
RESEARCH PAPER

On Periodically Correlated Wide-Sense Markov Processes

A. Saadatmand1 • S. M. Sadooghi-Alvandi1 • A. R. Nematollahi1

Received: 27 October 2014 /Accepted: 6 May 2015 / Published online: 21 September 2016

� Shiraz University 2016

Abstract We consider the structures of periodically cor-

related wide-sense Markov (PCWM) processes and their

associated multi-dimensional stationary processes. The

main result of the paper concerns the structure of multi-

variate PCWM processes, in terms of multivariate autore-

gressive and periodic autoregressive processes. But we also

correct some results previously obtained for univariate

PCWM processes.
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1 Introduction

Many processes encountered in practice exhibit seasonal

behavior which cannot be modeled by conventional sta-

tionary processes (see Castro and Girardin (2002) for

examples). For modeling such data, Gladyshev (1961)

introduced the class of periodically correlated processes: a

process Xn; n 2 Zf g is said to be periodically correlated

(PC) with period T if

E XnþTð Þ ¼ E Xnð Þ and

Cov XnþT ;XmþTð Þ ¼ Cov Xn;Xmð Þ; n;m 2 Z;

where Z stands for the set of all integers. Since we propose

to deal with second-order properties, it will be assumed

throughout the paper that E Xnð Þ ¼ 0. (In practice, the

periodic sample mean is subtracted from the data.)

Associated with a PC process Xn; n 2 Zf g; there is a T-

dimensional stationary process Yn; n 2 Zf g, where

Yn ¼ XnT ;XnTþ1; . . .;XnTþT�1ð Þ�; n 2 Z: ð1:1Þ

The Markov property is the most important property that

describes the relation between the present and past values

of a process. A process Xn; n 2 Zf g is said to be wide-

sense Markov (i.e., Markov in the wide sense), henceforth

abbreviated by WM, if

Ê XnjXm1
; . . .;Xmk

ð Þ ¼ Ê XnjXmk
ð Þ;

m1\ � � �\mk\n 2 Z;

where Ê stands for the linear projection (which is a version

of the conditional expectation for Gaussian processes). A

PC process which is also Markov in the wide sense will be

denoted by PCWM. Nematollahi and Soltani (2000) char-

acterized the covariance function and the spectral density

matrix of a zero mean second-order PCWM process

Xn; n 2 Zf g and its associated T-dimensional stationary

process Yn; n 2 Zf g, defined in (1.1). Castro and Girardin

(2008) considered the structure of the covariance, corre-

lation, and reflection coefficient matrices for WM pro-

cesses which are either periodically correlated or

multivariate stationary. They also characterized these pro-

cesses in terms of autoregressive models of order one.

In this paper, we consider the structure of univariate and

multivariate PCWM processes and their associated multi-

dimensional stationary processes. In Sect. 2, we correct

some results obtained by Nematollahi and Soltani (2000)

and Castro and Girardin (2008) in the univariate case. In

Sect. 3, we characterize multivariate discrete time WM

processes. In Sect. 4, we study autoregressive characteri-

zations of PCWM processes. Finally, in Sect. 5, the results

of Sect. 2 (for the univariate case) are extended to the

multivariate case.
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2 Results for univariate PCWM processes

In this section, we correct some results obtained by

Nematollahi and Soltani (2000) and Castro and Girardin

(2008) for the T-dimensional stationary process

Yn; n 2 Zf g, defined in (1.1), which is associated with the

PCWM process Xn; n 2 Zf g.

Theorem 2.1 Let Xn; n 2 Zf g be a PCWM process and let

Yn; n 2 Zf g be its associated T-dimensional stationary pro-

cess. Let Q kð Þ ¼ Cov Ynþk;Ynð Þ ¼ Qij kð Þ
� �T�1

i;j¼0
, n; k 2 Z.

Then

Qij kð Þ ¼

h Tð Þ½ ��k
djiC i; ið Þ; k� � 1;

djiC i; ið Þ; i� j;
dijC j; jð Þ; i� j;

�
k ¼ 0;

h Tð Þ½ �kdijC j; jð Þ; k� 1;

8
>><

>>:

where C n;mð Þ ¼ CovðXn;XmÞ 6¼ 0; n;m 2 Z, h 0ð Þ ¼ 1;

and

h lð Þ ¼
Yl

i¼1

Cði; i� 1Þ
Cði� 1; i� 1Þ ; l ¼ 1; 2. . .; dij ¼

h ið Þ
h jð Þ ;

i; j ¼ 0; 1; . . .;T � 1:

