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Abstract For any positive integer n and a set of positive

integers mi, i ¼ 1; 2; . . .; n þ 1, we construct a class of

regular Sturm–Liouville problems with n transmission

conditions, which have exactly
Pnþ1

i¼1 mi þ n þ 1 eigen-

values. And further we show that these
Pnþ1

i¼1 mi þ n þ 1

eigenvalues can be distributed arbitrarily throughout the

complex plane in the non-self-adjoint case and anywhere

along the real line in the self-adjoint case.

Keywords Sturm–Liouville problems � Finite spectrum �
Eigenvalues � Transmission conditions

1 Introduction

The Sturm–Liouville problems (SLPs) with transmission

conditions at an interior point have always been an

important research topic in mathematical physics. Such a

problem connected with many assortment of physical

problems, such as heat and mass transfer, vibrating string

problems and diffraction problems. In recent years the

studies of these problems often appear not only in one

interior point, but also in two or infinite many interior

points. The discussions of these problems include their

self-adjointness, eigenvalues and the completeness of

eigenfunctions and inverse eigenvalue problems, and so

on (Gesztesy et al. 1985; Mukhtarov et al. 2002a, b,

2004; Chanane 2007; Sun and Wang 2008; Titeux and

Yakubov 1997).

Also recent years the Sturm–Liouville problems with

finite spectrum have been investigated by many authors

(Kong et al. 2001, 2009; Ao et al. 2011, 2012, 2013).

These problems can be seen as coming from Atkinson’s

statement in his well-known book (Atkinson 1964). Among

these studies there are finite spectrum results of SLPs

(Kong et al. 2001, 2009), SLPs with transmission condi-

tions (Ao et al. 2011, 2012), and even SLPs with trans-

mission conditions and eigenparameter-dependent

boundary conditions (Ao et al. 2013). However, there is no

such results for SLPs with finite transmission conditions.

For this reason, in this paper, we shall consider the SLPs

with n transmission conditions and prove that for any

positive integer n the SLPs with n transmission conditions

still have finite spectrum. Similar with the proof in Kong

et al. (2001) and Ao et al. (2011), we construct a class of

these problems with exactly
Pnþ1

i¼1 mi þ n þ 1 eigenvalues,

where mi are connected with the partition of the interval

J. As in Kong et al. (2001) and Ao et al. (2011) our con-

struction based on the characteristic function whose zeros

are the eigenvalues. The key to this analysis is still an

iterative construction of the characteristic function.

Although similar methods are used to get our main results,

the specific process of calculations and proofs is not

completely the same as in Kong et al. 2001 and Ao et al.
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2011, which is more complicated and include some new

items.

2 Notation and Preliminaries

Consider the SLP consisting of the differential equation

� ðpy0Þ0 þ qy ¼ kwy;

on J ¼ ða; c1Þ [ ðc1; c2Þ [ � � � [ ðcn; bÞ;
ð2:1Þ

where �1\a\b\þ1; ci 2 ða; bÞ; i ¼ 1; 2; . . .; n;

together with the regular two point boundary conditions

(BCs) of the form

AYðaÞ þ BYðbÞ ¼ 0; Y ¼
y

py0

� �

; A;B 2 M2ðCÞ; ð2:2Þ

and the transmission conditions at these n interior points ci

of the form

CiYðci�Þ þ DiYðciþÞ ¼ 0; i ¼ 1; 2; . . .; n; ð2:3Þ

where A ¼ ðastÞ2�2;B ¼ ðbstÞ2�2 are complex-valued 2 � 2

matrices, and Ci;Di are real valued 2 � 2 matrices satis-

fying detðCiÞ ¼ qi [ 0, detðDiÞ ¼ hi [ 0. M2ðCÞ denotes

the set of square matrices of order 2 over C: Here k is the

complex-valued spectral parameter, and the coefficients

satisfy the minimal conditions

r ¼ 1=p; q;w 2 LðJ;CÞ; ð2:4Þ

where LðJ;CÞ denotes the complex-valued functions which

are Lebesgue integrable on J. Condition (2.4) is minimal in

the sense that it is necessary and sufficient for all initial

value problems of Eq. (2.1) to have unique solutions on

[a, b]; see Everitt and Race (1976), Zettl (2005).

Since the boundary conditions are invariant under left

multiplication by a nonsingular matrix, we use the notation

A ¼ ½A : B� to denote the equivalence class of BC (2.2).

