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Abstract The study deals with the analysis of Type-II

hybrid censored data from the modified Weibull distribu-

tion. We provide maximum-likelihood estimates of the

parameters, reliability, and hazard rate functions along with

their standard errors. The confidence intervals along with

their widths have also been obtained. Assuming gamma

and Jeffrey’s invariant priors for the unknown parameters,

Bayes estimates along with its posterior errors and highest

posterior density credible intervals are obtained. The

Markov Chain Monte Carlo technique has been used to

simulate draws from the complicated posterior densities of

the parameters. A simulation study is conducted to com-

pare the performances of classical and Bayesian methods

of estimation. Finally, a real data analysis is performed for

illustrative purpose.

Keywords Modified Weibull distribution � Type-II hybrid
censoring � Maximum-likelihood estimate � Bayes
estimate � Markov Chain Monte Carlo technique

1 Introduction

In reliability and life testing experiments, the equipments

are put on test and their failure times are recorded. These

failure time observations are then used to draw inferences

on various system reliability characteristics. However, due

to long life times of today’s products, obtaining times-to-

failure data is very time consuming which increases the

cost of experimentation as well. To overcome this diffi-

culty, censoring is used in life testing experiments to save

the time and cost. Failure censoring schemes are broadly

classified as Type-I (time censoring) and Type-II (failure

censoring). Suppose, n items are put on test. In Type-I

censoring, we fix the time T to terminate the experiment in

advanced and observe the life times of those items which

fail up to time T, whereas in Type-II censoring scheme,

time to terminate the experiment is a random variable and

required number of failed items to stop the test is fixed, say

m (m� n), so that at the time of the mth failure, the test

terminates leaving n - m partially observed failure times.

Type-I and Type-II censoring schemes have been exten-

sively studied by numerous authors, including Mann et al.

(1974), Lawless (1982), Balakrishnan and Cohen (1991),

and Harter et al. (1996).

Since major constraints in life testing experiments are

time and cost, therefore, we need a censoring

scheme which can make a trade-off between the number of

units used and the time required to stop the experimenta-

tion without sacrificing the desired efficiency of the sta-

tistical inference. Hybrid censoring is one such censoring

scheme introduced by Epstein (1954, 1960). The hybrid

censoring is also categorized as Type-I and Type-II. If the

test is terminated at the random time T* = min{XR:n, T},

where R and T are prefixed numbers, and XR:n indicates the

time of Rth failure in a sample of size n. Then, it is called

Type-I hybrid censoring scheme. Many studies, including

Kundu (2007), Kundu and Pradhan (2009), Dube et al.

(2011), Ganguly et al. (2012), Rastogi and Tripathi (2013),

and Gupta and Singh (2013), dealt with statistical inference

for different life time distributions using Type-I hybrid

censoring scheme. On the other hand, if the test is stopped
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at time T** = max{XR:n, T}, it is known as Type-II hybrid

censoring scheme (Childs et al. 2003). With Type-II hybrid

censoring scheme, one has the advantage to record the

complete life times of at least R units before the experiment

is terminated. For more details regarding statistical infer-

ences under Type-II hybrid censoring scheme, one may

refer Banerjee and Kundu (2008), Al-Zahrani and Gindwan

(2014), and Singh et al. (2014). The detail review of var-

ious hybrid censoring schemes is given in Balakrishnan and

Kundu (2013). Though many distributions have been

considered for drawing inferences with Type-I and Type-II

hybrid censored data, to the best of our knowledge, none of

the study has reported the inferential statistics on the

modified Weibull (MW) distribution under Type-II hybrid

censoring scheme. Initially, this distribution was proposed

by Lai et al. (2003), and has the following probability

density function (PDF):

f ðxÞ ¼ bxm�1ðmþ kxÞ expðkx� bxmekxÞ; x[ 0: ð1Þ

The distribution function (DF) of MW distribution is

written as:

FðxÞ ¼ 1� expð�bxmekxÞ:

The corresponding reliability and hazard rate functions

are as follows:

RðxÞ ¼ expð�bxmekxÞ; ð2Þ

hðxÞ ¼ bxm�1ðmþ kxÞekx: ð3Þ

The shape of hazard rate function h(x) of MW distri-

bution depends on the parameter m. For m� 1, h(x) is

increasing in x, whereas for 0\m\1, it has bathtub shape.

Due to the flexible shape of its hazard rate function, MW

distribution has become important life time model for

reliability engineers.

In lieu of above considerations, we explore the infer-

ential properties of the modified Weibull distribution with

Type-II hybrid censoring data. We provide maximum-

likelihood estimators of the parameters, reliability, and

hazard functions of MW distribution with Type-II hybrid

censored data. Fisher information matrix has been given to

construct confidence intervals of the parameters as well as

reliability and hazard functions. Bayes estimates and

highest posterior density (HPD) intervals of the parameters

have been obtained using gamma and Jeffrey’s priors.

Markov Chain Monte Carlo (MCMC) technique has been

used to generate draws from complex posterior densities of

the parameters. The coverage probabilities of confidence

and HPD intervals have also been provided. To illustrate

the application of MW distribution, a real data analysis is

presented. A simulation study is also carried out to access

the performances of ML and Bayes methods of estimation.

At the end, some concluding remarks are given.

2 Estimation and Confidence Intervals
under Type-II Hybrid Censoring Scheme

2.1 Maximum-Likelihood Estimators

Let n units are put on test. Then, under the Type-II hybrid

censoring scheme, we have one of the following three types

of observations:

Case I: x1:n\x2:n\ � � �\xR:nf g if xR:n [ T:

Case II: x1: n\x2: n\ � � �\xR: n\xRþ1: n\ � � �\xk: nf
\T\xkþ1: ng if R� k\n, and xk:n\T\xkþ1:n

Case III: x1: n\x2: n\ � � �\xn:n\Tf g:
Graphically, it can be presented as shown in Fig. 1:

The likelihood functions for the above three different

cases are as follows:

Case I:

L1ðxÞ ¼
n!