Proof For k ¼ 0 and i� j, using relation (3.5) in Nema-

tollahi and Soltani (2000, p. 131) with m ¼ k; n ¼ j; and

v ¼ i� j; we have Qij 0ð Þ ¼ C i; jð Þ ¼ h Tð Þ½ �0h ið Þ h jð Þ½ ��1

C j; jð Þ ¼ dijC j; jð Þ. Since Q 0ð Þ ¼ Var Ynð Þ is a symmetric

matrix, we have Qij 0ð Þ ¼ Qji 0ð Þ ¼ djiC i; ið Þ, for i\ j. For

k� 1 and i� j; we apply relation (3.5) in Nematollahi and

Soltani (2000, p. 131), with n ¼ j, v ¼ i� j, m ¼ k, to

conclude that

Qij kð Þ ¼ C kT þ i; jð Þ ¼ h Tð Þ½ �kh ið Þ h jð Þ½ ��1
C j; jð Þ

¼ h Tð Þ½ �kdijC j; jð Þ;
i� j; k� 1:

Similarly, for k� 1 and i\j; we have

Qij kð Þ ¼ C kT þ i; jð Þ ¼ C k � 1ð ÞT þ T þ i; jð Þ
¼ h Tð Þ½ �k�1

h T þ ið Þ h jð Þ½ ��1
C j; jð Þ:

But, since C XnþT ;XmþTð Þ ¼ C Xn;Xmð Þ, we have

h T þ ið Þ ¼
YTþi

j¼1

C j; j� 1ð Þ
C j� 1; j� 1ð Þ

¼ C 1; 0ð Þ
C 0; 0ð Þ

C 2; 1ð Þ
C 1; 1ð Þ � � �

C T; T � 1ð Þ
C T � 1;T � 1ð Þ

� �

� C 1; 0ð Þ
C 0; 0ð Þ

C 2; 1ð Þ
C 1; 1ð Þ � � �

C i; i� 1ð Þ
C i� 1; i� 1ð Þ

� �
¼ h Tð Þh ið Þ:

Therefore,

Qij kð Þ ¼ h Tð Þ½ �kh ið Þ h jð Þ½ ��1
C j; jð Þ ¼ h Tð Þ½ �kdijC j; jð Þ;

i\ j; k� 1:

Finally, for k\0, we have Qij kð Þ ¼ Qji �kð Þ ¼ h Tð Þ½ ��k

djiC i; ið Þ; i; j ¼ 0; 1; . . .; T � 1:

Remark 2.1 Nematollahi and Soltani (2000, Theorem 3.3)

gave the expression Q kð Þ¼ h Tð Þ½ �kDR;k�0; where D¼

dij
� �T�1

i;j¼0
and R¼diag C 0;0ð Þ;C 1;1ð Þ;...;C T�1;T�1ð Þf g:

But their expression is not correct since, for k¼0, it gives

Q 0ð Þ¼DR, which is not correct.

Remark 2.2 Castro and Girardin (2008, Eq. 11) gave the

expression

Q kð Þ ¼ h Tð Þ½ �kAB�;

where the column vectors A ¼ ða0; a1; . . .; aT�1Þ� and B ¼
ðb0; b1; . . .; bT�1Þ� are defined by ai ¼ h ið Þ and bi ¼
h ið Þ½ ��1

C i; ið Þ; for 0� i� T � 1. But, this expression is not

correct, since for k ¼ 0, it gives Q 0ð Þ ¼ AB�, which is

clearly incorrect.

Remark 2.3 In Theorem 2.1, comparing Qij 1ð Þ and Qij kð Þ
for k� 1; we conclude that

Q kð Þ ¼ h Tð Þ½ �k�1Q 1ð Þ; k� 1:

3 Characterization of multivariate WM processes

A p-variate (p� 1) process Xn; n 2 Zf g is said to be wide-

sense Markov (WM) if

Ê XnjXm1
; . . .;Xmk

ð Þ ¼ Ê XnjXmk
ð Þ;

m1\ � � �\mk\n 2 Z;

with probability 1, where Ê stands for the linear projection

(which is a version of the conditional expectation for

Gaussian processes); see, e.g., Doob (1953, p. 90). Doob

(1953, p. 233) showed that a one-dimensional process

Xn; n 2 Zf g is WM if and only if

C n; nð ÞC m; uð Þ ¼ C m; nð ÞC n; uð Þ; m� n� u 2 Z; ð3:1Þ

or, equivalently, if and only if

C m; uð Þ ¼ C m; nð Þ C n; nð Þ½ ��1
C n; uð Þ; m� n� u 2 Z; ð3:2Þ

assuming C n; nð Þ 6¼ 0. (The case where C n; nð Þ ¼ 0 is

trivial.) Beutler (1963, p. 428) extended this characteriza-

tion to multivariate continuous time processes. In this

section, we prove that the characterization (3.2) holds for

multivariate discrete time processes, correcting a result

given by Castro and Girardin (2008, pp.160–161), who

wrongly concluded that for multivariate discrete time

processes, the above ‘‘triangular characterization does not

hold true’’.
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In what follows Xn; n 2 Zf g is a multivariate discrete

time zero mean second-order process with nonzero

covariance matrices C :; :ð Þ defined by

C n;mð Þ ¼ Cov Xn;Xmð Þ ¼ E XnX
�
m

� �
; m; n 2 Z:

(Here and in what follows X� denotes the transpose of

X). It will be assumed throughout that C m;mð Þ ¼ VarðXmÞ
is nonsingular for all m 2 Z.

