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Abstract For any positive integer n and a set of positive
integers m;, i =1,2,...,n+ 1, we construct a class of
regular Sturm-Liouville problems with n transmission

conditions, which have exactly Z?:II m; +n+1 eigen-

values. And further we show that these Z;’Ill m; +n+1
eigenvalues can be distributed arbitrarily throughout the
complex plane in the non-self-adjoint case and anywhere
along the real line in the self-adjoint case.

Keywords Sturm-Liouville problems - Finite spectrum -
Eigenvalues - Transmission conditions

1 Introduction

The Sturm-Liouville problems (SLPs) with transmission
conditions at an interior point have always been an
important research topic in mathematical physics. Such a
problem connected with many assortment of physical
problems, such as heat and mass transfer, vibrating string
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problems and diffraction problems. In recent years the
studies of these problems often appear not only in one
interior point, but also in two or infinite many interior
points. The discussions of these problems include their
self-adjointness, eigenvalues and the completeness of
eigenfunctions and inverse eigenvalue problems, and so
on (Gesztesy et al. 1985; Mukhtarov et al. 2002a, b,
2004; Chanane 2007; Sun and Wang 2008; Titeux and
Yakubov 1997).

Also recent years the Sturm—Liouville problems with
finite spectrum have been investigated by many authors
(Kong et al. 2001, 2009; Ao et al. 2011, 2012, 2013).
These problems can be seen as coming from Atkinson’s
statement in his well-known book (Atkinson 1964). Among
these studies there are finite spectrum results of SLPs
(Kong et al. 2001, 2009), SLPs with transmission condi-
tions (Ao et al. 2011, 2012), and even SLPs with trans-
mission  conditions and  eigenparameter-dependent
boundary conditions (Ao et al. 2013). However, there is no
such results for SLPs with finite transmission conditions.
For this reason, in this paper, we shall consider the SLPs
with n transmission conditions and prove that for any
positive integer n the SLPs with n transmission conditions
still have finite spectrum. Similar with the proof in Kong
et al. (2001) and Ao et al. (2011), we construct a class of
these problems with exactly Z:f 11 m; +n 4 1 eigenvalues,
where m; are connected with the partition of the interval
J. As in Kong et al. (2001) and Ao et al. (2011) our con-
struction based on the characteristic function whose zeros
are the eigenvalues. The key to this analysis is still an
iterative construction of the characteristic function.
Although similar methods are used to get our main results,
the specific process of calculations and proofs is not
completely the same as in Kong et al. 2001 and Ao et al.
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2011, which is more complicated and include some new
items.

2 Notation and Preliminaries

Consider the SLP consisting of the differential equation

— () + qy = Awy,

onJ = (a,c;) U (cr,c2) U---U(cy, b), 21)

where —co<a<b< +o00,¢ € (a,b),i=1,2,...,n,
together with the regular two point boundary conditions
(BCs) of the form

y

AY(a)+BY(b) =0, Y = (py

/), A,B e M,(C), (2.2)
and the transmission conditions at these n interior points c;
of the form

C,'Y(C[—) +D,Y(C,+) = O, = 1,2, Lo n, (23)

where A = (ay)y,, B = (by),, are complex-valued 2 x 2
matrices, and C;, D; are real valued 2 x 2 matrices satis-
fying det(C;) = p; > 0, det(D;) = 0; > 0. M,(C) denotes
the set of square matrices of order 2 over C. Here 4 is the
complex-valued spectral parameter, and the coefficients
satisfy the minimal conditions

r=1/p,q,w e L(J,C), (2.4)

where L(J, C) denotes the complex-valued functions which
are Lebesgue integrable on J. Condition (2.4) is minimal in
the sense that it is necessary and sufficient for all initial
value problems of Eq. (2.1) to have unique solutions on
[a, b]; see Everitt and Race (1976), Zettl (2005).