ðn� RÞ!
YR

i¼1

bxm�1
i mþ kxið Þe

k
PR
i¼1

xi�b
PR
i¼1

xmi e
kxi

e�bXm
Re

kXR
h in�R

:

ð4Þ

Case II:

L2ðxÞ ¼
n!

n� Kð Þ!
YK

i¼1

bxm�1
i mþ kxið Þe

k
PK
i¼1

xi�b
PK
i¼1

xmi e
kxi

e�bTmekT
h in�K

:

ð5Þ

Case III:

L3ðxÞ ¼
Yn

i¼1

bxm�1
i mþ kxið Þe

k
Pn
i¼1

xi�b
Pn
i¼1

xmi e
kxi

: ð6Þ

On combining three likelihood functions, one gets

     1-st failure            2-nd failure                                               R-th failure (experiment stops) 

    Case I       

1:nY 2:nY                                                    T       R:nY

      1-st failure            2-nd failure                                          K-th failure     experiment stops 

      Case II 

1:nY 2:nY K:nY                T 

      1-st failure            2-nd failure                                               n-th failure (experiment stops) 

      Case III 

1:nY 2:nY n:nY             T                   

Fig. 1 Graphical presentation of Type-II hybrid censoring scheme
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L ¼ LðxÞ ¼ n!

n� Dð Þ!
YD

i¼1

bxm�1
i mþ kxið Þe

k
PD
i¼1

xi�b
PD
i¼1

xmi e
kxi

e�bUmekU
h in�D

:

ð7Þ

Here, D denotes the number of failure, that is

D ¼
R for case I

k for case II

n for case III

8
><

>:
;

and

U ¼
XR; D ¼ R

T ; D[R

(
:

The log-likelihood function is

log L ¼ logC þ D log bþ ðm� 1Þ
XD

i¼1

log xi

þ
XD

i¼1

logðmþ kxiÞ þ k
XD

i¼1

xi � b
XD

i¼1

xmi e
kxi

� b n� Dð ÞUmekU :

ð8Þ

The first derivatives of (8) with respect to b, m, and k are

as follows:

o

ob
logL ¼ D

b
�
XD

i¼1

xmi e
kxi � ðn� DÞUmekU ¼ 0; ð9Þ

o

om
log L ¼

XD

i¼1

log xi þ
XD

i¼1

1

ðmþ kxiÞ

�b
XD

i¼1

xmi log xie
kxi � bðn� DÞUm logU ekU ¼ 0; ð10Þ

o

ok
log L ¼

XD

i¼1

xi

ðmþ kxiÞ
þ
XD

i¼1

xi

� b
XD

i¼1

xmþ1
i ekxi

"
þ n� Dð ÞUmþ1ekU

#

¼ 0: ð11Þ

Therefore, for fixed m and k, the MLE of b say b̂ can be

obtained as:

b̂ ¼ D

PD

i¼1

xmi e
kxi þ ðn� DÞUmekU

: ð12Þ

The MLE of m and k can be obtained by solving the

following non-linear equations:

XD

i¼1

log xi þ
XD

i¼1

1

mþ kxið Þ � b̂
XD

i¼1

xmi log xie
kxi

� b̂ n� Dð ÞUm logU ekU ¼ 0; ð13Þ

and

XD

i¼1

xi

ðm̂þ kxiÞ
þ
XD

i¼1

xi

� b̂
XD

i¼1

xm̂þ1
i ekxi þ ðn� DÞU m̂þ1ekU

" #
¼ 0: ð14Þ

The MLE of b say b̂ can be obtained by Eq. (12), but

Eqs. (13) and (14) are very complicated, so they cannot be

expressed explicitly. Thus, some suitable iterative method

is required to get ðm̂; k̂Þ. Now, using the general theory of

MLEs, the asymptotic distribution of

b̂� b m̂� m k̂� k
� �0

is N3ð0; R�1Þ. Where D is the

Fisher’s information matrix whose elements are as follows:

D11 ¼ E � o2 log L

ob2

� �
; D12 ¼ E � o2 log L

obom

� �
¼ D21;

D13 ¼ E � o2 log L

obok

� �
¼ D31; D22 ¼ E � o2 log L

om2

� �
;

D23 ¼ E � o2 log L

omok

� �
¼ D32; and D33 ¼ E � o2 log L

ok2

� �
:

The second derivative with respect to b, m, and k are as:

o2

ob2
log L ¼ �D

b2
; ð15Þ

o2

om2
logL¼

XD

i¼1

�1

ðmþkxiÞ2

�b
XD

i¼1

xmi ðlogxiÞ
2
ekxi þðn�DÞUmðlogUÞ2ekU

" #
;

ð16Þ

o2

ok2
log L ¼

XD

i¼1

�x2i

ðmþ kxiÞ2

� b
XD

i¼1

xmþ2
i ekxi þ ðn� DÞUmþ2ekU

 !
; ð17Þ

o2

omob
logL ¼ �

XD

i¼1

xmi log xi e
kxi þ ðn� DÞUm logU ekU

" #
;

ð18Þ

o2

okob
logL ¼ �

XD

i¼1

xmþ1
i ekxi þ ðn� DÞUmþ1ekU

" #
; ð19Þ
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o2

okom
log L ¼ �

XD

i¼1

xi

ðmþ kxiÞ2
þ b

XD

i¼1

xmþ1
i log xi e

kxi

("

þðn� DÞUmþ1 logUekU

)#
:

ð20Þ

Using the invariance property of maximum-likelihood

estimates, we get the MLEs of the reliability and hazard

rate functions as follows:

R̂ðxÞ ¼ expð�b̂xm̂ek̂xÞ;

ĥðxÞ ¼ b̂xm̂�1ðm̂þ k̂xÞek̂x:

The asymptotic sampling distributions of R̂ðxÞ � RðxÞ
� �

and ĥðxÞ � hðxÞ
� �

are Nð0;R0P�1
RÞ and Nð0; h0

P�1
hÞ,

where R0 ¼ oRðxÞ
ob ; oRðxÞ

om ; oRðxÞ
ok

� �
and h0 ¼

ohðxÞ
ob ; ohðxÞ

om ; ohðxÞ
ok

� �
.

