0.5 0.75 1.00 1.25
True R(x) 0.9676 0.8709 0.7212 0.5429 0.3667
R(x) 0.9638 0.8789 0.7217 0.5491 0.3650
ASEs 0.0286 0.1068 0.1603 0.1823 0.1816
Lower ACI 0.9076 0.6728 0.4186 0.2596 0.1302
Upper ACI 1.0199 1.0882 1.0360 0.9065 0.7210
Width 0.1122 0.4154 0.6173 0.6469 0.5908
CPs 0.94 0.99 0.99 0.98 0.92
RGp(x) 0.9654 0.8835 0.7213 0.5807 0.3567
APEs 0.0111 0.0220 0.0320 0.0350 0.0375
Lower AHPD 0.9432 0.8398 0.6581 0.5121 0.2845
Upper AHPD 0.9847 0.9248 0.7825 0.6486 0.4305
Width 0.0414 0.0850 0.1243 0.1365 0.1460
CPs 1.00 1.00 1.00 1.00 1.00
Rip(x) 0.9612 0.8998 0.7224 0.6312 0.3583
APEs 0.0182 0.0315 0.0519 0.0565 0.0546
Lower AHPD 0.9251 0.8371 0.6201 0.5196 0.2536
Upper AHPD 0.9896 0.9521 0.8145 0.7367 0.4728
Width 0.0645 0.1150 0.1943 0.2170 0.2192
CPs 1.00 1.00 1.00 1.00 1.00

Here, R;p(x) and Rjp(x), respectively, stand for average Bayes estimates of R(x) under Gamma and Jeffrey’s priors
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Table 10 Average ML estimates, ASEs, average confidence intervals along with their AILs, average Bayes estimates with their APEs, average
HPD intervals, and CPs of hazard rate function for fixed n = 50 and varying x

Estimates X

0.25 0.5 0.75 1.00 1.25
True H(x) 0.2693 0.5802 0.9367 1.3435 1.8056
h(x) 0.2621 0.5381 0.9405 1.3772 1.9472
ASEs 0.1332 0.2593 0.4447 0.7664 1.2623
Lower ACI 0.0742 0.1734 0.2340 0.2944 0.3103
Upper ACI 0.5233 1.0464 1.8122 2.8794 4.4215
Width 0.4491 0.8729 1.5782 2.5850 4.1111
CPs 0.92 0.88 0.89 0.95 0.94
hép(x) 0.2836 0.5507 0.9829 1.1656 1.9633
APEs 0.0654 0.0730 0.1004 0.1246 0.2670
Lower AHPD 0.1628 0.4111 0.7909 0.9282 1.4574
Upper AHPD 0.4135 0.6947 1.1808 1.4131 2.4910
Width 0.2506 0.2835 0.3899 0.4849 1.0335
CPs 1.00 1.00 1.00 1.00 1.00
hip(x) 0.3173 0.5077 0.9886 1.0426 2.0111
APEs 0.1095 0.1178 0.1677 0.1664 0.3188
Lower AHPD 0.1233 0.2889 0.6697 0.7230 1.4135
Upper AHPD 0.5263 0.7421 1.3412 1.3484 2.6559
Width 0.4030 0.4531 0.6714 0.6253 1.2424
CPs 1.00 1.00 1.00 1.00 1.00

Here, h{p(x) and Aj,(x), respectively, represent average Bayes estimates of i(x) under Gamma and Jeffrey’s priors

e The ML estimates in comparison to Bayes are not
performing well for small values of n, R, and
T. However, for large sample, both the methods of
estimation are precisely estimating the parameters,
reliability, and hazard functions in terms of ASEs/
APEs and AlLs and associated CPs of the confidence/
HPD intervals.

e The performance of Bayes estimation under gamma
priors is better in comparison with those under
Jeffrey’s priors as well as ML estimates in terms of
AlLs and associated CPs of HPD intervals. In all the
cases, the HPD intervals under gamma priors cover
the true parameters’ values with probability one. Over
all, the coverage probabilities of the confidence
intervals are observed to be smaller than those of
HPD intervals.

e In most of the cases, the CPs of confidence and HPD
intervals tend to increase with n, R and T.

e As expected, the average estimated errors and AlLs of
the various intervals tend to decrease with increase
sample size n.

e Bayes estimation with gamma prior provides more
efficient estimates as compared with the Jeffrey’s prior
as well as the ML method of estimation for all
considered combinations of n, R, and T.

2
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e The APEs and the AILs of the HPD intervals based on
gamma priors are smaller than those with Jeffrey’s
priors.

e As x increases, the reliability function (hazard rate
function) decreases (increases). The same trend is
observed in the case of their ML and Bayes estimates.

