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Abstract This paper deliberates on the development of
new smooth shape-preserving schemes. These schemes are
also demonstrated with data in the form of shape-preserv-
ing trigonometric spline curves. For this persistence, a GC!
cubic trigonometric spline function is developed, which
also nourishes all the fundamental geometric properties of
Bézier function as well. The developed trigonometric
spline function comprises two parameters o; and f3;, which
ensures flexible tangents at the end points of each subin-
terval. Furthermore, constraints are derived on f3; to gen-
erate the shape-preserving trigonometric spline curves,
whereas «; is any positive real number used for the modi-
fication of shape-preserving trigonometric spline curves.
The error approximation of the developed function is
o(h}).
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1 Introduction

Trigonometric spline curves have become the significant
graphic approach to depict 2D data in various upcoming
fields such as industrial design, computer graphics, data
analysis and scientific visualization. In computer graphics,
Bernstein—Bézier functions are often used for graphic
purposes due to its productive geometric properties. When
a designer desires to interpolate the intrinsic-shaped data
(positive, monotone and convex) with Bézier functions,
these functions are unable to preserve the specific shape of
the data. The trigonometric spline functions serve as an
alternative choice for the designer and guarantee the shape
characteristics of the data, satisfying all the geometric
properties of Bézier functions, i.e., end point interpolation,
convex hull, affine invariance and variation diminishing.
A plenty of work (Butt and Brodlie 1993; Costantini
2000; Cravero and Manni 2003; Duan et al. 2007; Floater
and Péna 2000; Han 2004, 2014; Hussain et al. 2014;
Ibraheem et al. 2012; Kvasov 2013; Kouibia and Pasadas
2001, 2003; Sarfraz et al. 2013, 2014; Verlan 2010) has
been done in the area of shape preservation. Butt and
Brodlie (1993) worked on a positivity-preserving curve
scheme for positive data. To preserve the positivity of
positive data, the cubic Hermite interpolation was used.
The authors in (Butt and Brodlie 1993) inserted some extra
knots, if anywhere in the subinterval the polynomial failed
to preserve the shape of the curve. Costantini (2000) pre-
sented polynomials with variable degree to create curves
and surfaces. These polynomials were good like cubic
polynomials with respect to their geometric effects. Fur-
thermore, Costantini (2000) used the presented polynomi-
als as a parameter tool to govern the shape of C? B-spline
or NURBS curves and surfaces. Cravero and Manni (2003)
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established a C? interpolant for shape preservation of the
positive, monotone and convex data. The established
schemes were global and equally suitable for data with or
without derivatives. Likewise, the tension parameters were
introduced for shape handling. Han (2004) built the cubic
trigonometric polynomial with shape parameter to
approximate the cubic B-spline curves. But the curves
drawn by the proposed methods were nearer to the convex
hull than the B-spline curves.

Han (2014) presented trigonometric polynomials based
on the symmetric basis. Han (2014) estimated the con-
vergence of the derivatives of the proposed trigonometric
polynomials. Also, some properties of the proposed
trigonometric polynomials were discussed such as non-
negativity, linear independence and degree elevation of
basis functions. Hussain et al. (2014) developed a control
point form of GC' quadratic trigonometric functions with
two free parameters in each subinterval. Constraints were
derived on these free parameters to interpolate the shape of
positive, monotone and convex data. These parameters
were also helpful to obtain the more flexible tangents at
both ends of each subinterval.

Ibraheem et al. (2012) discussed positivity using rational
cubic trigonometric function. The rational cubic trigono-
metric function was defined piecewise with four free
parameters over each subinterval. Two parameters were
constrained for shape preservation, whereas two parame-
ters were left free for further shape amendment. Kvasov
(2013) constructed algorithms using weighted cubic splines
for discrete data sets. Those algorithms were used to pre-
serve monotonicity and convexity with the automatic
choice of the shape-controlling parameters. Kouibia and
Pasadas (2001) developed a shape-preserving method of
interpolation for scattered data. Verlan (2010) developed
an algorithm which was used to preserve the convexity for
the given data. In this persistence, C? spline of arbitrary
degree was used.