2.2 Bayesian Estimation

In Bayesian inference, one of the tedious tasks is how to

construct prior models for the unknown parameters as there

is no unique approach of choosing a priori, and that the

choice of a wrong priori may lead to the inappropriate

inference. The prior distribution is the key to Bayesian

inference and its determination is, therefore, the most

important step in drawing the inference (Robert 2007). In

practice, informative and non-informative priors are used

to represent uncertainties about the model parameters.

Berger (1985) pointed out that when there is no informa-

tion or very difficult to gather regarding the prior variations

in the parameters, it is better to use non-informative prior

distribution. However, non-informative priors generally

lack invariance property under one-to-one transformation,

thereby leading to incoherent analysis. On the other hand,

informative priors are based on the investigator’s experi-

ence about the random behavior of the process under

consideration. In lieu of this, we consider the Bayesian

method of estimation with both informative and non-in-

formative priors. First, we assume that the parameters b, m,
and k have Gammaða1; b1Þ, Gammaða2; b2Þ, and

Gammaða3; b3Þ priors, respectively, with PDFs:

g1ðbÞ / ba1�1e�b1b;

g2ðmÞ / ma2�1e�b2m;

g3ðkÞ / ka3�1e�b3k:

Based on the above priors, the joint distribution of data

and parameters b, m, and k is given by,

hðx; b; m; kÞ ¼ Lðx b; m; kj Þ � g1ðbÞ � g2ðmÞ � g3ðkÞ;

/ bDþa1�1
YD

i¼1

xm�1
i

YD

i¼1

ðmþ kxiÞe
k
PD
i¼1

xi�b
PD
i¼1

xmi e
kxi

�e�bðn�DÞUmekUma2�1ka3�1 e�b1b�b2m�b3k: ð21Þ

For drawing Bayesian inference, we need joint posterior

distribution of the parameters b, m, and k which are very

difficult to compute analytically due to multidimensional

parameter space. Therefore, Gibbs sampler proposed by

Geman and Geman (1984) is used for this purpose. One

important advantage with Gibbs sampler is that we only

require full conditional posterior distributions of each of

the parameters. The full conditional posterior of parameters

b, m, and k are given by the following:

Wðb x; m; k
��� Þ / bDþa1�1 e

�b
PD
i¼1

xmi e
kxi�bðn�DÞUmekU�b1b

ð22Þ

Wðm x; b; k
��� Þ / ma2�1

YD

i¼1

xm�1
i

YD

i¼1

ðmþ kxiÞe
�b
PD
i¼1

xmi e
kxi

� e�b n�Dð ÞUmekU�b2m;

ð23Þ

W k x; m; b
���

� �
/ ka3�1

YD

i¼1

mþ kxið Þe
�k b3�

PD
i¼1

xi

	 


�e
�b
PD
i¼1

xmi e
kxiþ n�Dð ÞUmekU

� �

:

ð24Þ

2.2.1 Gibbs Algorithm

1. Set starting values for m and k, and generate b from the

conditional density Wðb x; m; k
��� Þ given in (22).

2. Generate m from the conditional density Wðm x; b; k
��� Þ in

(23) for the above given simulated value of b and

starting value of k.

3. Generate k from the conditional density Wðk x; m; b
��� Þ in

(24) for the above simulated values of b and m.
4. Repeat steps 1–3 N times and stored the generated

draws of b; m; and k after the first M-iterations to

nullify the effect of the starting values.

5. Bayes estimates of the parameters b; m; and k are then

given by the following:
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b� ¼ 1

N �M

XN

i¼Mþ1

bi; m� ¼ 1

N �M

XN

i¼Mþ1

mi and k�

¼ 1

N �M

XN

i¼Mþ1

ki:

6. HPD intervals for b; m and k are obtained using the

method proposed by Chen and Shao (1999).

7. For computing Bayes estimates and HPD intervals of

reliability and hazard functions, we first substituted the

generated values of b; m; and k in (2) and (3) and then

used the procedures as in steps 5 and 6, respectively.

The posterior results under Jeffrey’s priors can be

obtained in the same way by setting all gamma priors’

parameters equal to zero i.e., a1 ¼ b1 ¼ 0; a2 ¼ b2 ¼ 0 and

a3 ¼ b3 ¼ 0. Here, it is to be noted that the simulation in

steps 2 and 3 is not easy as the inverse distribution function

method of generating draws from the posterior densities of

m and k is not applicable here. Therefore, for simulating

parametric draws from these densities, one needs an

advanced simulating algorithm. Therefore, we utilize

Metropolis–Hastings (MH) algorithm (Metropolis and

Ulam 1949; Hastings 1970), one of the MCMC techniques

to generate m and k.

2.2.2 MH Algorithm

Suppose we want to simulate draws ðh1; h2; . . .hNÞ from

the distribution g hð Þ. Given the target density g hð Þ and an

arbitrary proposal density or jumping distribution

qðhjh0Þ ¼ Pðh0 ! hÞ, i.e., the probability of returning a

new sample value h given a previous sample value h
0
, the

algorithm is as follows:

1. Set initial value h� satisfying target density gðh�Þ[ 0.

2. For t = 1,2,…N, repeat the following steps.

3. Set h ¼ hðt�1Þ:

4. Using current h value, sample a point h� � qðh�jhðt�1ÞÞ.
Here, we assume normal distribution as the proposal

density that is qðh�jhðt�1ÞÞ 	 Nðhðt�1Þ; rhÞ. The standard
deviation rh is chosen, so that the chain explores the

whole area of the target density with sufficient accep-

tance probability.

5. Compute the acceptance probability

qðh�; hðt�1ÞÞ ¼ min 1; log gðh�Þqðhðt�1Þjh�Þ
gðht�1Þqðh�jhðt�1ÞÞ

� �n o
:

6. Generate u from Uð0; 1Þ and take z ¼ logu.

7. If z\qðh�; ht�1Þ, accept h� and set hðtÞ ¼ h� with

probability qðh�; ht�1Þ. Otherwise, reject h� and set

hðtÞ ¼ hðt�1Þ.

3 Real Data Analysis

In this section, an analysis of a real data set is performed.