Since the boundary conditions are invariant under left
multiplication by a nonsingular matrix, we use the notation
A =[A: B] to denote the equivalence class of BC (2.2).
These equivalence classes, endowed with the topology
induced by any matrix norm, form the boundary condition
quotient space denoted by B := M,,4(C)/GL(2, C), where
M;44(C) is the class of 2 x 4 matrices over C, and
GL(2,C) is the set of nonsingular matrices of order 2 over
C. Denote by B, the subset of B consisting of the self-
adjoint BCs. D; := {[C; : D;]| det (C;) > 0, det (D;) > 0}
denotes the equivalence class of n transmission condition
(2.3). Denote by Dy the subset of D consisting of the self-
adjoint transmission condition. Let

Q={w=(a,b,p,q,w): (2.4) holds},

and endow Q with the topology as in Kong et al. (1999).
Then the space of SLPs in which we study the dependence
of eigenvalues on the problem is given by Q x B x D(D =

72, €\ Springer

[Co:D,] X [Cho1 : Dy q] X -+- x [Cy : Dy]) and is called
the SLP space with n transmission conditions, and Q x
Bs x Dy is called the self-adjoint SLP space with n trans-
mission conditions where p, g, w are real-valued.

Remark 2.1 As usual, the self-adjoint extension of SLPs
with n transmission conditions need additional restrictions
on C;,D; and a new weighted Hilbert space defined as in
Mukhtarov et al. (2002b, 2004), Sun and Wang (2008).
With this weighted Hilbert space the operator associated
with Sturm-Liouville problems with n transmission con-
ditions is self-adjoint if and only if the associated new
operator is self-adjoint, and they consist of the same
eigenvalues, and satisfying the condition

0 -1
0)---0,AE"'A* = p, - p,BE"'B* with E = [1 0 }
For further details of the self-adjointness of SLPs with
n transmission conditions please see Sun and Wang (2008).
The results in this paper are not restricted to self-adjoint
problems, but include non-self-adjoint problems.

Let u =y,v=py. Then Eq. (2.1) can be transferred
into the following first order system:

W =rv, vV =(qg— Aw)u, onl. (2.5)

Definition 2.1 By trivial solution of Eq. (2.1) on some
intervals we mean a solution y which is identically zero and
whose quasi-derivative v = py’ is also identically zero on
this interval.

Lemma 2.1 Let (2.4) hold and let ®(x, 1) = [¢,(x, 4)]
denote the fundamental matrix of the system (2.5) deter-
mined by the initial condition ®(a, ) = I. Then a complex
number A is an eigenvalue of the Sturm—Liouville problem
with n transmission conditions (2.1)—(2.3) if and only if

A(2) = det|]A + B®(b, 4)] = 0. (2.6)
And in further A(A) can be written as

A(4) = det(A) + det(B) + hi1 1 (b, 4) + hiaep12(b, 4)
+ ha1¢,1 (b, 2) + hoayy (b, 1),
(2.7)

where

aiiby; — az by

H— |:hll hl2] — {61221911 — anby;
' anbyn —anbpy |’

hat ha anbiy — apnbx

Proof The proof of the first part of this lemma is similar
to the one in Mukhtarov et al. (2004), hence is omitted
here. And the second part comes from a straightforward
computation. O
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Definition 2.2 The SLP with n transmission conditions
(2.1)—~(2.3), or equivalently (2.2), (2.3), (2.5) is said to be
degenerate if in (2.7) either A(A) =0 for all A € C or A(1)
# 0 for any 4 € C.

In the derivation of our main results an important role is
played by the “Continuity Principle” established in Kong
et al. (1999), which reads.

Lemma 2.2 Let A C C be a bounded open set in the
complex plane C and let m € N. If an SLP (w, A) €
Q x B has exactly m eigenvalues, counting multiplicity, in
A, and none on the boundary of V", then every SLP (g, )
sufficiently close to (w, A) also has exactly m eigenvalues,
counting multiplicity, in N

Proof See Kong et al. (1999), Kong and Zettl (1996). [J

This lemma can be easily generated to SLP space with
n transmission conditions.