Note that except for m ¼ n, these covariance matrices

are in general not symmetric, C n;mð Þ½ �� 6¼ C n;mð Þ, m 6¼ n

(and C n;mð Þ 6¼ C m; nð Þ; m 6¼ n), but we have

C n;mð Þ½ ��¼ C m; nð Þ; m; n 2 Z: ð3:3Þ

Let R :; :ð Þ denote the ‘‘normalized covariance’’ function,

defined by

R n;mð Þ ¼ C n;mð Þ C m;mð Þ½ ��1; m; n 2 Z: ð3:4Þ

Then it is easily verified that

Ê XnjXmð Þ ¼ R n;mð ÞXm; m� n 2 Z: ð3:5Þ

Remark 3.1 Castro and Girardin (2008, Eq. 4) define the

‘‘correlation function’’ of the process as follows:

q m; nð Þ ¼ C m; nð Þ½C m;mð Þ��1; m; n 2 Z: ð3:6Þ

They then assert that Ê XnjXmð Þ ¼ q m; nð ÞXm, m\n,

which is not true since

E Xn � q m; nð ÞXm½ �X�
m

� �
¼ C n;mð Þ � C m; nð Þ 6¼ 0:

(Note that q m; nð Þ is not a ‘‘correlation matrix’’ in the

usual sense, i.e., it is not a matrix of correlations. This is

why we have used the term ‘‘normalized covariance’’ for

(3.4).)

Theorem 3.1 Let Xn; n 2 Zf g be a zero mean second-

order multivariate process with nonzero covariance

matrices C :; :ð Þ and nonsingular variance matrices C n; nð Þ,
n 2 Z. Then Xn; n 2 Zf g is WM if and only if one of the

following equivalent conditions holds

(a)

R u;mð Þ ¼ R u; nð ÞR n;mð Þ; m� n� u 2 Z; ð3:7Þ

(b)

C u;mð Þ ¼ C u; nð Þ C n; nð Þ½ ��1C n;mð Þ;
m� n� u 2 Z;

ð3:8Þ

(c)

C m; uð Þ ¼ C m; nð Þ C n; nð Þ½ ��1C n; uð Þ;
m� n� u 2 Z;

ð3:9Þ

(d)

R m;uð Þ ¼ R m;nð ÞR n;uð Þ; m�n�u 2 Z: ð3:10Þ

Proof

(a) Suppose that Xn; n 2 Zf g is WM and let

m� n� u 2 Z. Then using (3.5), we have

Ê XujXm;Xnð Þ ¼ Ê XujXnð Þ ¼ R u; nð ÞXn. Hence,

Xu � R u; nð ÞXn is orthogonal to Xm; i.e.,

E Xu � R u; nð ÞXn½ �X�
m

� �
¼ 0: It follows that

E XuX
�
m

	 

� R u; nð ÞE XnX

�
m

	 

¼ 0; which yields

C u;mð Þ ¼ R u; nð ÞC n;mð Þ. Then (3.7) follows by

post-multiplication of both sides of this relation by

C m;mð Þ½ ��1
. Conversely, suppose that (3.7) holds

and m1\ � � �\mk\n. Let W ¼ Xn � Ê XnjXmk
ð Þ.

Then W ¼ Xn � R n;mkð ÞXmk
; using (3.5), and, for

any i ¼ 1; . . .; k,

E WX�
mi

� �
¼ C n;mið Þ � R n;mkð ÞCðmk;miÞ

¼ R n;mið ÞCðmi;miÞ � R n;mkð ÞRðmk;miÞCðmi;miÞ
¼ R n;mið Þ � R n;mkð ÞR mk;mið Þ½ �C mi;mið Þ ¼ 0;

using (3.7). Thus, Xn � Ê XnjXmk
ð Þ is orthogonal to

fXm1
; . . .;Xmk

g. Hence
Ê XnjXm1

; . . .;Xmk
ð Þ ¼ Ê XnjXmk

ð Þ;

i.e., Xn; n 2 Zf g is a WM process.

(b) Rewriting (3.7) in terms of covariance matrices, we

have

C u;mð Þ C m;mð Þ½ ��1¼ C u; nð Þ C n; nð Þ½ ��1C n;mð Þ C m;mð Þ½ ��1;

which is obviously equivalent to (3.8).

(c) Taking transpose of both sides, and using (3.3), it is

seen that (3.8) is equivalent to (3.9).

(d) It is easily verified that (3.9) and (3.10) are

equivalent.