The data set is taken from Lawless (2003), which contains

60 observations on electrical appliance failure times (1000s

of cycles) as follows:

0.014, 0.034, 0.059, 0.061, 0.069, 0.08, 0.123, 0.142,

0.165, 0.21, 0.381, 0.464, 0.479, 0.556, 0.574, 0.839,

0.917, 0.969, 0.991, 1.064, 1.088, 1.091, 1.174, 1.270,

1.275, 1.355, 1.397, 1.477, 1.578, 1.649, 1.707, 1.893,

1.932, 2.001, 2.161, 2.292, 2.326, 2.337, 2.628, 2.785,

2.811, 2.886, 2.993, 3.122, 3.248, 3.715, 3.79, 3.857,

3.912, 4.1, 4.106, 4.116, 4.315, 4.510, 4.584, 5.267, 5.299,

5.583, 6.065, 9.701.

First, we compare the fitting of three-parameter MW

distribution with some two-parameter distributions, such as

Weibull, gamma, and log-normal to this data set. The

Kolmogorov–Smirnov (K–S) test, log-likelihood criterion,

and Akaike information criterion (AIC) are applied for this

purpose. For complete data set, the MLEs of the parameters

and fitting summaries of considered models are given in

Table 1. While obtaining the MLEs of the three-parameter

MW distribution, we found the MLE of b in closed form,

whereas MLEs of the other two parameters m and k are

obtained using the optimization function maxLik() of R-

software. To check the convergence of this algorithm, the

contour plot of the two-dimensional log-likelihood surface

for m and k corresponding to the considered data set has been
drawn in Fig. 2a. The surface is well behaved with a unique

maximum. The MLEs of m and k are shown in the contour

Table 1 MLE along with SE, K–S statistics with corresponding P value, logL, and AIC of the models fitted to the real data

Model PDF MLEs (SE) K–S statistics (P value) logL AIC

b m k

MW f(x) 0.387 (0.079) 0.749 (0.154) 0.116 (0.059) 0.0652 (0.946) -105.26 216.52

Weibull m b xm�1e�b xm 0.455 (0.081) 1.001 (0.106) – 0.0776 (0.8343) -107.12 218.24

Gamma bm

mj e�b xxm�1 0.424 (0.088) 0.931 (0.148) – 0.0897 (0.6857) -107.02 218.03

Log-normal 1

b x
ffiffiffiffi
2p

p e
� 1

2b2
ðlog x�mÞ2 1.439 (0.131) 0.160 (0.185) – 0.1653 (0.0667) -116.57 237.14
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plot. The difference in curvature in the log-likelihood sur-

face along with m and k directions can be easily observed.

We also draw the individual profile plots of log-likelihood

function for m and k in Fig. 2b, c, respectively. The values of
K–S statistics and associated P values clearly indicate that

the MW distribution is a better model for the given data.

The values of the log-likelihood and AIC also suggested the

same. The fitted density plots and the P–P plots of Kaplan–

Meier estimator (KME) (Kaplan and Meier 1958) versus

fitted survival functions of the considered models are dis-

played in Fig. 3a and b. From these plots, it can be seen that

the MW distribution is superior to the other distributions in

Fig. 2 .

Fig. 3 For real data: a estimated densities plot, b P–P plots of KME verses fitted survival functions, and c empirical and fitted cumulative hazard

plots
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terms of model fitting. More so, the plots of the cumulative

hazard function superimposed on nonparametric counter-

part given in Fig. 3c confirm that MW distribution is an

adequate model for considered data set.

Now for analyzing this data with MW distribution under

Type-II hybrid censoring scheme, three artificially hybrid

censored data sets are formed from the complete data with

the following censoring schemes:

Scheme 1: R = 48, T = 4 (20 % censored data).

Scheme 2: R = 36, T = 4 (40 % censored data).

Scheme 3: R = 24, T = 1.5 (60 % censored data).

In all the cases, the unknown parameters are estimated

using the ML and Bayes methods of estimation. Bayes

estimates of b; m; and k, and HPD intervals are obtained

using gamma and Jeffrey priors. The different estimates

of the parameters along with their standard errors and

95 % confidence/HPD intervals are summarized in

Table 2.

4 Comparison Study

Here, some simulation results for accessing the perfor-

mances of the classical and Bayesian methods of estima-

tion under various Type-II hybrid censoring schemes for

different choices of (R, T) are presented. The comparisons

are made on the basis of the average standard errors/pos-

terior errors (ASEs/APEs) of the estimates, average inter-

val lengths (AILs) of the confidence/HPD intervals, and

coverage probabilities (CPs). Assuming

b ¼ 0:5; m ¼ 2; k ¼ 0:2, two sets of data containing,

respectively, n = 30 and 100 observations were generated

from (1). We replicate the process 1000 times and obtain

average estimates, ASEs/APEs, average confidence/HPD

intervals, average interval lengths, and coverage probabil-

ities with different combinations of R and T. For Bayesian

estimation, 5000 realizations of the parameters b; m; and k
from the posterior densities in (22), (23), and (24) are

Table 2 MLEs, Bayes estimates along with their estimated errors (SE/PE), and 95 % confidence/HPD intervals under various Types II hybrid