These equivalence classes, endowed with the topology

induced by any matrix norm, form the boundary condition

quotient space denoted by B :¼ M2�4ðCÞ=GLð2;CÞ, where

M2�4ðCÞ is the class of 2 � 4 matrices over C; and

GLð2;CÞ is the set of nonsingular matrices of order 2 over

C. Denote by Bs the subset of B consisting of the self-

adjoint BCs. Di :¼ f½Ci : Di�j det ðCiÞ[ 0; det ðDiÞ[ 0g
denotes the equivalence class of n transmission condition

(2.3). Denote by Ds the subset of D consisting of the self-

adjoint transmission condition. Let

X ¼ fx ¼ ða; b; p; q;wÞ : ð2:4Þ holdsg;

and endow X with the topology as in Kong et al. (1999).

Then the space of SLPs in which we study the dependence

of eigenvalues on the problem is given by X� B�DðD ¼

½Cn : Dn� � ½Cn�1 : Dn�1� � � � � � ½C1 : D1�Þ and is called

the SLP space with n transmission conditions, and X�
Bs �Ds is called the self-adjoint SLP space with n trans-

mission conditions where p, q, w are real-valued.

Remark 2.1 As usual, the self-adjoint extension of SLPs

with n transmission conditions need additional restrictions

on Ci;Di and a new weighted Hilbert space defined as in

Mukhtarov et al. (2002b, 2004), Sun and Wang (2008).

With this weighted Hilbert space the operator associated

with Sturm–Liouville problems with n transmission con-

ditions is self-adjoint if and only if the associated new

operator is self-adjoint, and they consist of the same

eigenvalues, and satisfying the condition

h1 � � � hnAE�1A� ¼ q1 � � � qnBE�1B�;with E ¼
0 �1

1 0

� �

:

For further details of the self-adjointness of SLPs with

n transmission conditions please see Sun and Wang (2008).

The results in this paper are not restricted to self-adjoint

problems, but include non-self-adjoint problems.

Let u ¼ y; v ¼ py0. Then Eq. (2.1) can be transferred

into the following first order system:

u0 ¼ rv; v0 ¼ ðq � kwÞu; on J: ð2:5Þ

Definition 2.1 By trivial solution of Eq. (2.1) on some

intervals we mean a solution y which is identically zero and

whose quasi-derivative v ¼ py0 is also identically zero on

this interval.

Lemma 2.1 Let (2.4) hold and let Uðx; kÞ ¼ ½/stðx; kÞ�
denote the fundamental matrix of the system (2.5) deter-

mined by the initial condition Uða; kÞ ¼ I. Then a complex

number k is an eigenvalue of the Sturm–Liouville problem

with n transmission conditions (2.1)–(2.3) if and only if

DðkÞ ¼ det½A þ BUðb; kÞ� ¼ 0: ð2:6Þ

And in further DðkÞ can be written as

DðkÞ ¼ detðAÞ þ detðBÞ þ h11/11ðb; kÞ þ h12/12ðb; kÞ
þ h21/21ðb; kÞ þ h22/22ðb; kÞ;

ð2:7Þ

where

H ¼ h11 h12

h21 h22

� �

:¼ a22b11 � a12b21 a11b21 � a21b11

a22b12 � a12b22 a11b22 � a21b12

� �

:

Proof The proof of the first part of this lemma is similar

to the one in Mukhtarov et al. (2004), hence is omitted

here. And the second part comes from a straightforward

computation. h

812 Iran J Sci Technol Trans Sci (2018) 42:811–817

123



Definition 2.2 The SLP with n transmission conditions

(2.1)–(2.3), or equivalently (2.2), (2.3), (2.5) is said to be

degenerate if in (2.7) either DðkÞ � 0 for all k 2 C or DðkÞ
6¼ 0 for any k 2 C.

In the derivation of our main results an important role is

played by the ‘‘Continuity Principle’’ established in Kong

et al. (1999), which reads.

Lemma 2.2 Let N � C be a bounded open set in the

complex plane C and let m 2 N: If an SLP ðx;AÞ 2
X� B has exactly m eigenvalues, counting multiplicity, in

N; and none on the boundary of N; then every SLP ðr;BÞ
sufficiently close to ðx;AÞ also has exactly m eigenvalues,

counting multiplicity, in N:

Proof See Kong et al. (1999), Kong and Zettl (1996). h

This lemma can be easily generated to SLP space with

n transmission conditions.