Remark 3.2 Castro and Girardin (2008, Proposition 2)

state that Xn; n 2 Zf g is WM process if and only if

q m; uð Þ ¼ q m; nð Þq n; uð Þ; m� n� u 2 Z; ð3:11Þ

where q m; nð Þ is as defined by (3.6). (Cf. condition (3.11)

with condition (3.10).) But with their definition of q m; nð Þ,
condition (3.11) is incorrect (see Remark 3.1). Note that

rewriting (3.11) in terms of covariance matrices, we get

C m; uð Þ ¼ C m; nð Þ C m;mð Þ½ ��1C n; uð Þ C n; nð Þ½ ��1C m;mð Þ;
ð3:12Þ

which is different from (3.9). (See the following counter

example for which (3.12) does not hold.) Rewriting (3.12)

in the form

C m;uð Þ C m;mð Þ½ ��1¼C m;nð Þ C m;mð Þ½ ��1C n;uð Þ C n;nð Þ½ ��1;

we obtain the result given by Castro and Girardin (2008,

Eq. 13). Based on this (wrong) result, Castro and Girardin
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(2008, pp. 160–161) (wrongly) concluded that, for multi-

variate WM processes, the ‘‘triangular characterization

does not hold true’’; whereas condition (3.9) is clearly the

multivariate analog of condition (3.2).

Example 3.1 Let Xn; n 2 Zf g be a nonstationary Markov

process with

C j; jð Þ ¼ Var Xj

	 

¼ j2 þ 1; and

C j; jþ 1ð Þ ¼ Cov Xj;Xjþ1

	 

¼ 1; j 2 Z:

Then, according to Doob (1953, Theorem 8.1, p. 233),

we have

C j; jþ 2ð Þ ¼ C j; jþ 1ð ÞC jþ 1; jþ 2ð Þ
C jþ 1; jþ 1ð Þ ¼ 1

jþ 1ð Þ2þ1
;

C j; jþ 3ð Þ ¼ C j; jþ 2ð ÞC jþ 2; jþ 3ð Þ
C jþ 2; jþ 2ð Þ

¼ 1

jþ 1ð Þ2þ1
h i

jþ 2ð Þ2þ1
h i ;

� � �

C j; jþ kð Þ ¼ C j; jþ k � 1ð ÞC jþ k � 1; jþ kð Þ
C jþ k � 1; jþ k � 1ð Þ

¼ C j; jþ k � 1ð Þ
C jþ k � 1; jþ k � 1ð Þ

¼ 1

jþ 1ð Þ2þ1
h i

. . . jþ k � 1ð Þ2þ1
h i

¼
Yk�1

i¼1

1

jþ ið Þ2þ1
:

Now we define Yn ¼
X2n

X2nþ1


 �
, n 2 Z. Then, for

m\n 2 Z, we have

C m; nð Þ ¼ Cov Ym;Ynð Þ

¼
C 2m; 2nð Þ C 2m; 2nþ 1ð Þ

C 2mþ 1; 2nð Þ C 2mþ 1; 2nþ 1ð Þ


 �

¼
Y2 n�mð Þ�2

i¼1

1

2mþ 1þ ið Þ2þ1

�

1

2mþ 1ð Þ2þ1

1

2mþ 1ð Þ2þ1
h i

2nð Þ2þ1
h i

1
1

2nð Þ2þ1

2

66664

3

77775
:

and

C n; nð Þ ¼ Cov Yn;Ynð Þ

¼
C 2n; 2nð Þ C 2n; 2nþ 1ð Þ

C 2nþ 1; 2nð Þ C 2nþ 1; 2nþ 1ð Þ


 �

¼ 2nð Þ2þ1 1

1 2nþ 1ð Þ2þ1

" #

:

It is then easily verified that, for every m� n� u 2 Z;

we have

C m; nð Þ C n; nð Þ½ ��1C n; uð Þ

¼
Y2 u�mð Þ�2

i¼1

1

2mþ 1þ ið Þ2þ1

�

1

2mþ 1ð Þ2þ1

1

2mþ 1ð Þ2þ1
h i

2uð Þ2þ1
h i

1
1

2uð Þ2þ1

2

66664

3

77775

¼ C m; uð Þ:

Therefore, (3.9) holds for every m� n� u 2 Z; and

Yn; n 2 Zf g is a 2-dimensional (nonstationary) wide-sense

Markov process. But, for this example, Proposition 2 in

Castro and Girardin (2008) which states that C m; uð Þ ¼
C m; nð Þ C m;mð Þ½ ��1C n; uð Þ C n; nð Þ½ ��1C m;mð Þ does not

hold. For example, for m ¼ �1, n ¼ 0, u ¼ 1, we have

C �1; 0ð Þ C �1;�1ð Þ½ ��1C 0; 1ð Þ C 0; 0ð Þ½ ��1C �1;�1ð Þ

¼
1

2

1

2
1 1

2

4

3

5

2

9

�1

9
�1

9

5

9

2

664

3

775

1

2

1

10

1
1

5

2

64

3

75
2 �1

�1 1


 �
5 1

1 2


 �

¼

41

20

1

20
41

10

1

10

2

64

3

75 6¼

1

4

1

20
1

2

1

10

2

64

3

75 ¼ C �1; 1ð Þ:

Corollary 3.1 Let Yn; n 2 Zf g be a nonsingular multi-

variate stationary WM process, with covariance function

Q kð Þ ¼ CovðYnþk;YnÞ. Then

Q kð Þ ¼ Q 1ð ÞQ�1 0ð Þ
	 
k

Q 0ð Þ; k� 0; ð3:13Þ

Q kð Þ ¼ Q� 1ð ÞQ�1 0ð Þ
	 
�k

Q 0ð Þ; k\0: ð3:14Þ

Proof Clearly (3.13) holds for k ¼ 0 and k ¼ 1. Also, for

k� 0, using (3.8) with m ¼ n� 1 and u ¼ nþ k, we have

Q k þ 1ð Þ ¼ Q kð ÞQ�1 0ð ÞQ 1ð Þ; and (3.13) follows by induc-

tion. For k\0, (3.14) follows from (3.13) by noting that

Q kð Þ¼Q� �kð Þ¼ Q 1ð ÞQ�1 0ð Þ
	 
�k

Q 0ð Þ
h i�

¼ Q 1ð ÞQ�1 0ð Þ
	 
�k�1

Q 1ð Þ
h i�

¼Q� 1ð Þ Q�1 0ð ÞQ� 1ð Þ
	 
�k�1

¼ Q� 1ð ÞQ�1 0ð Þ
	 
�k�1

Q� 1ð Þ¼ Q� 1ð ÞQ�1 0ð Þ
	 
�k

Q 0ð Þ:

Remark 3.3 Castro and Girardin (2008, p.161) use their

(incorrect) Eq. (13) to conclude that Q kð Þ ¼
Q 1ð ÞQ�1 0ð Þ
� �k

Q 0ð Þ ¼ Q �kð Þ, k 2 Z, which is not true for

k\0. (Note that in general, Q kð Þ ¼ Q� �kð Þ.) Also, it can
be shown that Eq. (14) in Castro and Girardin (2008) does
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not hold for negative powers; in fact, from (3.13) and

(3.14) it follows that

qðkÞ ¼ q 1ð Þ½ �k; k� 0;

q �1ð Þ½ ��k; k\0;

�

where q kð Þ ¼ Q kð ÞQ�1 0ð Þ.

4 Autoregressive characterizations

In this section we consider the structure of PCWM pro-

cesses in terms of autoregressive (AR) and periodic

autoregressive (PAR) processes. For related results, see

Pagano (1978), Castro and Girardin (2002, 2008).

The univariate case. Using their results on reflection

coefficients of WM processes, Castro and Girardin (2008,

Theorem 3) showed that the class of PCWM processes is

exactly the class of PAR processes of order 1 and that the

T-dimensional stationary process associated with a PCWM

process has an autoregressive representation. We give a

direct and more transparent proof of their results, which

shows an error in their results (see Remark 4.2).

We recall that a process Xn; n 2 Zf g is said to be a PAR

process of order one, PAR(1), with period T , if it has a

representation of the form

Xn ¼ anXn�1 þ en; n 2 Z; ð4:1Þ

where an; n 2 Zf g is nonzero periodic sequence of con-

stants, anþT ¼ an; and en; n 2 Zf g is a white noise process

with periodic variances, Var enþTð Þ ¼ Var enð Þ, with

CovðXm; enÞ ¼ 0; for m\n (see Pagano (1978) for general

definition of PARðp1; . . .; pdÞ).
First, we verify that the PAR(1) process (4.1) is a PCWM

process: Let D s; rð Þ ¼
Qs

j¼r aj; with the convention that

D s; rð Þ ¼ 1 if r[ s. Then, for n 2 Z and k� 1, we have

Xnþk ¼ Dðnþ k; nþ 1ÞXn þ
Xk

j¼1

Dðnþ k; nþ 1þ jÞenþj;

and, therefore,

Cov Xnþk;Xnð Þ ¼ D nþ k; nþ 1ð ÞVar Xnð Þ

¼
Ynþk

j¼nþ1

aj

 !

Var Xnð Þ;

since Cov Xn; enþj

	 

¼ 0. It is then easily verified that the

covariance function of Xn; n 2 Zf g satisfies Doob’s con-

dition (3.1) and, therefore, Xn; n 2 Zf g is a PCWM

process.

Conversely, suppose that Xn; n 2 Zf g is a second-order

PCWM process with period T and covariance function

C :; :ð Þ. Let

an ¼
C n; n� 1ð Þ

C n� 1; n� 1ð Þ ; r2n ¼ C n; nð Þ � C n; n� 1ð Þ½ �2

C n� 1; n� 1ð Þ ;

n 2 Z: ð4:2Þ

Note that an; n 2 Zf g and r2n; n 2 Z
� �

are periodic with

period T . Now, let en ¼ Xn � anXn�1. Then it is easily

verified that enf g is a periodic white noise process, with

Var enð Þ ¼ r2n. Also, for m\n we have

CovðXm; enÞ ¼ C m; nð Þ � C n; n� 1ð Þ
C n� 1; n� 1ð ÞC m; n� 1ð Þ

¼ C m; nð Þ � C m; nð Þ ¼ 0;

using Doob’s condition (3.2). Thus, Xn; n 2 Zf g is a

PAR(1) process of the form (4.1). See Castro and Girardin

(2008, Theorem 3, Eq. 18), but note that their wðlþ ndÞ is
a periodic white noise process and the variances are needed

in the rest of the proof; see Remark 4.2.