censoring schemes for real data

Estimates, SE/PE and CI/HPD intervals Scheme 1 Scheme 2 Scheme 3

MLE [SE] and CI {length} b̂ ¼ 0:3641½0:0954

b 2 ð0:1770; 0:5512Þf0:3742g
m̂ ¼ 0:6989½0:1737

m 2 ð0:3584; 1:0394Þf0:6810g
k̂ ¼ 0:1417½0:1081

k 2 ð0; 0:3537Þf0:3537g

b̂ ¼ 0:3502½0:1217

b 2 ð0:1116; 0:5888Þf0:4772g
m̂ ¼ 0:6832½0:1987

m 2 ð0:2936; 1:0727Þf0:7791g
k̂ ¼ 0:1724½0:1984

k 2 ð0; 0:5613Þf0:5613g

b̂ ¼ 0:3089½0:1339

b 2 ð0:0464; 0:5714Þf0:525g
m̂ ¼ 0:6411½0:2110

m 2 ð0:2274; 1:0547Þf0:8273g
k̂ ¼ 0:2965½0:3146

k 2 ð0; 0:9133Þf0:9133g

Bayes estimates along with Gamma prior
[PE] and HPD interval {length}

b� ¼ 0:3845½0:0462

b 2 ð0:2933; 0:4748Þf0:1815g
m� ¼ 0:8935½0:0911

m 2 ð0:7278; 1:0811Þf0:3533g
k� ¼ 0:1301½0:0263

k 2 ð0:0755; 0:1787Þf0:1032g

b� ¼ 0:3931½0:0463

b 2 ð0:3029; 0:4832Þf0:1803g
m� ¼ 0:9874½0:1086

m 2 ð0:7839; 1:2025Þf0:4186g
k� ¼ 0:1519½0:0317

k 2 ð0:0937; 0:2135Þf0:1198g

b� ¼ 0:4179½0:0484

b 2 ð0:3227; 0:5118Þf0:1891g
m� ¼ 1:1129½0:1336

m 2 ð0:8484; 1:3709Þf0:5225g
k� ¼ 0:1693½0:0368

k 2 ð0:1028; 0:2451Þf0:1423g

Bayes estimates along with Jeffrey priors
[PE] and HPD interval {length}

b� ¼ 0:4210½0:0905

b 2 ð0:2487; 0:6031Þf0:3544g
m� ¼ 0:8130½0:1523

m 2 ð0:4869; 1:0845Þf0:5976g
k� ¼ 0:0599½0:0798

k 2 ð0:00001; 0:2310Þf0:2309g

b� ¼ 0:4150½0:0943

b 2 ð0:2324; 0:6065Þf0:3741g
m� ¼ 0:7764½0:1513

m 2 ð0:4821; 1:0811Þf0:599g
k� ¼ 0:0633½0:1080

k 2 ð0:00002; 0:3093Þf0:3092g

b� ¼ 0:4017 0:1032½ 

b 2 ð0:1775; 0:5965Þ 0:419f g
m� ¼ 0:7612 0:1692½ 

m 2 ð0:4199; 1:0989Þ 0:679f g
k� ¼ 0:0931 0:1717½ 

k 2 ð0:00001; 0:4920Þ 0:4919f g

Fig. 4 .
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generated using Gibbs sampler. While simulating posterior

densities of m and k, we use MH algorithm as discussed in

Sect. 2.2. In this algorithm, the initial guess values of the

parameters m and k are taken as their MLEs. The first 1000

burn-in iterations have been discarded to eliminate the

effect of the stating values of the parameters. The graphical

diagnostic tools, such as trace and autocorrelation plots,

have been employed to check the convergence of the

chains. The trace plots of b; m; and k in Figs. 4a, 5a, and

6a, respectively show well mixing of the chains. More so,

Fig. 5 .

Fig. 6 .

Table 3 Average ML

estimates, the ASEs, average

confidence intervals along with

AILs, and CPs with Type-II

hybrid censoring for n = 30

n R T AML estimates [ASEs] Average confidence intervals and AILs CPs

30 25 1.9 b̂ ¼ 0:5967 ½0:4947

m̂ ¼ 2:0800 ½0:9026

k̂ ¼ 0:2729 ½0:7419


b 2 ð0:0001; 1:5663Þf1:5662g
m 2 ð0:4196; 3:8493Þf3:4297g
k 2 ð0:0124; 1:7271Þf1:7146g

0:87

0:96

0:96

1.7 b̂ ¼ 0:5495 ½0:4981

m̂ ¼ 1:9815 ½0:9093

k̂ ¼ 0:3710 ½0:7615


b 2 ð0; 1:5258Þf1:5258g
m 2 ð0:3182; 3:7638Þf3:4455g
k 2 ð0:0227; 1:8637Þf1:8410g

0:86

0:95

0:97

30 15 1.5 b̂ ¼ 0:5632 ½0:5148

m̂ ¼ 2:0100½0:9147

k̂ ¼ 0:3315 ½0:7657


b 2 ð0:0005; 1:5722Þf1:5717g
m 2 ð0:3344; 3:8029Þf3:4685g
k 2 ð0:0229; 1:8325Þf1:8096g

0:84

0:92

0:95

1.3 b̂ ¼ 0:5750 ½0:5176

m̂ ¼ 2:1261½0:9567

k̂ ¼ 0:2885 ½0:7876


b 2 ð0:0026; 1:5896Þf1:5869g
m 2 ð0:3811; 4:0013Þf3:6202g
k 2 ð0:0182; 1:8323Þf1:8140g

0:83

0:93

0:95

30 10 1.1 b̂ ¼ 0:6183 ½0:5659

m̂ ¼ 2:1171½0:9659

k̂ ¼ 0:3084 ½0:7977


b 2 ð0:0004; 1:7275Þf1:7271g
m 2 ð0:3701; 4:0104Þf3:6403g
k 2 ð0:0298; 1:8720Þf1:8422g

0:81

0:91

0:94

0.9 b̂ ¼ 0:6123 ½0:5787

m̂ ¼ 2:0940½0:9507

k̂ ¼ 0:3396 ½0:8000


b 2 ð0:00005; 1:7467Þf1:7466g
m 2 ð0:3856; 3:9574Þf3:5718g
k 2 ð0:0373; 1:9077Þf1:8704g

0:80

0:92

0:91
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the chains are scattered around their mean values. The

autocorrelation plots of b; m; and k in Figs. 4b, 5b, and 6b

clearly revel that the chains have low autocorrelations.