3 The Finite Spectrum of Sturm–Liouville
Problems with n Transmission Conditions

In this section, we assume (2.4) holds and there exists a

partition of interval J

a ¼ a1
0\a1

1\a1
2\ � � �\a1

2m1
\a1

2m1þ1 ¼ c1; on ½a; c1Þ;
c1 ¼ a2

0\a2
1\a2

2\ � � �\a2
2m2

\a2
2m2þ1 ¼ c2; on ðc1; c2Þ;

� � � � � � � � � � � � � � � � � �

cn ¼ anþ1
0 \anþ1

1 \anþ1
2 \ � � �\anþ1

2mnþ1
\anþ1

2mnþ1þ1

¼ b; on ðcn; b�;
ð3:1Þ

for n and some integers mi; i ¼ 1; 2; . . .; n þ 1, such that

r ¼ 1

p
¼ 0 on ðai

2k; ai
2kþ1Þ;

Z ai
2kþ1

ai
2k

w 6¼ 0;

k ¼ 0; 1; . . .;mi; i ¼ 1; 2; . . .; n þ 1;

ð3:2Þ

and

q ¼ w ¼ 0 on ðai
2kþ1; ai

2kþ2Þ;
Z ai

2kþ2

ai
2kþ1

r 6¼ 0;

k ¼ 0; 1; 2; . . .;mi � 1; i ¼ 1; 2; . . .; n þ 1:

ð3:3Þ

Next we let

ri
k ¼

Z ai
2kþ2

ai
2kþ1

rðxÞdx; k ¼ 0; 1; . . .;mi � 1; i ¼ 1; 2; . . .; n þ 1;

qi
k ¼

Z ai
2kþ1

ai
2k

qðxÞdx; k ¼ 0; 1; . . .;mi; i ¼ 1; 2; . . .; n þ 1;

wi
k ¼

Z ai
2kþ1

ai
2k

wðxÞdx; k ¼ 0; 1; . . .;mi; i ¼ 1; 2; . . .; n þ 1:

ð3:4Þ

These notations will be used in our iterative construction

process.

Following Kong et al. (2001), Ao et al. (2011), we first

determine the structure of the principal fundamental matrix

of system (2.5) which, together with the ‘‘Continuity

Principle’’, is basic to our results.

Lemma 3.1 Let (2.4) and (3.1)–(3.3) hold. Let Uðx; kÞ ¼
½/stðx; kÞ� be the fundamental matrix solution of the system

(2.5) determined by the initial condition Uða; kÞ ¼ I for

each k 2 C; x 2 ½a; c1Þ. Then we have that

Uða1
1; kÞ ¼

1 0

q1
0 � kw1

0 1

� �

Uða; kÞ; ð3:5Þ

Uða1
3; kÞ ¼

1 þ ðq1
0 � kw1

0Þr1
0 r1

0

/1
21ða1

3; kÞ 1 þ ðq1
1 � kw1

1Þr1
0

" #

;

ð3:6Þ

where

/1
21ða1

3; kÞ ¼ ðq1
0 � kw1

0Þ þ ðq1
1 � kw1

1Þ þ ðq1
0

� kw1
0Þðq1

1 � kw1
1Þr1

0 :

And in general, for 1	 k 	m1

Uða1
2kþ1; kÞ ¼

1 r1
k�1

q1
k � kw1

k 1 þ ðq1
k � kw1

kÞr1
k�1

" #

Uða1
2k�1; kÞ:

ð3:7Þ

Proof Observe from (2.5) that u is constant on each subin-

terval where r is identically zero and v is constant on each

subinterval where both q and w are identically zero. The result

follows from repeated applications of (2.5). h

Lemma 3.2 Let (2.4) and (3.1)–(3.3) hold. Let

Uiðx; kÞ ¼ ½/i
stðx; kÞ�ðx 2 ðci; ciþ1Þ; cnþ1 ¼ b ¼ anþ1

2mnþ1þ1Þ

be the fundamental matrix solution of the system (2.5)