3 The Finite Spectrum of Sturm-Liouville
Problems with » Transmission Conditions

In this section, we assume (2.4) holds and there exists a
partition of interval J

a=ay<aj<ay<---<ay, <as, . =ci,on [a,cy),
2_ 2 _ 2 2 2
1 =ay<a;<a;< - <ay, <a,, | =cy,0n (ci,c),

Cph = aﬁ“ <a'1'+1 <ag+1 < .. <a’§;n1+l <ag;’}+l+l
(3.1)
= b,on (c,,b],
for n and some integers m;,i = 1,2,...,n+ 1, such that
1 0 (i ; )/agkl 7é0
r=—-=20on (a,,a , w ,
D 2% Dok 1 i (3.2)
k=0,1,...myi=1,2,...n+1,
and
0 (i ; ) Ay 7&0
q=w=00n (a1, dir v/_ r ’
Aoy (33)
k=0,1,2,...m—1,i=1,2,....n+ 1.
Next we let
. Tyes
= rx)dxgk=0,1,...m—1,i=12,.. . ,n+1;
v

a;k\]
:/ q(x)dx,k=0,1,..

i
de

amii=1,2,...n+1;

—

q

. diyy
W;{;/ S w)de k=0,1,..mii=1,2,.. 0+ 1.

i
Dok

(3.4)

These notations will be used in our iterative construction
process.

Following Kong et al. (2001), Ao et al. (2011), we first
determine the structure of the principal fundamental matrix
of system (2.5) which, together with the “Continuity
Principle”, is basic to our results.

Lemma 3.1 Let (2.4) and (3.1)~(3.3) hold. Let ®(x, ) =
(b, (x, A)] be the fundamental matrix solution of the system
(2.5) determined by the initial condition ®(a,l) =1 for
each 1 € C,x € [a,c1). Then we have that

1 0
®(al, ) = ®(a, 1), 3.5
R PR LT 5:3)
1 Ll 1
d)(aé, )= +(6110 1 HolT 1r0 A
by (a3, 4) 1+ (q; — Awy)rp
(3.6)
where
b3 (a3, 2) = (g9 — wwg) + (q1 — 2w) + (45
— dwo)(qy — 2wi)rg -
And in general, for 1 <k <m
1 rl
(I) 1 ) — k—1 (I) 1 D) .
(@311,7) gl —wl 14 (g — )l (a1, 4)
(3.7)

Proof Observe from (2.5) that u is constant on each subin-
terval where r is identically zero and v is constant on each
subinterval where both ¢ and w are identically zero. The result
follows from repeated applications of (2.5). (]

Lemma 3.2 Let (2.4) and (3.1)—(3.3) hold. Let
(Di(x7 j*) = [d’iz(xa /“)](x € (Ci> Ci+1)> Ch1 =b= ag;“l+]+1)

be the fundamental matrix solution of the system (2.5)
determined by the initial condition ®;(c;+,A) =1 (here
®;(ci+,2) = Bi(ai", 1) = D(ci+,2),i = 1,2,...,n)
denote the right limit at point c; for each A € C. Then we
have that

2, @) Springer
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1 0

i+1 — i+1
O;(a™, 2) [%H i l]d),(ao ), (3.8)

. 14+ (qi+l 7/L,W’+l) i+1 rt+1
@ (g _ 0 o ) 0 ‘

i(a5", ) l;szJ[l( ‘3“,/1) 1+ (qzl+1 z+1) 6+1
(3.9)

where

o (@57 2) = (qo"" = awg™) + (g1 = i) + (g5

o /1W1+1)(£]11+1 iwzl+l)r6+l‘
And in general, for 1<k <m,

J
1 Ty

L it i1 1y i
p w1+ (g = aw )t

O (aziy, 2) =

O;(aty, 4).
(3.10)