Remark 4.1 Since the sequences an; n 2 Zf g and

r2n; n 2 Z
� �

defined by (4.2) are periodic with period T;

their values are completely determined by the values of

a1; . . .; aT and r21; . . .:; r
2
T . Thus, the PAR(1) representation

shows that the covariance function of a PCWM process,

C :; :ð Þ; is completely determined by the values of C i; ið Þ
and C iþ 1; ið Þ; i ¼ 0; 1; . . .; T � 1. (As we shall see in

Theorem 4.1, a similar result holds in the multivariate

case.)

Let Xn; n 2 Zf g be a PCWM process and let

Yn; n 2 Zf g be the T-dimensional stationary process asso-

ciated with Xn; n 2 Zf g; i.e., Yn ¼ XnT ;XnTþ1; . . .;ð
XnTþT�1Þ�: Then using the PAR(1) representation (4.1),

with fan; n 2 Zg and fr2n; n 2 Zg as defined in (4.2), it is

easily shown that Yn; n 2 Zf g has a multivariate AR(1)

representation

A 0ð ÞYn þ A 1ð ÞYn�1 ¼ en; ð4:3Þ

where en ¼ enT ; enTþ1; . . .; enTþT�1ð Þ� is a T-dimensional

white noise process with diagonal covariance matrix R

with Rii ¼ r2i ; 0� i� T � 1; A 0ð Þ is a triangular matrix

with only 2T � 1 nonzero entries, A 0ð Þ½ �i;i¼
1; 0� i� T � 1, and A 0ð Þ½ �i;i�1¼ �ai, 1� i� T � 1; and

A 1ð Þ has only one nonzero entry A 1ð Þ½ �0;T�1¼ �aT ¼ �a0.

See Castro and Girardin (2008, Eq. 17).

Remark 4.2 Regarding (4.3), Castro and Girardin (2008,

p. 163) gave the expression

R00 ¼ C T � 1; T � 1ð Þ � C T ; T � 1ð Þ½ �2=C T � 1; T � 1ð Þ;
ð4:4Þ

but this expression is not correct since, as noted above,

R00 ¼ r20; i.e.

R00 ¼ C T ; Tð Þ � C T ; T � 1ð Þ½ �2=C T � 1; T � 1ð Þ; ð4:5Þ
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Clearly (4.4) is different from (4.5), unless

C T � 1; T � 1ð Þ ¼ C T ; Tð Þ, which need not hold.

The multivariate case A p-dimensional second-order

process Xn; n 2 Zf g is said to be a multivariate PAR(1)

process with period T if it has a representation of the form

Xn ¼ AnXn�1 þ en; ð4:6Þ

where Anf g is a periodic sequence of nonzero transition

matrices, AnþT ¼ An; and en; n 2 Zf g is a multivariate

periodic white noise process; i.e.,

E enð Þ ¼ 0;E eme
�
n

	 

¼ 0; m 6¼ nð Þ; Var enþTð Þ ¼ Var enð Þ;

m; n 2 Z;

and CovðXm; enÞ ¼ 0; for m\n:

Theorem 4.1

(i) A p-dimensional second-order process Xn; n 2 Zf g
is a multivariate PCWM process if and only if

fXn; n 2 Zg is a multivariate PAR(1) process.

(ii) The Tp-dimensional stationary process Yn; n 2 Zf g
associated with a multivariate PCWM process

Xn; n 2 Zf g; defined by Yn ¼ X�
nT ;X

�
nTþ1; . . .;

	

X�
nTþT�1Þ

�
has multivariate AR(1) representation

A 0ð ÞYn þ A 1ð ÞYn�1 ¼ e nð Þ;

where e nð Þ ¼ e�nT ; e
�
nTþ1; . . .; e

�
nTþT�1

	 
�
is a Tp-di-

mensional white noise process with block diagonal

covariance matrix R ¼ diag R0;R1; . . .;RT�1½ �,
where

Ri ¼ C i; ið Þ � C i; i� 1ð Þ C i� 1; i� 1ð Þ½ ��1C i� 1; ið Þ;

A 0ð Þ is a block triangular matrix with only 2T � 1

nonzero p� p block entries, A 0ð Þ½ �i;i¼ Ip,

0� i� T � 1 and A 0ð Þ½ �i;i�1¼ �Ai for 1� i� T

�1, where

Ai ¼ C i; i� 1ð Þ C i� 1; i� 1ð Þ½ ��1;

and A 1ð Þ is a block matrix with only one nonzero

p� p block entry A 1ð Þ½ �0;T�1¼ �A0, where

A0 ¼ C T; T � 1ð Þ C T � 1; T � 1ð Þ½ ��1:

Proof

(i) Let D s; rð Þ ¼ AsAs�1. . .Ar, r� s with the conven-

tion that D s; rð Þ ¼ I (identity matrix) if r[ s.