In this paper, two schemes were developed to preserve the
shape of the positive and constrained data. Positive data is
raised from population density, probability distribution and
amount of monthly rainfall. The inspection of gas leakage
during the process of experiments is also a good illustration
of positive data. The applications of constrained data are in
the fields of medicine, transport and optimization theory, etc.
The developed schemes have the following benefits:

e A new GC' cubic trigonometric spline function is
developed.

e The developed cubic trigonometric spline function has
two free parameters in its description. One free
parameter is constrained to preserve the inherited shape
of the data, whereas the other free parameter is used to
modify the shape of the curve. However, in (Ibraheem
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et al. 2012; Sarfraz et al. 2013), four parameters were
used in the construction of spline functions, from which
two parameters were constrained for the shape preser-
vation of the data while the remaining two parameters
were free to modify the shape of the curve.

e The developed schemes are local and work equally for
uniform and non-uniform data.

e Unlike Butt and Brodlie (1993), no extra knots are
inserted.

e In Hussain et al. (2014), GC' quadratic trigonometric
function with two shape parameters was developed and
both parameters were constrained. So, there was no
freedom to the user for shape modification.

e The error approximation of the developed cubic
trigonometric spline function is of order three.

This paper is organized as follows. Section 2 describes
the developed GC' cubic trigonometric function. In
Sect. 3, the error approximation of GC! cubic trigono-
metric spline function is calculated. Constraints on free
parameter are derived in Sect. 4 to preserve the shape of
positive and constrained data. Section 5 establishes the
graphical view of the schemes developed in Sect. 4.
Finally, Sect. 6 concludes the paper.

2 Cubic Trigonometric Spline Function
Consider the data {(x;,f;);i=0,1,2,...,n} over the

interval [a, b] with the knots a = xg<x;1<x < -+ <X,
= b. The cubic trigonometric function over each subin-

terval I; = [x;,x;41], i =0,1,2,...,n — 1, is defined as:
3

Si(x) = ZAI(X)PIVX € [xia-xi+1]7 (1)
=0

where

Ao = (1 —sin6)®, A} = 3sin 0 — 4sin’0 + sin’0),
Ay = 3cos 0 — 4cos?0 + cos0, Az = (1 —cos0)’,

0:%5,5:";?"’}11.:)5#1 _-xi7i:()71727"'an_ 1.

Ai(x),1=0,1,2,3 are the cubic trigonometric basis
functions and P;(x),/=0,1,2,3 are the control points.
Applying the C! conditions: S(x;) =f;,S(x;i11) = fir1,
s (xi) = d;, S (xi+1) = diy1. The cubic trigonometric func-
tion (1) takes the form:

Si(x) = (1 —sin0)*f; + (3sin0 — 4sin” 0 + sin’ )

2 A
<fi + hld’) + (3 cos 6 — 4 cos? 0 + cos® 9)

37 (2)

2h;d;
<ﬁ+1 , 2hidis
3n

) + ((1 — cos 0)3)ﬁ+1.
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The cubic trigonometric spline function (2) has fixed
value of derivatives at each end of each subinterval. The
elasticity of the derivative values is attained by imple-
menting GC' continuity conditions on the cubic trigono-
metric spline function (2) as follows:

) 1
Si (inOZ%) = I'tS;(xj-0) Vi, I'1 = o + B 7l
7 ! . 1
S; (xmlo:g) = I8, (Xi1j0-0) Vi, T2 = %+ B; 71
ie.,
; dity
di — ——, d; ;
—)O‘i"_ﬁi l+l_}°‘i+ﬁi

where o; > 0 and f§; > 0 are the parameters.

The cubic trigonometric spline function (2) is trans-
formed into GC' cubic trigonometric spline function
described as:

3

Si(x) = D Ai(x)BVx € [xi, xi1], (3)
=0

where

2h;d;
3l + )

2hidiy
bl po_ e
3l + ) I

2.1 Geometric Properties

By=fi,B1 =fi +

= fix1 +

The developed cubic trigonometric function (1) has the
following properties.

1. The cubic trigonometric function (1) interpolates the
end points of each subinterval, i.e., S;(x;)|y_, = Po and
Si(xi41)]g—z = Ps.

2. The sum of all basis functions is one, i.e.,
Z?:OAI(X) =1 and A;(x),/=0,1,2,3 are all non-
negative. That means the cubic trigonometric function
(1) is confined to the convex hull of its control points
Pi(x),1=0,1,2,3. Its graphical view is shown in
Fig. 1a.