determined by the initial condition Uiðciþ; kÞ ¼ I (here

Uiðciþ; kÞ ¼ Uiðaiþ1
0 ; kÞ ¼ Uðciþ; kÞ; i ¼ 1; 2; . . .; nÞ

denote the right limit at point ci for each k 2 C. Then we

have that
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Uiðaiþ1
1 ; kÞ ¼

1 0

qiþ1
0 � kwiþ1

0 1

� �

Uiðaiþ1
0 ; kÞ; ð3:8Þ

Uiðaiþ1
3 ; kÞ ¼

1 þ ðqiþ1
0 � kwiþ1

0 Þriþ1
0 riþ1

0

/iþ1
21 ðaiþ1

3 ; kÞ 1 þ ðqiþ1
1 � kwiþ1

1 Þriþ1
0

" #

ð3:9Þ

where

/iþ1
21 ðaiþ1

3 ; kÞ ¼ ðqiþ1
0 � kwiþ1

0 Þ þ ðqiþ1
1 � kwiþ1

1 Þ þ ðqiþ1
0

� kwiþ1
0 Þðqiþ1

1 � kwiþ1
1 Þriþ1

0 :

And in general, for 1	 k	miþ1;

Uiðaiþ1
2kþ1; kÞ ¼

1 r
j
k�1

qiþ1
k � kwiþ1

k 1 þ ðqiþ1
k � kwiþ1

k Þriþ1
k�1

" #

Uiðaiþ1
2k�1; kÞ:

ð3:10Þ

Proof The proof is similar to the one as in Lemma 3.1. h

Lemma 3.3 Let (2.4) and (3.1)–(3.3) hold. Let Uðx; kÞ ¼
½/stðx; kÞ� be the fundamental matrix solution of the system

(2.5) determined by the initial condition Uða; kÞ ¼ I for

each k 2 C, and Uiðx; kÞ ¼ ½/i
stðx; kÞ� be given as in

Lemma 3.2. Then we have that

Uðb; kÞ ¼ Unðb; kÞGnUn�1ðcn; kÞGn�1

Un�2ðcn�1; kÞ � � �G1Uðc1; kÞ;
ð3:11Þ

where Gi ¼ ðgstÞ2�2 ¼ �D�1
i Ci, and

Uðc1; kÞ ¼ Uðc1�; kÞ ¼ Uða1
2m1þ1; kÞ;

Uiðciþ1; kÞ ¼ Uiðciþ1�; kÞ ¼ Uiðaiþ1
2miþ1þ1; kÞ

¼ Uðciþ1; kÞ; ði ¼ 1; 2; . . .; n � 1Þ;

Unðb; kÞ ¼ Unðanþ1
2mnþ1þ1; kÞ

denote the left limit at point ciði ¼ 1; 2; . . .; nÞ.

Proof From the transmission conditions (2.3) we know

that

CiUðci�; kÞ þ DiUðciþ; kÞ ¼ 0;

thus

Uðciþ; kÞ ¼ �D�1
i CiUðci�; kÞ:

By using the Lemma 3.3 in Ao et al. (2011), when i ¼ 1, in

ða; c1Þ [ ðc1; c2Þ, we have that

Uðc2; kÞ ¼ U1ðc2; kÞG1Uðc1; kÞ;

when i ¼ 2, we have that in ða; c1Þ [ ðc1; c2Þ [ ðc2; c3Þ;

Uðc3; kÞ ¼ U2ðc3; kÞG2U1ðc2; kÞG1Uðc1; kÞ:

By repeated application of Lemmas 3.1, 3.2 and the

Lemma 3.3 in Ao et al. (2011), it can be concluded that

(3.11) follows. h

Note that ci ¼ ai
2miþ1 ¼ aiþ1

0 ; b ¼ anþ1
2mnþ1þ1 and (3.11).

Then the structure of fundamental matrix solution Uðb; kÞ
given in Lemmas 3.1, 3.2 and mathematical induction yield

the following.