Proof The proof is similar to the one as in Lemma 3.1. [J

Lemma 3.3 Let (2.4) and (3.1)—(3.3) hold. Let ®(x, ) =
[y, (x, 2)] be the fundamental matrix solution of the system
(2.5) determined by the initial condition ®(a, 1) =1 for

each ). € C, and ®;(x,1) = [¢},(x, )] be given as in
Lemma 3.2. Then we have that
(D(b, )u) = (Dn (b, /I)Gnq)n_l (Cn, ;L)G;l_]

(3.11
D, 5(cp-1,4) - G1D(cy, 4), )

where G; =
D(cy, ) = CD(aém]H,A),
D;(cir1,4) = Oi(cir1—, 4) = Oi( i+l )

Doy +1

= q)(ci+17)")7 (l = 1727 SERTY [ 1)7

(8st)ax2 = —D; ' Ci, and

= (I)(Cl—,/l)

Dy (b, 1) = Ou(d5! 1, 2)
denote the left limit at point ¢;(i = 1,2,...,n).

Proof From the transmission conditions (2.3) we know
that

Ci®(ci—,A) + Di®(ci+,4) =0,
thus
O(ci+, 2) = =D; ' CO(¢i—, 7).

By using the Lemma 3.3 in Ao et al. (2011), wheni = 1, in
(a,c1) U (c1,c2), we have that

(D(Cz,l) = (D (Cz,))G] (C17)\4)7
when i = 2, we have that in (a,c;) U (c1,¢2) U (¢2,¢3),

(D(C3, j.) = (D2(63, }v)Gg(Dl <C2, ;L)qu)(cl, i)

22, Q) Springer

By repeated application of Lemmas 3.1, 3.2 and the
Lemma 3.3 in Ao et al. (2011), it can be concluded that
(3.11) follows. ]

Note that ¢; = b, ., =ay', b=d3! | and (3.11).
Then the structure of fundamental matrix solution ®(b, 4)
given in Lemmas 3.1, 3.2 and mathematical induction yield

the following.

Corollary 3.1 If g\, #0,i=1,2,.
fundamental matrix ®(b, 1) we have that

., n, then for the

n+1 myp1—1
$11(b,2) = Gon - Hglz HR :
= (3.12)
m,—1 m,_ m,  m N
H H “'H'HJr(f)u(;»),
i=0 =0 i=0 =0
n=1  ntl myy1—1 m,—1
$12(b, 2) = Gon - nglz : HRi : H ' H
i=1 i=1 i=1 =0
- w om (3.13)
111 T +4n(.
i=0 i=0 =1
n—1 , n+1 —
$21(b, 2) = Gon - Hgllz : HR : H H
i=1 i=1 i=1 =0
- wom (3.14)
H"'H'H‘Hf’zl(ﬂ),
i=0 i=0 =0
n—1 . n+1 My my—1
$22(b,2) = Gon - Hgllz : HRi : H
i=1 i=1 =1 i=0
- m (3.15)
H : "H'H+¢22(i);
i=0 i=0 =1
where
G = [g,IIZ(qm,, )w'n,,)(qg+l Awngl)
+&li(ap™ — 205™) + g5 (ap, — 200, ) + &3],
mi—1
R, = n,i=12,...,n+1,
k=0
My —1 myy1—1
_ (CIZH /LWZ+1),
k=1 k=1
m,—1 m,—1
= 11 @ — ),
k=0 k=0
:H(CIZ_AWZ% i=12,..,n—1,
k k
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by (2) = o(TT2) Ri), 5.t = 1,2 as min {r},} — oo for fixed
q, w and A.

From Corollary 3.1 we can see that each of the entries in
D (i.e. ¢y, s5,t=1,2) is a polynomial of A.

Now we construct regular SLPs with n transmission
conditions (2.3) with general self-adjoint and non-self-ad-
joint BCs (2.2) which have exactly m eigenvalues for each
m € N.