3. The cubic trigonometric function (1) is invariant under
the affine transformation. Let U be an affine transfor-
mation defined as: U(X) = FX + U, where F is the
affine transformation matrix, X the vector to be trans-
formed and U, the translation vector. Applying affine
transformation to cubic trigonometric function (1),

U(S,(x)) = U<iA[(x)P1> = FiA[()C)P[ + U,.

=0

Since 37 ,A;(x) =1, the above expression can be
written as:

=0
=Y Ax)(FP + Uy)
=0
3
=Y Ax)U(P)
=0

4. The cubic trigonometric function (1) also satisfies the

variation diminishing property, i.e., an arbitrary line is
drawn over the curve cuts it less than or equal to the
number of cuts with the control polygon. Its graphical
view is shown in Fig. 1b.

(a) 4

y-axis

y-axis

X-axis

Fig. 1 a Cubic trigonometric function and its control polygon and
b variation diminishing property for cubic trigonometric function
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2.2 Observation

The parameters o; and f; are defined as free parameters.
The parameter f5; has a major effect on the graphical view
of the data, whereas o; can take any positive real value.
However, GC' cubic trigonometric spline function (3) has
naturally an oscillatory behavior due to its basis functions
which involves sine and cosine functions. Therefore, to
obtain the shape-preserving results of the shape-preserving
data, it is essential to constrain the parameter. Its mathe-
matical proofs and graphical demonstration can be seen in
Sects. 4 and 35, respectively. It is observed that for the

(a)

y-axis

- i i i i i i
0 ; F :

Fig. 2 a GC! cubic trigonometric spline function with parameters o; = 0.37, f8; = 0.01.

parameters o; = 0.37, f; = 0.05

(a)

y-axis

H-axis

Fig. 3 a GC' cubic trigonometric spline function with parameters o; = 0.37, 8; = 0.001. b GC!

parameters o; = 0.37, f; = 0.05

@ Springer

particular value of f; in a certain interval, the GC' cubic
trigonometric function (3) converges toward a straight line.
This observation is illustrated through the closed data set

{(xivfi) : (07 1)7 (1’4)’ (2’ 1)’ (374)7 (O’ 1)}
and simple closed data set
{(xivfi) : (_1’0)’ (0’ _1)’ (1’0)’ (Ov 1)5 (_1’0)}

Figures 2a and 3a show the smooth closed curves, but as
the value of f3; is increased to 0.05, the cubic trigonometric
spline function (3) converges to a straight line as shown in
Figs. 2b and 3b, while the value of o; is 0.37.

o 71 1 T |

y-axis

H-2KIS

b GC! cubic trigonometric spline function with

(b)

y-axis

¥-axis

cubic trigonometric spline function with
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3 Error Approximation of Cubic Trigonometric
Spline Function

This section focuses on the approximation properties of GC'
cubic trigonometric spline function (3). It is supposed that
the data are generated from third-order continuously dif-
ferentiable function. Since the developed spline function in
Sect. 2 is local, the error of approximation is calculated in
the subinterval I; = [x;, x;11]. The absolute error is expressed
in terms of Peano kernel (Duan et al. 2007) as follows:

Xit1

/ f(3>(r)Rx [(x — ‘c)ﬂ dr. 4)

Xi

It is assumed that the function being interpolated is
f(x) € C3[xo,x,). The absolute error in I; = [x;, x;+1] is

To calculate the integral of absolute values in (5), the
roots of r(t,x) and s(t,x) are calculated. The roots of
r(x,x)in [0,1] are 6 = 0,6 =1 and 6 = 1 — 58 TP) 1

3n(oy+p;)
876(0614’/3;) _ogx
1- 3n(oi+pB;) 0

To calculate the roots of r(z,x), it is rearranged as:
r(r,x) = (1 — Ay +A3)(x— 1)’

(5 = (1= A A )5

2A,(1-9)
+h? (m — (A2 +A43)(1 - 5)2)

The roots of r(t,x) = 0 are 7y = x + h;(852) and 7, = x
+hi(B52), where A= (1—-A,+A43), B= (SH(?,—ZW,-)*
(1 — 5)(142 +A3)), and

_ Aa ?
D= \/(m— (1 -9)(A2 +A3)) —(1 -4, +A3)<

245(1 — 0)
3n(o + B;)

— (A +A3)(1 — 5)2).