Finally, we have drawn the simulated posterior densities of

b; m; and k in Figs. 4c, 5c, and 6c, and we found that all

posterior distributions are unimodal. The results of the

comparison study have been summarized in Tables 3, 4, 5,

6, 7, and 8. The results for reliability and hazard functions

Table 4 Average Bayes

estimates (ABEs) with gamma

priors, the APEs, and average

HPD intervals along with AILs

and CPs with Type-II hybrid

censoring for n = 30

n R T ABEs with Gamma priors [APEs] Average HPD intervals and AILs CPs

30 25 1.9 b̂ ¼ 0:4824 ½0:0575

m̂ ¼ 1:7855½0:1910

k̂ ¼ 0:1945 ½0:0418


b 2 ð0:3723; 0:5956Þf0:2232g
m 2 ð1:4198; 2:1584Þf0:7386g
k 2 ð0:1173; 0:2769Þf0:1596g

1:0

1:0

1:0

1.7 b̂ ¼ 0:5006 ½0:0590

m̂ ¼ 2:0103 ½0:2107

k̂ ¼ 0:1949 ½0:0421


b 2 ð0:3888; 0:6179Þf0:2290g
m 2 ð1:6033; 2:4182Þf0:8149g
k 2 ð0:1166; 0:2779Þf0:1612g

1:0

1:0

1:0

30 15 1.5 b̂ ¼ 0:5481 ½0:0627

m̂ ¼ 1:9727 ½0:2239

k̂ ¼ 0:2164 ½0:0464


b 2 0:4282; 0:6722ð Þ 0:2439f g
m 2 1:5422; 2:4087ð Þ 0:8664f g
k 2 0:1304; 0:3084ð Þ 0:1780f g

1:0

1:0

1:0

1.3 b̂ ¼ 0:5304 ½0:0615

m̂ ¼ 1:9602 ½0:2157

k̂ ¼ 0:2061 ½0:0442


b 2 ð0:4129; 0:6517Þf0:2387g
m 2 ð1:5490; 2:3843Þf0:8352g
k 2 ð0:1233; 0:2926Þf0:1693g

1:0

1:0

1:0

30 10 1.1 b̂ ¼ 0:5549 ½0:0635

m̂ ¼ 2:0667 ½0:2293

k̂ ¼ 0:2145 ½0:0463


b 2 ð0:4340; 0:6806Þf0:2466g
m 2 ð1:6311; 2:5173Þf0:8861g
k 2 ð0:1281; 0:3051Þf0:1770g

1:0

1:0

1:0

0.9 b̂ ¼ 0:5545 ½0:0632

m̂ ¼ 2:2318 ½0:2558

k̂¼ 0:2201½0:0476


b 2 ð0:4341; 0:6793Þf0:2451g
m 2 ð1:7460; 2:7337Þf0:9877g
k 2 ð0:1327; 0:3151Þf0:1823g

1:0

1:0

1:0

Table 5 Average Bayes

estimates with Jeffrey’s prior,

the APEs, and average HPD

intervals along with AILs and

CPs with Type-II hybrid

censoring for n = 30

n R T ABEs with Jeffrey’s prior [APEs] Average HPD intervals and AILs CPs

30 25 1.9 b̂ ¼ 0:5155 ½0:0579

m̂ ¼ 1:7984½0:2058

k̂ ¼ 0:2267 ½0:0408


b 2 ð0:1398; 0:8396Þf0:6998g
m 2 ð0:7157; 2:6340Þf1:9182g
k 2 ð0:0001; 1:0158Þf1:0157g

1:0

1:0

0:95

1.7 b̂ ¼ 0:5350 ½0:0589

m̂ ¼ 2:0552 ½0:2155

k̂ ¼ 0:1490 ½0:0410


b 2 ð0:1877; 0:8386Þf0:6508g
m 2 ð1:0736; 2:8810Þf1:8074g
k 2 ð0:0001; 0:7649Þf0:7648g

1:0

1:0

0:89

30 15 1.5 b̂ ¼ 0:4396 ½0:0610

m̂ ¼ 1:4979 ½0:2214

k̂ ¼ 0:7470 ½0:0454


b 2 ð0:0658; 0:8737Þf0:8079g
m 2 ð0:2543; 2:6221Þf2:3677g
k 2 ð0:0159; 1:9654Þf1:9494g

0:98

0:97

0:93

1.3 b̂ ¼ 0:6970 ½0:0619

m̂ ¼ 1:9103 ½0:2122

k̂ ¼ 0:1348 ½0:0450


b 2 ð0:2699; 1:0735Þf0:8035g
m 2 ð1:0595; 2:6624Þf1:6029g
k 2 ð0:0001; 0:7159Þf0:7158g

1:0

1:0

0:87

30 10 1.1 b̂ ¼ 0:3238 ½0:0604

m̂ ¼ 1:4618 ½0:2406

k̂ ¼ 1:1470 ½0:0452


b 2 ð0:0417; 0:7034Þf0:6616g
m 2 ð0:2405; 2:8400Þf2:5995g
k 2 ð0:1398; 2:4961Þf2:3562g

0:84

0:89

0:84

0.9 b̂ ¼ 0:3821 ½0:0640

m̂ ¼ 1:3908 ½0:2547

k̂ ¼ 1:3359 ½0:0477


b 2 ð0:0478; 0:8528Þf0:8050g
m 2 ð0:2116; 2:7391Þf2:5274g
k 2 ð0:1909; 2:8073Þf2:6164g

0:80

0:87

0:79
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for varying values of the mission time x are listed in

Tables 9 and 10, respectively. Note that, in Tables 2, 3, 4,

5, 6, 7, and 8, the entries in the bracket [] represent ASEs/

APEs and those in the brackets () and {}, respectively,

represent average confidence/HPD intervals and their

lengths. For all the numerical computations, the programs

are developed in the R-software. From the results given in

Tables 3, 4, 5, 6, 7, 8, 9, and 10, the following is observed:

Table 6 Average ML

estimates, the ASEs, and

average confidence intervals

along with AILs and CPs with

Type-II hybrid censoring for

n = 100

n R T AML estimates [ASEs] Average confidence intervals and AILs CPs

100 80 1.9 b̂ ¼ 0:4842 ½0:2121

m̂ ¼ 1:9175½0:4651

k̂ ¼ 0:3198 ½0:3835


b 2 ð0:0750; 0:8999Þf0:8249g
m 2 ð1:0058; 2:8292Þf1:8234g
k 2 ð0:0159; 1:0715Þf1:0556g

0:87

0:97

0:97

1.7 b̂ ¼ 0:5134½0:2209

m̂ ¼ 1:9816 ½0:4644

k̂ ¼ 0:2520 ½0:3751


b 2 ð0:0826; 0:9464Þf0:8638g
m 2 ð1:0713; 2:8920Þf1:8206g
k 2 ð0:0148; 0:9874Þf0:9725g