Suppose that fXn; n 2 Zg is a multivariate PAR(1)

process, as given by (4.6). Then for n 2 Z and

k� 1, we have

Xnþk ¼ D nþ k; nþ 1ð ÞXn þ
Xk

j¼1

D nþ k; nþ 1þ jð Þenþj:

Therefore,

Cov Xnþk;Xnð Þ ¼ D nþ k; nþ 1ð ÞVar Xnð Þ;

since Cov Xn; enþj

	 

¼ 0. It is then easily verified

that the covariance function of Xn; n 2 Zf g satisfies
condition (3.8) and, therefore, Xn; n 2 Zf g is a

wide-sense Markov process.

Conversely, let Xn; n 2 Zf g be a multivariate

PCWM process with nonzero covariance function

C m; nð Þ ¼ E XmX
�
n

	 

and let en ¼ Xn � AnXn�1;

where

An ¼ C n; n� 1ð Þ C n� 1; n� 1ð Þ½ ��1; n 2 Z:

ð4:7Þ

Note that An; n 2 Zf g is a periodic sequence with

period T , AnþT ¼ An. Now, for m\n, we have

Cov em; enð Þ ¼ C m; nð Þ � C m; n� 1ð Þ
� C n� 1; n� 1ð Þ½ ��1C n� 1; nð Þ
� C m;m� 1ð Þ C m� 1;m� 1ð Þ½ ��1

C m� 1; nð Þ
þ C m;m� 1ð Þ C m� 1;m� 1ð Þ½ ��1

C m� 1; n� 1ð Þ C n� 1; n� 1ð Þ½ ��1

C n� 1; nð Þ;

and, using (3.9), it follows that

Cov em; enð Þ ¼ C m; nð Þ � C m; nð Þ � C m;m� 1ð Þ
� C m� 1;m� 1ð Þ½ ��1C m� 1; nð Þ
þ C m;m� 1ð Þ C m� 1;m� 1ð Þ½ ��1

C m� 1; nð Þ ¼ 0:

Also, for m\n, we have

Cov Xm; enð Þ ¼ C m; nð Þ � C m; n� 1ð Þ
� C n� 1; n� 1ð Þ½ ��1C n� 1; nð Þ

¼ C m; nð Þ � C m; nð Þ ¼ 0;

using (3.9). Finally, for n 2 Z

Var enð Þ ¼ Var Xn � AnXn�1ð Þ
¼ Cðn; nÞ þ AnCðn� 1; n� 1ÞA�

n

� C n; n� 1ð ÞA�
n � AnCðn� 1; nÞ;

which simplifies to
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Var enð Þ¼C n;nð Þ
�C n;n�1ð Þ C n�1;n�1ð Þ½ ��1C n�1;nð Þ:

ð4:8Þ

Hence, feng is a p-dimensional periodic white noise

process and Xn; n 2 Zf g is a periodic AR(1) pro-

cess with representation (4.6).

(ii) This follows from the multivariate PAR(1) repre-

sentation (4.6), with values of Ai and Ri given by

(4.7) and (4.8).

5 Results for multivariate PCWM processes

Let Xn; n 2 Zf g be p-dimensional zero mean second-order

PCWM process of period T, with nonzero covariance

matrices C m; nð Þ ¼ Cov Xm;Xnð Þ and nonsingular variance

matrices C n; nð Þ, n 2 Z. Let Yn; n 2 Zf g be the

Tp-dimensional stationary process defined by Yn ¼
X�
nT ;X

�
nTþ1; . . .;X

�
nTþT�1

	 
�
; n 2 Z, and let Q kð Þ ¼

Cov Ynþk;Ynð Þ denote the covariance function of Ynf g. As
noted in Remark 4.1 the covariance structure of

Xn; n 2 Zf g is completely determined by the values of

C i; ið Þ and C iþ 1; ið Þ, i ¼ 0; 1; . . .; T � 1. In the following

theorem, Q kð Þ is expressed in terms of C i; ið Þ and

C iþ 1; ið Þ, i ¼ 0; 1; . . .; T � 1.

Theorem 5.1 The covariance function of Yn; n 2 Zf g,
Q kð Þ ¼ QijðkÞ

� �T�1

i;j¼0
, is given by

Qij 0ð Þ ¼

D i; jþ 2ð ÞC jþ 1; jð Þ; jþ 2� i�T � 1; 0� j�T � 3;

C jþ 1; jð Þ;
C j; jð Þ;
C iþ 1; ið Þ½ ��

i ¼ jþ 1;

i ¼ j;

j ¼ iþ 1;

0� j�T � 2;

0� j�T � 1;

0� i�T � 2;

C iþ 1; ið Þ½ �� D j; iþ 2ð Þ½ ��; iþ 2� j�T � 1; 0� i�T � 3;

8
>>>>><

>>>>>:

ð5:1Þ

and for k� 1;

Qij kð Þ ¼
D i; 0ð Þ D T � 1; 0ð Þ½ �k�1D T � 1; jþ 2ð ÞC jþ 1; jð Þ; 0� j� T � 3;

D i; 0ð Þ D T � 1; 0ð Þ½ �k�1C T � 1; T � 2ð Þ; j ¼ T � 2;

D i; 0ð Þ D T � 1; 0ð Þ½ �k�1C T � 1; T � 1ð Þ; j ¼ T � 1;

8
><

>:

ð5:2Þ

where

D i; jð Þ ¼ AiAi�1. . .Aj i� j;
I; i\j;

�

(I denotes the identity matrix) and Ai ¼ C i; i� 1ð Þ
C i� 1; i� 1ð Þ½ ��1; i ¼ 0; 1; . . .T � 1.