1) =S < 5V [ R 02] e

where R, is the Peano kernel and (x — r)i_ is the truncated

power function. The truncated power function
Rx[(xf r)ﬂ is partitioned into two subintervals as
follows:

r(t,x) x<t<x
Rx[(x—r)ﬂ = (7,x) ! )

$(T,x)  x<T<Xip

Therefore, the integral involved in (4) can be expressed
as:

/

Xi

R, [(x — r)i]

dr = /X|r(r,x)|dr + 7ls(t,x)dr. (5)

For the GC' cubic trigonometric spline function (3),
r(t,x) and s(t,x) have the value

r(e,2) = (r = o ={ (A2 + A5) iy )
2hiA,
—m(xm—f)},
=— X; —rz—ﬂx- -1
s(e) = { (2 Ac) s = 2 22 i =)

A = 3cos 0 — 4cos20 + cos>f, Az = (1 — cos 0)’.

The roots of
x o _ 2h;A
T = Xitl = 3004 8,) (At As) *

From the above discussion, the following cases arise:

Part I: For 00 <%, (s + ) € 5873

s(t,x) are " =x,; and

700) = S, < SO @I o 1,9), (©)

where

/ll(ot,»,[f,-,é):/\r(r,x)\dr—}—/ [s(z,x)|dt

T Xit1

_ / r(z,x)de+ / r(zx)de— / s(ex)de+ / s(x)de

T

2 B—D\°
**5(1 —Ax+A3) (T)

sy 0-9wa) (730
245(1-9) A )
(St e a1-07) (P5) 50408
A N
7(%*(1*5)@2%@)02
24A,(1-9) N
a <3n(1i+ﬁ’_) — (A +A43)(1 7())2>()

1 24, } 3 Ay
’E(A”A”<2<3n(af+/f,-><Az+As>> 0= >+3n(ai+/f,-)

24, : 2
) <2(3n<ai+ﬁi><Az+As>> o )

2, @) Springer
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Part 2: For 6" <6<1,(o; + f;) € { : %}v

3(n+2) 74
1 ;
[F(x) = i) < S I (@l 22 (o B 0), (7)
where
22 (0, B, 0) /| rx\d‘c+/| (t,x)|dr

T Xit1

:/r(‘r,x)d‘c—/ r(t, x)dr+/ (r,x)dr+/ s(t,x)dt

71 53 x

(1— Az +A3) (B N D>3‘2 <3n(c:2+ B
e

B—-D\ 2 B+ D\’
X <T>+§(1*A2+A3)<T>

u.l\l\.) il

(I =9)(Az +A3)>

(s oc,+/f 5)(“2“3))(#)2
( o<,+/5 A2+A;)(1—5)2)<BX—D>
%( — As +A3)S° +<n(++ﬁ,»)(l_6)3
+m(176)

The above discussion can be briefed as:
Theorem 1 The error of GC' cubic trigonometric spline
function (3), for f(x) € C3[xo,x,], in each subinterval I; =
[xi, Xiv1] is

1
) = $i01 < 5 IO @IRC, € = max ol f,,9).
_ [ maxo, (0, f;,0) 0<0<5"
(p(ocl,ﬁi,é) - { Ba5 .

maxe, (o, B;

4 Shape-Preserving Trigonometric Spline Curves

This section describes the schemes for shape-preserving
data. In Subsect. 4.1, constraints are derived on the free
parameter f; in the description of GC' trigonometric cubic
spline function to preserve the shape of positive data, while
Subsect. 4.2 generalizes the scheme developed in Sub-
sect. 4.1 for positive data (data may lie above, below and
between any arbitrary straight lines).