0:91

0:95

0:96

100 60 1.5 b̂ ¼ 0:5321 ½0:2251

m̂ ¼ 2:0104½0:4633

k̂ ¼ 0:2259 ½0:3725


b 2 ð0:0940; 0:9734Þf0:8794g
m 2 ð1:1023; 2:9186Þf1:8163g
k 2 ð0:0188; 0:9561Þf0:9373g

0:90

0:97

0:95

1.3 b̂ ¼ 0:5009 ½0:2202

m̂ ¼ 2:0241½0:4833

k̂ ¼ 0:2630 ½0:3882


b 2 ð0:0751; 0:9326Þf0:8574g
m 2 ð1:0768; 2:9714Þf1:8945g
k 2 ð0:0274; 1:0240Þf0:9965g

0:89

0:95

0:92

100 40 1.1 b̂ ¼ 0:5173 ½0:2249

m̂ ¼ 1:9821½0:4700

k̂ ¼ 0:2691 ½0:3836


b 2 ð0:0795; 0:9581Þf0:8786g
m 2 ð1:0609; 2:9033Þf1:8424g
k 2 ð0:0148; 1:0211Þf1:0063g

0:86

0:93

0:94

0.9 b̂ ¼ 0:5397 ½0:2416

m̂ ¼ 2:0603½0:4886

k̂ ¼ 0:2376½0:3969


b 2 ð0:0721; 1:0132Þf0:9411g
m 2 ð1:1026; 3:0181Þf1:9154g
k 2 ð0:0222; 1:0156Þf0:9933g

0:85

0:96

0:92

Table 7 Average Bayes

estimates with gamma priors,

the APEs, and average HPD

intervals along with AILs and

CPs with Type-II hybrid

censoring for n = 100

n R T ABEs with Gamma priors [APEs] Average HPD intervals and AILs CPs

100 80 1.9 b̂ ¼ 0:4949 ½0:0473

m̂ ¼ 2:0065½0:1549

k̂ ¼ 0:2024 ½0:0426


b 2 ð0:4045; 0:5886Þf0:1840g
m 2 ð1:7117; 2:3092Þf0:5974g
k 2 ð0:1232; 0:2864Þf0:1632g

1:0

1:0

1:0

1.7 b̂ ¼ 0:4694 ½0:0457

m̂ ¼ 1:9639 ½0:1555

k̂ ¼ 0:2008 ½0:0423


b 2 ð0:3823; 0:5600Þf0:1777g
m 2 ð1:6648; 2:2639Þf0:5990g
k 2 ð0:1216; 0:2835Þ0:1619

1:0

1:0

1:0

100 60 1.5 b̂ ¼ 0:5089 ½0:0481

m̂ ¼ 1:9983 ½0:1567

k̂ ¼ 0:2086 ½0:0437


b 2 ð0:4165; 0:6038Þf0:1872g
m 2 ð1:6959; 2:3008Þf0:6049g
k 2 ð0:1273; 0:2941Þf0:1668g

1:0

1:0

1:0

1.3 b̂ ¼ 0:5332 ½0:0500

m̂ ¼ 1:9059 ½0:1524

k̂ ¼ 0:2163 ½0:0449


b 2 ð0:4375; 0:6320Þf0:1944g
m 2 ð1:6133; 2:2020Þf0:5886g
k 2 ð0:1326; 0:3042Þf0:1715g

1:0

1:0

1:0

100 40 1.1 b̂ ¼ 0:5819 ½0:0531

m̂ ¼ 1:9313 ½0:1527

k̂ ¼ 0:2228 ½0:0463


b 2 ð0:4803; 0:6871Þf0:2068g
m 2 ð1:6388; 2:2294Þf0:5906g
k 2 ð0:1363; 0:3137Þf0:1773g

1:0

1:0

1:0

0.9 b̂ ¼ 0:5562½0:0514

m̂ ¼ 2:0523 ½0:1602

k̂ ¼ 0:2173 ½0:0453


b 2 ð0:4577; 0:6577Þf0:2000g
m 2 ð1:7430; 2:3620Þf0:6190g
k 2 ð0:1333; 0:3069Þf0:1735g

1:0

1:0

1:0
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Table 8 Average Bayes

estimates with Jeffrey’s prior,

the APEs, and average HPD

intervals along with AILs and

CPs with Type-II hybrid

censoring for n = 100

n R T ABEs with Jeffrey’s prior [APEs] Average HPD intervals (AHPD) and widths CPs

100 80 1.9 b̂ ¼ 0:5323 ½0:0468

m̂ ¼ 2:0659½0:1545

k̂ ¼ 0:1624 ½0:0417


b 2 ð0:2481; 0:7508Þf0:5027g
m 2 ð1:3630; 2:6004Þf1:2374g
k 2 ð0:0001; 0:7023Þf0:7022g

1:0

1:0

0:99

1.7 b̂ ¼ 0:3865 ½0:0476

m̂ ¼ 1:8355 ½0:1584

k̂ ¼ 0:5690 ½0:0437


b 2 ð0:1065; 0:6865Þf0:5800g
m 2 ð0:8334; 2:7239Þf1:8904g
k 2 ð0:0070; 1:4092Þf1:4022g

0:98

0:97

0:95

100 60 1.5 b̂ ¼ 0:4857 ½0:0476

m̂ ¼ 1:8642 ½0:1580

k̂ ¼ 0:3315 ½0:0411


b 2 ð0:1746; 0:7576Þf0:5830g
m 2 ð1:0157; 2:5333Þf1:5175g
k 2 ð0:0001; 1:0232Þf1:0230g

0:99

1:0

0:99

1.3 b̂ ¼ 0:4206 ½0:0494

m̂ ¼ 1:4889 ½0:1506

k̂ ¼ 0:5791 ½0:0427


b 2 ð0:1321; 0:7658Þf0:6337g
m 2 ð0:7047; 2:2596Þf1:5548g
k 2 ð0:0082; 1:2740Þf1:2657g

0:97

0:98

0:96

100 40 1.1 b̂ ¼ 0:7259 ½0:0518

m̂ ¼ 1:9194 ½0:1609

k̂ ¼ 0:1536 ½0:0467


b 2 ð0:3533; 0:9979Þf0:6446g
m 2 ð1:2973; 2:3956Þf1:0982g
k 2 ð0:0001; 0:6672Þf0:6671g