5 Concluding Remarks

In this article, the estimation of the parameters of the
modified Weibull distribution under Type-II hybrid cen-
soring scheme is presented. The ML and Bayesian esti-
mation (with gamma and Jeffrey’s priors) methods have
been used for this purpose. The performances of different
estimators are examined based on small and large samples
with different combinations of Type-II hybrid censoring
parameters R and 7. A real data set analysis is carried out
under Type-II hybrid censored scheme to show the appli-
cability of the modified Weibull distribution. Based on the
censoring results, it is proposed that the modified Weibull
distribution may be a better lifetime model for analyzing
the reliability characteristics of real-life systems with
Type-II hybrid censoring scheme.



Iran J Sci Technol Trans Sci (2018) 42:1395-1407

1407

Acknowledgments The authors thankfully acknowledge the critical
suggestions from the learned referees which greatly helped in the
improvement of the paper.

References

Al-Zahrani B, Gindwan M (2014) Parameter estimation of a two-
parameter Lindley distribution under hybrid censoring. Int J Syst
Assur Eng Manag. doi:10.1007/s13198-013-0213-2

Balakrishnan N, Cohen AC (1991) Order statistics and inference:
estimation methods. Academic Press, San Diego

Balakrishnan N, Kundu D (2013) Hybrid censoring: models, infer-
ential results and applications. Comput Stat Data Anal
57(1):166-209

Banerjee A, Kundu D (2008) Inference based on type-II hybrid
censored data from a Weibull distribution. IEEE Trans Reliab
57:369-378

Berger J (1985) Statistical decision theory and bayesian analysis.
Springer, New York

Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian
credible and HPD intervals. J Comput Graph Stat 8:69-92

Childs A, Chandrasekhar B, Balakrishnan N, Kundu D (2003)
Exactlikelihood inference based on type-I and type-1I hybrid
censored samples from the exponential distribution. Ann Inst
Stat Math 338(55):319-330

Dube S, Pradhan B, Kundu D (2011) Parameter estimation for the
hybrid censored log-normal distribution. J Stat Comput Simul
81(3):275-282 (343)

Epstein B (1954) Truncated life tests in the exponential case. Ann
Math Stat 25:555-564

Epstein B (1960) Estimation from life-test data. Technometrics
2:447-454

Ganguly et al (2012) Exact inference for the two-parameter
exponential distribution under type-II hybrid censoring scheme.
J Stat Plan Inference 142(3):613-625

Geman S, Geman A (1984) Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. IEEE Trans Pattern Anal
Mach Intell 6:721-740

Gupta PK, Singh B (2013) Parameter estimation of hybrid censored
data with Lindley distribution. Int J Syst Assur Eng Manag
4(4):378-385

Harter H, Leon, Balakrishnan N (1996) CRC handbook of tables for
the use of order statistics in estimation. CRC Press, Boca Raton

Hastings WK (1970) Monte Carlo sampling methods using Markov
Chains and their applications. Biometrika 57:97-109

Kaplan EL, Meier P (1958) Nonparametric estimation from incom-
plete observations. J Am Stat Assoc 53:457—481

Kundu D (2007) On hybrid censoring Weibull distribution. J Stat Plan
Inference 137:2127-2142

Kundu D, Pradhan B (2009) Estimating the parameters of the
generalized exponential distribution in presence of the hybrid
censoring. Commun Stat Theory Methods 38(12):2030-2041

Lai CD, Xie M, Murthy DN (2003) A modified Weibull distribution.
IEEE Trans Reliab 52:33-37

Lawless JF (1982) Statistical model and methods for lifetime data.
Wiley, NewYork

Lawless JF (2003) Statistical models and methods for lifetime data,
2nd edn. Wiley, New York

Mann NR, Schafer RE, Singpurwala ND (1974) Methods for
statistical analysis of reliability and life data. Wiley, New York

Metropolis N, Ulam S (1949) The Monte Carlo method. J] Am Stat
Assoc 44:335-341

Rastogi MK, Tripathi YM (2013) Inference on unknown parameters
of Burr distribution under hybrid censoring. Stat Pap 54:619-643

Robert C (2007) The Bayesian Choice, 2nd edn. Springer, New York

Singh B, Gupta PK, Sharma VK (2014) On Type-II hybrid censored
Lindley distribution. Stat Res Lett 3(2):58-62

2, 49\ Springer


http://dx.doi.org/10.1007/s13198-013-0213-2

	Reliability Estimation of Modified Weibull Distribution with Type-II Hybrid Censored Data
	Abstract
	Introduction
	Estimation and Confidence Intervals under Type-II Hybrid Censoring Scheme
	Maximum-Likelihood Estimators
	Bayesian Estimation
	Gibbs Algorithm
	MH Algorithm


	Real Data Analysis
	Comparison Study
	Concluding Remarks
	Acknowledgments
	References