4.1 Positive Trigonometric Spline Curve

Consider the positive data {(x;,f;);i =0,1,2,...,n} over
the interval [a,b] with the knots
a=x<x1<Xp<:+-<Xx,=bhb. The GC! cubic

22, Q) Springer

trigonometric spline function (3) inherits the positive shape
of the data if in each subinterval [; = [x;,x;44] and
i=0,1,2,...,n— 1, and the following result holds:

ZA, )B; > 0,Vx € [xi, xi11];, 1

Si(x) >0, if Ay(x),l=0,1,2,3 and B;,1 =0,1,2,3 are
positive, since A;(x),l = 0,1,2,3 are all positive (all basis
functions are non-negative). Therefore, the positivity of
Si(x) only depends on the positivity of the coefficients
B;;1=0,1,2,3. The coefficients By = f; and B3 = f;; are
positive as the data under consideration are positive. B; is

positive if By =f; + 3n2:i[3) > (0. This implies that
fi> —o; — 23"“;' ;0 > 0, and B, is positive if B, = fi11 +
Tt > 0. This implies that
2hid;y
;> = ;o >0
g o 3

The above discussion can be briefed as:
Theorem 2 The GC' cubic trigonometric spline function
(3) is positive, if in each subinterval I; = [x;,x;y1], the
parameters o; and f; satisfy the following conditions:
2h;d, 2hidiy
s % ;o
3nfi 3nfiti

The above conditions can be rearranged as: For any real

number m; > 0,
2hd; 2hid
% jo > 0.
3a T 3nﬁ+1} ’

p; > max{O, —o; — ;> 0.

i =m; + max{O, —o; —

4.2 Constrained Trigonometric Spline Curve
For constraint data, the three following cases arise:
4.2.1 Case 1: The Data Lie Above a Line

Consider the data {(x;,f;);i =0,1,2,...,n} that lie above
any arbitrary straight line y = mx + ¢, i.e.,

fi>mxi+c,i=0,1,2,....n

The GC! cubic trigonometric spline function (3) pre-
serves the shape of the given constrained data if in each
subinterval I; = [x;,x;41], i = 0,1,2,...,n — 1, the follow-
ing relation holds:

Si(x) >mx; +¢,Vi=0,1,2,...,n— 1. (8)

The parametric form of the straight line mx; + ¢, m > 0
(the case m <0 can also be dealt in the similar way) can be
defined as:



Iran J Sci Technol Trans Sci (2018) 42:763-775

769

For each subinterval I; = [x;,x;41], the straight line L =
mx; + ¢ can be written as:

2 2
LZ?i(l_EO)+/'tiE07Vi:n1-xi+C7ui:mxi+l+C- 9)

Substituting relation (9) in relation (8) and after sim-
plification we have

3

> A(x)B —L>0. (10)

=0

Since Z?:o A;(x) =1 (convex hull property), relation
(10) becomes

3 3 3
> A)B =Y AL = A(x)M; > 0, (11)
=0 =0 =0
where

2h;d;
My=f — LM = ((fi_L)—Fm)’

Mz = (i1 — L) + 52k ) Ms = i1 — L.

In relation (11), Y7 o Aj(x)M; > 0 if A;(x),1 =0,1,2,3
and M;, 1 =0,1,2,3 are positive. Since A;(x),/ =0,1,2,3
are all positive (all basis functions are non-negative), the
positivity of Z?:o A;(x)M; only depends on the positivity
of the coefficients M;,[ =0,1,2,3.

My > 0 and M3 > 0 as the data under consideration lie
above the straight line. M, > 0 if (f; — L) + 22 > .

3n(w+p;)
This implies that f; > — o; — % a; >0, and M, > 0
it (fiss —L) +52ek95 > 0. This  implies that
2hidi+y

ﬁi > — o + (1 -I) ;o > 0.
The above discussion can be briefed as:

Theorem 3  The GC' cubic trigonometric spline function
(3) lies above the given straight line, if in each subinterval
I; = [xi,xi11], the parameters o; and f; satisfy the following
conditions:

2h;d; 2hid;
P> 0,—oi ———,— i+ ;0 > 0.
b m{0. o1~ s k>

The above conditions can be rearranged as follows: for any
real number t; > 0,
__di o Oy

3n(f; — L)

=1 0, —; : Loy > 0.
ho= o maxfo, R

4.2.2 Case 2: The Data Lie Below a Line

Consider the data {(x;,f;);i =0,1,2,...,n} that lie below
any  arbitrary  straight line y=mx-+c, ie,
fi<mxi+c, i=0,1,2,...,n.