Corollary 3.1 If gi
12 6¼ 0; i ¼ 1; 2; . . .; n; then for the

fundamental matrix Uðb; kÞ we have that

/11ðb; kÞ ¼ G0n �
Yn�1

i¼1

gi
12 �

Ynþ1

i¼1

Ri �
Ymnþ1�1

i¼1

�

Ymn�1

i¼0

�
Ymn�1

i¼0

� � �
Ym2

i¼0

�
Ym1

i¼0

þ ~/11ðkÞ;
ð3:12Þ

/12ðb; kÞ ¼ G0n �
Yn�1

i¼1

gi
12 �

Ynþ1

i¼1

Ri �
Ymnþ1�1

i¼1

�
Ymn�1

i¼0

�

Ymn�1

i¼0

� � �
Ym2

i¼0

�
Ym1

i¼1

þ ~/12ðkÞ;
ð3:13Þ

/21ðb; kÞ ¼ G0n �
Yn�1

i¼1

gi
12 �

Ynþ1

i¼1

Ri �
Ymnþ1

i¼1

�
Ymn�1

i¼0

�

Ymn�1

i¼0

� � �
Ym2

i¼0

�
Ym1

i¼0

þ ~/21ðkÞ;
ð3:14Þ

/22ðb; kÞ ¼ G0n �
Yn�1

i¼1

gi
12 �

Ynþ1

i¼1

Ri �
Ymnþ1

i¼1

�
Ymn�1

i¼0

�

Ymn�1

i¼0

� � �
Ym2

i¼0

�
Ym1

i¼1

þ ~/22ðkÞ;
ð3:15Þ

where

G0n ¼ ½gn
12ðqn

mn
� kxn

mn
Þðqnþ1

0 � kxnþ1
0 Þ

þ gn
11ðqnþ1

0 � kxnþ1
0 Þ þ gn

22ðqn
mn

� kxn
mn
Þ þ gn

21�;

Ri ¼
Ymi�1

k¼0

ri
k; i ¼ 1; 2; . . .; n þ 1;

Ymnþ1�1

k¼1

¼
Ymnþ1�1

k¼1

ðqnþ1
k � kwnþ1

k Þ;

Ymn�1

k¼0

¼
Ymn�1

k¼0

ðqn
k � kwn

kÞ;

Ymi

k

¼
Ymi

k

ðqi
k � kwi

kÞ; i ¼ 1; 2; . . .; n � 1;
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~/stðkÞ ¼ oð
Qnþ1

i¼1 RiÞ; s; t ¼ 1; 2 as min fri
kg ! 1 for fixed

q, w and k:

From Corollary 3.1 we can see that each of the entries in

U (i.e. /st; s; t ¼ 1; 2) is a polynomial of k.

Now we construct regular SLPs with n transmission

conditions (2.3) with general self-adjoint and non-self-ad-

joint BCs (2.2) which have exactly m eigenvalues for each

m 2 N.

Theorem 3.1 Let mi 2 Nði ¼ 1; 2; . . .; n þ 1Þ, gi
12 6¼

0; i ¼ 1; 2; . . .; n; and let (2.4) and (3.1)–(3.3) hold. Let

H ¼ ðhstÞ2�2 be defined as in Lemma 2.1. Then:

(1) If h21 6¼ 0; then the SLP with n transmission

conditions (2.1)–(2.3) has exactly
Pnþ1

i¼1 mi þ n þ 1

eigenvalues kj; j ¼ 0; 1; . . .;
Pnþ1

i¼1 mi þ n:

(2) If h21 ¼ 0; and h11x1
0 þ h22xnþ1

mnþ1
6¼ 0, then the SLP

with n transmission conditions (2.1)–(2.3) has

exactly
Pnþ1

i¼1 mi þ n eigenvalues kj; j ¼ 0; 1; . . .;
Pnþ1

i¼1 mi þ n � 1:

(3) If h21 ¼ h11 ¼ h22 ¼ 0; but h12 6¼ 0; then the SLP

with n transmission conditions (2.1)–(2.3) has

exactly
Pnþ1

i¼1 mi þ n � 1 eigenvalues kj; j ¼
0; 1; . . .;

Pnþ1
i¼1 mi þ n � 2:

(4) If none of the above conditions holds, then the SLP

with n transmission conditions (2.1)–(2.3) either has

l eigenvalues for l 2 f1; 2; . . .;
Pnþ1

i¼1 mi þ n � 2g or

is degenerate.

Proof We prove the case (1), and the other cases can be

proved in the same way. From Lemma 2.1 we know that

DðkÞ ¼ detðAÞ þ detðBÞ þ h11/11ðb; kÞ
þ h12/12ðb; kÞ þ h21/21ðb; kÞ þ h22/22ðb; kÞ;

note that from (3.2) and Corollary 3.1 that the degree

of /11ðb; kÞ;/12ðb; kÞ;/21ðb; kÞ; /22ðb; kÞ in k are
Pnþ1

i¼1

mi þ n;
Pnþ1

i¼1 mi þ n � 1;
Pnþ1

i¼1 mi þ n þ 1;
Pnþ1

i¼1 mi þ n;

respectively. Thus when h21 6¼ 0; we can conclude from (2.7)