Theorem 3.1 Let me N(i=1,2,...,n+1), g, #
0,i=1,2,...,n, and let (2.4) and (3.1)—(3.3) hold. Let
H = (hy),,, be defined as in Lemma 2.1. Then:

(1) If hy #0, then the SLP with n transmission
conditions (2.1)~(2.3) has exactly Y=\ 'm; +n+1
eigenvalues ;,j =0,1,. .., Z::ll m; + n.

(2)  If ha1 =0, and hyyo) + hzzw:,‘;:l # 0, then the SLP
with n transmission conditions (2.1)—(2.3) has
exactly E;:ll m; +n eigenvalues /4;,j=0,1,...,
S 40— 1.

3) If hyy = hyy = hy :O, but hy, 7&0, then the SLP
with n transmission conditions (2.1)—(2.3) has
exactly S 'mi4+n—1 Aj,j =
0,1,..., S i n —2.

(4)  If none of the above conditions holds, then the SLP
with n transmission conditions (2.1)—(2.3) either has
[ eigenvalues for 1 € {1,2,..., Z:‘:ll m; +n—2} or
is degenerate.

eigenvalues

Proof We prove the case (1), and the other cases can be
proved in the same way. From Lemma 2.1 we know that

A(2) = det(A) + det(B) + hyi by, (b, 2)
+ hi2di2(b, ) + ha1¢1 (b, 4) + haa oy (b, ),

note that from (3.2) and Corollary 3.1 that the degree
of ¢11(b,2), 12(b, 2), $21(b, 4), byp(b,2) in 4 are Z?:Jrll
mi+n, S = L, w4+ 1,5 e+,
respectively. Thus when /4, # 0, we can conclude from (2.7)
that the characteristic function A(A) is also a polynomial
function of 1 and with the degree of Z:’Ll m; + n + 1, hence
from Fundamental Theorem of Algebra we know that A(4)
has exactly Z?ill m; + n + 1 roots, i.e. SLP (2.1)~(2.3) has
exactly Z:’ﬂl m; + n + 1 eigenvalues. Then we complete the

proof of case (1). O

Theorem 3.2 Let m; e N(i=1,2,...,n+1), gf, =0,
but g?lw8+] +g32wzz,, 7& 0’ gilz 7& 07 i= 1727 s — 17
and let (2.4) and (3.1)-(3.3) hold. Let H = (hy),,, be
defined as in Lemma 2.1. Then:

(1) If hyy #0, then the SLP with n transmission
conditions (2.1)~(2.3) has exactly Z:’: m; +n
eigenvalues 7;,j =0,1,. .., Z;’ill mi+n—1.

(2)  Ifhay =0, and hy o) + hzzw;lnt:l # 0, then the SLP
with n transmission conditions (2.1)—(2.3) has
exactly S 'm0 —1 AjyJ =
0,1,..., Z::llmi+n—2.

3) [f hy1 = hyy = hyy =0, but hyy 75 0, then the SLP
with n transmission conditions (2.1)—(2.3) has
exactly S 'm0 -2 NES
0,1,..., S i 4 n = 3.

(4)  If none of the above conditions holds, then the SLP
with n transmission conditions (2.1)—(2.3) either has
[ eigenvalues for 1 € {1,2,.. ., Z;’;Lll m; +n—3} or
is degenerate.

eigenvalues

eigenvalues

Proof The proof is similar with Theorem 3.1 only by
noting that gf, =0, but g,wj™ + ghwp #0, and the
degree of 1 will decrease by one, hence is omitted here. [J

The next theorem will show that these eigenvalues can
be located anywhere in the complex plane in the non-self-
adjoint case and anywhere along the real line in the self-
adjoint case.

Theorem 3.3 Given any k disjoint open sets N"; in C and
any k integers n;, there exists an SLP with n transmission
conditions with exactly n; eigenvalues in N';, for i =
1,2,...,k. Given any k disjoint open intervals J; of the real
line and any k integers n;, there exists a self-adjoint SLP
with n transmission conditions with exactly n; eigenvalues
in the intervals J;, for i = 1,2, ... k.