The GC! cubic trigonometric spline function (3) pre-
serves the shape of the given constrained data if in each

subinterval [; = [x;,x;41], i=0,1,2,...,n—1, the fol-
lowing relation holds:
Si(x)<mx;+¢,¥i=0,1,2,...,n— 1. (12)

The parametric form of the straight line mx; + ¢ is defined
in relation (9). Substituting the relation (9) in relation (12)
and after simplification, we have

3

L= Afx)B > 0. (13)

=0

Since 213:0 A;(x) =1 (convex hull property), relation
(13) becomes

3 3 3
> AL =Y A(x)B = A(x)N, >0, (14)
=0 =0 =0
where

2h;d;
No=L-f,N, = <<L_f") +m)7

2hid;
3n(o + B;)

In relation (14), ZISZOA;(x)NI > 0if Ay(x),l=0,1,2,3
and N;,1=0,1,2,3 are positive. Since A;(x),/ =0,1,2,3
are all positive (all basis functions are non-negative), the

N, = ((L—ﬁ+1)+ >7N3:L_fi+1~

positivity of 213:0 A;(x)N; only depends on the positivity of
the coefficients N;, [ = 0,1,2,3. Ny > 0 and N3 > 0 as the
data under consideration lie below the straight line. N; > 0
if (L —f;) 4+ 5224 - > (. This implies that

3n(oi+p;)
2hid;
Bl fxl 37T((L—ﬁ))7al
and Ny > 0if (L — fi1) + 55(as45 > 0. This implies that
2hid;
B > L > 0.

— Ot %
3n(L — fi1)
The above discussion can be briefed as:

Theorem 4 The GC' cubic trigonometric spline function
(3) lies below the given straight line, if in each subinterval
I; = [x;, xiy1], the parameters o; and ; satisfy the following
conditions:

2h;d;
3L )

2hid;t }
o+ = Lo > 0.
3n(L —fis1)

,—

Bi > maX{O, —oy

The above conditions can be rearranged as: for any real
number u; > 0,
2h;d; 2hid; 41

i =u; +maxq0,—oy ———~, -t + ——— ;0 > 0.
b { 37l ) 3ﬂL—ﬁHJ

2, @) Springer
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4.2.3 Case 3: Data Lie Between Two Lines

Consider the data {(x;f);i=0,1,2,...,n} that lie
between any two arbitrary straight lines y; = mx + ¢ and
Yo = mpx + 3, i.e., mix; + cp <fi <mpx; + ¢z,
i=0,1,2,...,n

The GC' cubic trigonometric spline function (3) pre-
serves the shape of the given constrained data if in each
subinterval [; = [x;,x;41], i=0,1,2,...,n— 1, the fol-
lowing relation holds:

myx; +c; <Si(x) <mpx;+¢,Vi=0,1,2,....n— 1, (15)

where the parametric form of the straight line L; = mx; +
¢y and Ly, = mox; 4+ ¢p;my,my > 0 (the case my,my <0 can
also be dealt in a similar way) can be defined as:

2 2
L =V}<l ——9> + =0, 9 =mxi+ e, pf
T T
= mXxj+1 + c1,
2 2
Ly ZViZ(l —;9> +#,~2;07 Vi =maxi+co, 1]
= MmpX+1 + C2.

Substituting the values of L; and L, in relation to (15),
we have

Ly <Si(x), Vi=0,1,2,....,n— L. (16)

and

Si(x)<Ly,Vi=0,1,2,...,.n— 1. (17)
Solving relation (16),

Si(x)—Ly >0,Vvi=0,1,2,...,n—1,

3
ZA](.X)B[ —L; >0. (18)
=0

Since Z?ZOAI()C) =1 (convex hull property), relation
(18) becomes

3 3 3
> A)B =Y AL =D A(x)M; >0, (19)
=0 =0 =0
where

2h;d;
Mi=fi— LM = ((f—L)+-——"4 ),
0 f 1 1 ((f 1)+3n(ai+ﬁi))

M; = ((fi+1 - L) +3§?ff/‘;i)),M§ = fit1 — Li.