that the characteristic function DðkÞ is also a polynomial

function of k and with the degree of
Pnþ1

i¼1 mi þ n þ 1; hence

from Fundamental Theorem of Algebra we know that DðkÞ
has exactly

Pnþ1
i¼1 mi þ n þ 1 roots, i.e. SLP (2.1)–(2.3) has

exactly
Pnþ1

i¼1 mi þ n þ 1 eigenvalues. Then we complete the

proof of case (1). h

Theorem 3.2 Let mi 2 Nði ¼ 1; 2; . . .; n þ 1Þ, gn
12 ¼ 0;

but gn
11x

nþ1
0 þ gn

22x
n
mn

6¼ 0; gi
12 6¼ 0; i ¼ 1; 2; . . .; n � 1;

and let (2.4) and (3.1)–(3.3) hold. Let H ¼ ðhstÞ2�2 be

defined as in Lemma 2.1. Then:

(1) If h21 6¼ 0; then the SLP with n transmission

conditions (2.1)–(2.3) has exactly
Pnþ1

i¼1 mi þ n

eigenvalues kj; j ¼ 0; 1; . . .;
Pnþ1

i¼1 mi þ n � 1:

(2) If h21 ¼ 0; and h11x1
0 þ h22xnþ1

mnþ1
6¼ 0, then the SLP

with n transmission conditions (2.1)–(2.3) has

exactly
Pnþ1

i¼1 mi þ n � 1 eigenvalues kj; j ¼
0; 1; . . .;

Pnþ1
i¼1 mi þ n � 2:

(3) If h21 ¼ h11 ¼ h22 ¼ 0; but h12 6¼ 0; then the SLP

with n transmission conditions (2.1)–(2.3) has

exactly
Pnþ1

i¼1 mi þ n � 2 eigenvalues kj; j ¼
0; 1; . . .;

Pnþ1
i¼1 mi þ n � 3:

(4) If none of the above conditions holds, then the SLP

with n transmission conditions (2.1)–(2.3) either has

l eigenvalues for l 2 f1; 2; . . .;
Pnþ1

i¼1 mi þ n � 3g or

is degenerate.

Proof The proof is similar with Theorem 3.1 only by

noting that gn
12 ¼ 0; but gn

11x
nþ1
0 þ gn

22x
n
mn

6¼ 0; and the

degree of k will decrease by one, hence is omitted here. h

The next theorem will show that these eigenvalues can

be located anywhere in the complex plane in the non-self-

adjoint case and anywhere along the real line in the self-

adjoint case.

Theorem 3.3 Given any k disjoint open sets Ni in C and

any k integers ni, there exists an SLP with n transmission

conditions with exactly ni eigenvalues in Ni; for i ¼
1; 2; . . .; k: Given any k disjoint open intervals Ji of the real

line and any k integers ni, there exists a self-adjoint SLP

with n transmission conditions with exactly ni eigenvalues

in the intervals Ji; for i ¼ 1; 2; . . .; k:

Proof We prove the former case, and the latter can be

proved in the same way. Let
Pnþ1

i¼1 mi þ n ¼
Pk

i¼1 ni:

Construct an SLP with n transmission conditions in the

form of (2.1), (2.2) and (2.3) with the assumptions (2.4)

and (3.1)–(3.4), gi
12 6¼ 0; i ¼ 1; 2; . . .; n; a11 ¼ a21 ¼ a22 ¼

b22 ¼ 0; and a12 ¼ b21 ¼ 1ðora11 ¼ a12 ¼ a21 ¼ b12 ¼
0; a22 ¼ b11 ¼ 1Þ: Then by Corollary 3.1 the characteristic

function defined by (2.7) becomes

DðkÞ ¼ /11ðb; kÞ ¼ G0n �
Yn�1

i¼1

gi
12 �

Ynþ1

i¼1

Ri �
Ymnþ1�1

i¼1

�
Ymn�1

i¼0

�

Ymn�1

i¼0

� � �
Ym2

i¼0

�
Ym1

i¼0

þ ~/11ðkÞ;