Proof We prove the former case, and the latter can be
proved in the same way. Let >.7"'m; +n= Zf.;l n;.
Construct an SLP with n transmission conditions in the
form of (2.1), (2.2) and (2.3) with the assumptions (2.4)
and (31)—(34), gi12 7& O,i = 1,2, oy ayp = ax =daxy =
b22 = 0, and app = bz] = 1(0}"6111 =djp =daxy = b12 =
0,a2, = by = 1). Then by Corollary 3.1 the characteristic
function defined by (2.7) becomes

n—1 n+1 My —1 my—1
A(/I) = d)]l(ba/l) = GOn : Hglu . HR’ . H . H .
i=1 i=1 i=1 i=0
Mp—| my mi ~
H"'H‘H"‘(ﬁn(i),
i=0 i=0 =0
(3.16)

where ¢,,(4) = o([I/*] R) as min{ri} — oo for fixed
g, w and A. Since ¢ and w can be chosen arbitrarily, we can
choose them such that

2, @) Springer
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P o o det(C;) =2>0, det(D;)=1>0,
W= 111111111 det(C;) =2>0, det(Dy) =10,

has exactly n; roots in .4"; and none on the boundary of

Nii=1,2,...,k. Choose ri,k=0,1,2,....,mu —1,
i=1,2,...,n and |g},| so large that
_ n—1 ) n+1 My =1 my,  m,_ my  m
Sl <lehl- TTgwl- 118 IT -11-11-- 1111
i=1 i=1 i=0 i=0 =0 i=0 =0
(3.17)

Then it follows from Rouche’s theorem that the A(4) has
exactly n; roots in A, i =1,2,... k.
The other case of A(Z) can be proved similarly. O

Remark 3.1 If n =0, the results will reduce to the finite
spectrum of general SLP in Kong et al. (2001). If n =1,
the results will reduce to the results in Ao et al. (2011),
where only one transmission condition at an interior point
is considered.

Finally, we give an example to illustrate our main result.

Example 1 Let n =2 and consider the SLP with two
transmission conditions

—(py") +qy = Jwy, onJ = (=5,-2)U(=2,1)U
(Py)(=5) =0, y(6)=0,
=2(pyY')(=2-) +y(=24) =0, y(-2-)+
=) = y)(14+) =0, (»')(1-

(1,6),

(pY)(=2+) =0,
)+y(1+) =0.
(3.18)

Choose m; = 1,m, = 1,m3 = 2 and suppose p, g, w are
piecewise polynomial functions defined as follows:

00, (=5, —4) 0, (-5,-4) 1,(-5,-4)
1,(—4,-3) 0,(—4,-3) 0,(—4,-3)
00, (—3,-2) 1,(-3,-2) 1,(-3,-2)
00, (=2,-1) 2,(=2,-1) 1,(=2,-1)
1/2,(-1,0) 0,(—1,0) 0,(—1,0)
p)={ 00, (01)  g)={ -1,0,1) wx)=2 1,01
00, (1,2) 1,(1,2) 1,(1,2)
1,(2,3) 0,(2,3) 0,(2,3)
00, (3,4) 3,(3,4) 1,(3,4)
1/2,(4,5) 0,(4,5) 0, (4,5)
0, (5,6), 1,(5,6), 1,(5,6).
(3.19)

From (3.18) we have

{0 1] [0 0} {0 72] [1 0}
A= ,B: 7C1: 7D|: ’
0 0 1 0 1 0 0 1
C — 2 0 Dy — 0 -1

2 = 0 1 ) 2 = 1 0 )

and

2
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G, =-D7'c, = 0 2 G,=-D;'C, = 0 1
1= 1 1= 1 0 y I2 — 2 2 = ) 07
g, =2#0,g,=1#0.