0:89

1:0

0:94

0.9 b̂ ¼ 0:6598 ½0:0513

m̂ ¼ 2:0769 ½0:1647

k̂ ¼ 0:1612 ½0:0438


b 2 ð0:3123; 0:9171Þf0:6047g
m 2 ð1:3932; 2:5947Þf1:2015g
k 2 ð0:0001; 0:7179Þf0:7178g

0:92

1:0

0:95

Table 9 Average ML estimates, ASEs, average confidence intervals along with their AILs, average Bayes estimates with their APEs, average

HPD intervals, and CPs of reliability function for fixed n = 50 and varying x

Estimates x

0.25 0.5 0.75 1.00 1.25

True R(x) 0.9676 0.8709 0.7212 0.5429 0.3667

R̂ðxÞ 0.9638 0.8789 0.7217 0.5491 0.3650

ASEs 0.0286 0.1068 0.1603 0.1823 0.1816

Lower ACI 0.9076 0.6728 0.4186 0.2596 0.1302

Upper ACI 1.0199 1.0882 1.0360 0.9065 0.7210

Width 0.1122 0.4154 0.6173 0.6469 0.5908

CPs 0.94 0.99 0.99 0.98 0.92

R�
GPðxÞ 0.9654 0.8835 0.7213 0.5807 0.3567

APEs 0.0111 0.0220 0.0320 0.0350 0.0375

Lower AHPD 0.9432 0.8398 0.6581 0.5121 0.2845

Upper AHPD 0.9847 0.9248 0.7825 0.6486 0.4305

Width 0.0414 0.0850 0.1243 0.1365 0.1460

CPs 1.00 1.00 1.00 1.00 1.00

R�
JPðxÞ 0.9612 0.8998 0.7224 0.6312 0.3583

APEs 0.0182 0.0315 0.0519 0.0565 0.0546

Lower AHPD 0.9251 0.8371 0.6201 0.5196 0.2536

Upper AHPD 0.9896 0.9521 0.8145 0.7367 0.4728

Width 0.0645 0.1150 0.1943 0.2170 0.2192

CPs 1.00 1.00 1.00 1.00 1.00

Here, R�
GPðxÞ and R�

JPðxÞ, respectively, stand for average Bayes estimates of R(x) under Gamma and Jeffrey’s priors
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• The ML estimates in comparison to Bayes are not

performing well for small values of n, R, and

T. However, for large sample, both the methods of

estimation are precisely estimating the parameters,

reliability, and hazard functions in terms of ASEs/

APEs and AILs and associated CPs of the confidence/

HPD intervals.

• The performance of Bayes estimation under gamma

priors is better in comparison with those under

Jeffrey’s priors as well as ML estimates in terms of

AILs and associated CPs of HPD intervals. In all the

cases, the HPD intervals under gamma priors cover

the true parameters’ values with probability one. Over

all, the coverage probabilities of the confidence

intervals are observed to be smaller than those of

HPD intervals.

• In most of the cases, the CPs of confidence and HPD

intervals tend to increase with n, R and T.

• As expected, the average estimated errors and AILs of

the various intervals tend to decrease with increase

sample size n.

• Bayes estimation with gamma prior provides more

efficient estimates as compared with the Jeffrey’s prior

as well as the ML method of estimation for all

considered combinations of n, R, and T.

• The APEs and the AILs of the HPD intervals based on

gamma priors are smaller than those with Jeffrey’s

priors.

• As x increases, the reliability function (hazard rate

function) decreases (increases). The same trend is

observed in the case of their ML and Bayes estimates.

5 Concluding Remarks

In this article, the estimation of the parameters of the

modified Weibull distribution under Type-II hybrid cen-

soring scheme is presented. The ML and Bayesian esti-

mation (with gamma and Jeffrey’s priors) methods have

been used for this purpose. The performances of different

estimators are examined based on small and large samples

with different combinations of Type-II hybrid censoring

parameters R and T. A real data set analysis is carried out

under Type-II hybrid censored scheme to show the appli-

cability of the modified Weibull distribution. Based on the

censoring results, it is proposed that the modified Weibull

distribution may be a better lifetime model for analyzing

the reliability characteristics of real-life systems with

Type-II hybrid censoring scheme.

Table 10 Average ML estimates, ASEs, average confidence intervals along with their AILs, average Bayes estimates with their APEs, average

HPD intervals, and CPs of hazard rate function for fixed n = 50 and varying x

Estimates x

0.25 0.5 0.75 1.00 1.25

True H(x) 0.2693 0.5802 0.9367 1.3435 1.8056

ĥðxÞ 0.2621 0.5381 0.9405 1.3772 1.9472

ASEs 0.1332 0.2593 0.4447 0.7664 1.2623

Lower ACI 0.0742 0.1734 0.2340 0.2944 0.3103

Upper ACI 0.5233 1.0464 1.8122 2.8794 4.4215

Width 0.4491 0.8729 1.5782 2.5850 4.1111

CPs 0.92 0.88 0.89 0.95 0.94

h�GPðxÞ 0.2836 0.5507 0.9829 1.1656 1.9633

APEs 0.0654 0.0730 0.1004 0.1246 0.2670

Lower AHPD 0.1628 0.4111 0.7909 0.9282 1.4574

Upper AHPD 0.4135 0.6947 1.1808 1.4131 2.4910

Width 0.2506 0.2835 0.3899 0.4849 1.0335

CPs 1.00 1.00 1.00 1.00 1.00

h�JPðxÞ 0.3173 0.5077 0.9886 1.0426 2.0111

APEs 0.1095 0.1178 0.1677 0.1664 0.3188

Lower AHPD 0.1233 0.2889 0.6697 0.7230 1.4135

Upper AHPD 0.5263 0.7421 1.3412 1.3484 2.6559

Width 0.4030 0.4531 0.6714 0.6253 1.2424

CPs 1.00 1.00 1.00 1.00 1.00

Here, h�GPðxÞ and h�JPðxÞ, respectively, represent average Bayes estimates of h(x) under Gamma and Jeffrey’s priors
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