Proof As in Nematollahi and Soltani (2000), it is easily

verified that Qij kð Þ ¼ C kT þ i; jð Þ: Hence, Qjj 0ð Þ ¼ C j; jð Þ
and Qjþ1;j 0ð Þ ¼ C jþ 1; jð Þ: For i� jþ 2ð0� j� T � 3Þ, by
applying (3.8) repeatedly, we have

Qij 0ð Þ¼C i; jð Þ¼C i; i�1ð Þ C i�1; i�1ð Þ½ ��1C i�1; jð Þ
¼C i; i�1ð Þ C i�1; i�1ð Þ½ ��1C i�1; i�2ð Þ
� C i�2; i�2ð Þ½ ��1C i�2; jð Þ

¼ �� � ¼C i; i�1ð Þ C i�1; i�1ð Þ½ ��1� � �C jþ2; jþ1ð Þ
� C jþ1; jþ1ð Þ½ ��1C jþ1; jð Þ

¼AiAi�1 � � �Ajþ2C jþ1; jð Þ¼D i; jþ2ð ÞC jþ1; jð Þ;

and for i\j; the entries of Q 0ð Þ are given by

Qij 0ð Þ¼ Qji 0ð Þ
� ��

, since Q 0ð Þ is symmetric. For k�1, first

we note that

Qij kð Þ ¼ C kT þ i; jð Þ ¼ C kT þ i; kT þ i� 1ð Þ

� C kT þ i� 1; kT þ i� 1ð Þ½ ��1C kT þ i� 1; jð Þ

¼ C kT þ i; kT þ i� 1ð Þ C kT þ i� 1; kT þ i� 1ð Þ½ ��1

� C kT þ i� 1; kT þ i� 2ð Þ

� C kT þ i� 2; kT þ i� 2ð Þ½ ��1C kT þ i� 2; jð Þ

¼ � � � ¼ C kT þ i; kT þ i� 1ð Þ C kT þ i� 1; kT þ i� 1ð Þ½ ��1� � �

� C kT ; kT � 1ð Þ C kT � 1; kT � 1ð Þ½ ��1C kT � 1; jð Þ

¼ C i; i� 1ð Þ C i� 1; i� 1ð Þ½ ��1� � �C 1; 0ð Þ C 0; 0ð Þ½ ��1

� C T ; T � 1ð Þ C T � 1; T � 1ð Þ½ ��1C kT � 1; jð Þ
¼ AiAi�1 � � �A0C kT � 1; jð Þ ¼ D i; 0ð ÞC kT � 1; jð Þ:

ð5:3Þ

Now, by induction we show that

C kT � 1; jð Þ ¼ D T � 1; 0ð Þ½ �k�1C T � 1; jð Þ; k� 1:

ð5:4Þ

Clearly (5.4) holds for k ¼ 1: Now suppose (5.4) holds

for k ¼ m; i.e., C mT � 1; jð Þ ¼ D T � 1; 0ð Þ½ �m�1

C T � 1; jð Þ: Then, for k ¼ mþ 1; we have

C mþ 1ð ÞT � 1; jð Þ
¼ C ðmþ 1ÞT � 1; ðmþ 1ÞT � 2ð Þ

� C ðmþ 1ÞT � 2; ðmþ 1ÞT � 2ð Þ½ ��1C ðmþ 1ÞT � 2; jð Þ
¼ � � � ¼ C mþ 1ð ÞT � 1; mþ 1ð ÞT � 2ð Þ

� C mþ 1ð ÞT � 2; mþ 1ð ÞT � 2ð Þ½ ��1� � �

� C mT ;mT � 1ð Þ C mT � 1;mT � 1ð Þ½ ��1C mT � 1; jð Þ
¼ AT�1AT�2 � � �A0C mT � 1; jð Þ

¼ D T � 1; 0ð Þ D T � 1; 0ð Þ½ �m�1C T � 1; jð Þ
¼ D T � 1; 0ð Þ½ �mC T � 1; jð Þ;

which completes the proof of (5.4). From (5.3) and (5.4),

we have

Qij kð Þ ¼ D i; 0ð Þ D T � 1; 0ð Þ½ �k�1C T � 1; jð Þ;

and (5.2) follows by noting that C T � 1; jð Þ ¼ QT�1;jð0Þ,
which is given in (5.3).
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