ð3:16Þ

where ~/11ðkÞ ¼ oð
Qnþ1

i¼1 RiÞ as minfri
kg ! 1 for fixed

q, w and k: Since q and w can be chosen arbitrarily, we can

choose them such that
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~DðkÞ :¼
Ymnþ1�1

i¼0

�
Ymn

i¼0

�
Ymn�1

i¼0

� � �
Ym2

i¼0

�
Ym1

i¼0

has exactly ni roots in Ni and none on the boundary of

Ni; i ¼ 1; 2; . . .; k: Choose ri
k; k ¼ 0; 1; 2; . . .;mnþ1 � 1;

i ¼ 1; 2; . . .; n and jgn
12j so large that

j ~/11ðkÞj\jgn
12j � j

Yn�1

i¼1

gi
12j �

Ynþ1

i¼1

Ri �
Ymnþ1�1

i¼0

�
Ymn

i¼0

�
Ymn�1

i¼0

� � �
Ym2

i¼0

�
Ym1

i¼0

:

ð3:17Þ

Then it follows from Rouche’s theorem that the DðkÞ has

exactly ni roots in Ni; i ¼ 1; 2; . . .; k:

The other case of DðkÞ can be proved similarly. h

Remark 3.1 If n ¼ 0, the results will reduce to the finite

spectrum of general SLP in Kong et al. (2001). If n ¼ 1,

the results will reduce to the results in Ao et al. (2011),

where only one transmission condition at an interior point

is considered.

Finally, we give an example to illustrate our main result.

Example 1 Let n ¼ 2 and consider the SLP with two

transmission conditions

�ðpy0Þ0 þ qy ¼ kwy; on J ¼ ð�5;�2Þ [ ð�2; 1Þ [ ð1; 6Þ;
ðpy0Þð�5Þ ¼ 0; yð6Þ ¼ 0;

�2ðpy0Þð�2�Þ þ yð�2þÞ ¼ 0; yð�2�Þ þ ðpy0Þð�2þÞ ¼ 0;

2yð1�Þ � ðpy0Þð1þÞ ¼ 0; ðpy0Þð1�Þ þ yð1þÞ ¼ 0:

8
>>><

>>>:

ð3:18Þ

Choose m1 ¼ 1;m2 ¼ 1;m3 ¼ 2 and suppose p, q, w are

piecewise polynomial functions defined as follows:

pðxÞ ¼

1; ð�5;�4Þ
1; ð�4;�3Þ
1; ð�3;�2Þ
1; ð�2;�1Þ
1=2; ð�1; 0Þ
1; ð0; 1Þ
1; ð1; 2Þ
1; ð2; 3Þ
1; ð3; 4Þ
1=2; ð4; 5Þ
1; ð5; 6Þ;

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

qðxÞ ¼

0; ð�5;�4Þ
0; ð�4;�3Þ
1; ð�3;�2Þ
2; ð�2;�1Þ
0; ð�1; 0Þ
�1; ð0; 1Þ
1; ð1; 2Þ
0; ð2; 3Þ
3; ð3; 4Þ
0; ð4; 5Þ
1; ð5; 6Þ;

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

wðxÞ ¼

1; ð�5;�4Þ
0; ð�4;�3Þ
1; ð�3;�2Þ
1; ð�2;�1Þ
0; ð�1; 0Þ
1; ð0; 1Þ
1; ð1; 2Þ
0; ð2; 3Þ
1; ð3; 4Þ
0; ð4; 5Þ
1; ð5; 6Þ:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð3:19Þ

From (3.18) we have

A ¼
0 1

0 0

� �

;B ¼
0 0

1 0

� �

;C1 ¼
0 �2

1 0

� �

;D1 ¼
1 0

0 1

� �

;

C2 ¼
2 0

0 1

� �

; D2 ¼
0 �1

1 0

� �

;

and

detðC1Þ ¼ 2[ 0; detðD1Þ ¼ 1[ 0;

detðC2Þ ¼ 2[ 0; detðD2Þ ¼ 1[ 0;

G1 ¼ �D�1
1 C1 ¼

0 2

�1 0

� �

;G2 ¼ �D�1
2 C2 ¼

0 1

�2 0

� �

;

g1
12 ¼ 2 6¼ 0; g2

12 ¼ 1 6¼ 0:

By deduction it can be obtained that the characteristic

function

DðkÞ ¼ �8k6 þ 92k5 � 348k4 þ 398k3 þ 357k2 � 849kþ 224:

Hence the SLP (3.18), (3.19) has exactly m1 þ m2 þ m3 þ
n ¼ 6 eigenvalues

k0 ¼ �1:2260; k1 ¼ 0:3174; k2 ¼ 1:9598; k3 ¼ 2:3213;

k4 ¼ 3:2305; k5 ¼ 4:8971:
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