By deduction it can be obtained that the characteristic
function

A(2) = —82° +92)° — 348)* 4+ 39877 4 35777 — 849/ + 224.

Hence the SLP (3.18), (3.19) has exactly m; + my + ms +
n = 6 eigenvalues

Jo = —1.2260, 7, = 0.3174, /5, = 1.9598, /5 = 2.3213,
Ju = 3.2305, /5 = 4.8971.

Acknowledgments The work of authors was supported by National
Nature Science Foundation of China (Grant Nos. 11361039,
11301259 and 11561051), Nature Science Foundation of Inner
Mongolia (Grant No. 2013MS0105) and a Grant-in-Aid for Scientific
Research from Inner Mongolia University of Technology(Grant No.
X201224).

References

Ao JJ, Sun J, Zhang MZ (2011) The finite spectrum of Sturm-—
Liouville problems with transmission conditions. Appl Math
Comput 218:1166-1173

Ao JJ, Sun J, Zhang MZ (2012) Matrix representations of Strum-—
Liouville problems with transmission conditions. Comput Math
Appl 63:1335-1348

Ao JJ, Sun J, Zhang MZ (2013) The finite spectrum of Strum—
Liouville problems with transmission conditions and eigenpa-
rameter-dependent  boundary  conditions. Results Math
63:1057-1070

Atkinson FV (1964) Discrete and Continuous Boundary Problems.
Academic Press, New York/London

Chanane B (2007) Sturm-Liouville problems with impulse effects.
Appl Math Comput 190:610-626

Everitt WN, Race D (1976) On necessary and sufficient conditions for
the existence of Caratheodory solutions of ordinary differential
equations. Quaest Math 3:507-512

Gesztesy F, Macedo C, Streit L (1985) An exactly solvable periodic
Schroedinger operator. J Phys A Math Gen 18:503-507

Kong Q, Wu H, Zettl A (1999) Dependence of the nth Sturm-—
Liouville eigenvalue on the problem. J Differ Equ 156:328-354

Kong Q, Wu H, Zettl A (2001) Sturm-Liouville problems with finite
spectrum. J Math Anal Appl 263:748-762

Kong Q, Volkmer H, Zettl A (2009) Matrix representations of Sturm—
Liouville problems with finite spectrum. Result Math
54:103-116

Kong Q, Zettl A (1996) Eigenvalues of regular Sturm-Liouville
problems. J Differ Equ 131:1-19

Mukhtarov OSh, Kadakal M, Muhtarov FS (2004) Eigenvalues and
Normolized eigenfunctions of discontinuous Sturm-Liouville
problem with transmission conditions. Rep Math Phys
54(1):41-56



Iran J Sci Technol Trans Sci (2018) 42:811-817

817

Mukhtarov OSh, Kandemir M (2002) Asymptotic behavior of
eigenvalues for the discontinuous boundary-value problem with
functional-transmission conditions. Acta Math Sci 22B(3):
335-345

Mukhtarov OSh, Yakubov S (2002) Problems for differential equations
with transmission conditions. Appl Anal 81:1033-1064

Sun J, Wang A (2008) Sturm-Liouville operators with interface
conditions, The Progress of Research for Math., Mech., Phy. and
High New Tech., vol 12, Science Press, Beijing

Titeux I, Yakubov Y (1997) Completeness of root functions for
thermal condition in a strip with piecewise continuous coeffi-
cients. Math Models Methods Appl Sci 7:1035-1050

Zettl A (2005) Sturm-Liouville Theory, Mathematical Surveys
and Monograghs, vol 121. American Mathematical Society,
Providence RI

B2, 4\ Springer



	Finite Spectrum of Sturm--Liouville Problems with n Transmission Conditions
	Abstract
	Introduction
	Notation and Preliminaries
	The Finite Spectrum of Sturm--Liouville Problems with n Transmission Conditions
	Acknowledgments
	References