In relation (19) Z?ZOA,(x)Mj > 0,if A/(x),1 =0,1,2,3
and M},1=0,1,2,3 are positive. Since A;(x),/=0,1,2,3
are all positive (all basis functions are non-negative), the

22, Q) Springer

positivity of 27:0 A;(x)M; only depends on the positivity
of the coefficients M;,1=0,1,2,3.
As M;>0 and M;>0, Mi>0 if (f—Lj)+

2hdi (). This implies that

3n(a+p;)
2h;d;

A L L )

e A

and M5 > 0if (fiss — L1) + 33?;’;[}) > 0. This implies that
2hydyy ’

:Bi> *ai+m;a;>0.
Now, solving relation (17),
L, — Si(x) >0,Vi=0,1,2,....,.n— 1,

° (20)

L, — AZ(X)BI > 0.

=0

Since Y, ,A;(x) = 1 (convex hull property), relation
(20) becomes

3 3 3
D AL =Y A(x)B =Y Ax)N; >0, (21)
=0 =0 =0

where

2h;d;
Ny =L, —f;,N] = ((L2 —fi) er)’

N = (L2 = fi) + 20245 ), N5 = Lo = fir.

In relation (21), Z?ZOA](X)NI»* > 0if A)(x),l=0,1,2,3
and Nf,1=0,1,2,3 are positive. Since 4;(x),/=0,1,2,3
are all positive (all basis functions are non-negative), the
positivity of 213:0 A;(x)N; only depends on the positivity
of the coefficients N7,/ =0,1,2,3.

As N;>0 and N;>0, Ni>0 if (Ly—f)+

% > 0. This implies that

2h;d;
> ————;0; >0,

ﬁ 37I(L2 —ﬁ)

and N3 > 0/if (Ly — fiy1) + 52a2hs > 0. This implies that
2h;d;

B> — o+ - >0.

o
3n(Ly — fir1)
Combining the conditions of relation (19) and (21), we have

p; > max{0,a1,a2,a3,a4}; 0 > 0,

Table 1 Positive data

x 0 2 3 5 15 25 27 28 30

f 2 158 155 154 18 154 155 158 2
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Fig. 4 a Graphical view of data in Table 1. b GC' cubic trigonometric spline function with arbitrary values of parameters o; = 1.4, f; = 1.9. ¢
GC! positive cubic trigonometric function with parameters o; = 0.15. d GC! positive cubic trigonometric function with parameters «; = 0.0001

Table 2 Constrained data

x 1 2 3 9 12 14 15
f 0.5 3 5 25 8 2 1
2h;d; _ 2h;d; _
ay = —o; — 3n(i-L;)° ay = —0; +W|ill4)’ az = —oi—
2h;d;

o idig 1
L) M T % T L

The above discussion can be briefed as:
Theorem 5  The GC' cubic trigonometric spline function
(3) lies between the given two arbitrary straight lines, if in

each subinterval I; = [x;,x;1], the parameters o; and f5;
satisfy the following conditions:

p; > max{0,a1,a;,as3,as};0; > 0.

The above conditions can be rearranged as:For any real
number v; > 0,f; = v; + max{0, a1, az,as,as }; 0; > 0.

5 Numerical Results

This section is meant for the demonstrations of the shape-
preserving schemes developed in Sect. 4.

5.1 Positive Data

The positive data is shown in Table 1. Figure 4a shows the
graphical view of the data in Table 1. The GC' cubic
trigonometric spline function (3) is used to draw the data of
Table 1 in Fig. 4b for arbitrary values o; = 1.4, ; = 1.9.
Figure 4b shows some negative behavior of the data in
Table 1, while the original data behavior is positive. To
resolve this problem, the positivity-preserving scheme de-
veloped in Sect. 4.1 is used to draw Fig. 4c for Table 1. It
can be clearly observed that Fig. 4c preserves the positive

7. 9 Springer
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Fig. 5 a Graphical view of constrained data of Table 2. b GC! cubic

trigonometric spline function with arbitrary values of parameters o; =
0.15, B; =0.40. ¢ GC' constrained cubic trigonometric spline

Table 3 Constrained data

X 0 0.4 2 3 5

f 12

0.5 2 5 0.5

behavior of the data. The effect of «; on the positive curve
of Fig. 4c is shown in Fig. 4d.

5.2 Constrained Data

5.2.1 Case 1: The Data Lie Above a Line

The constrained data taken in Table 2 lies above the
straight line y = 0.31x + 1. Figure 5a shows the graphical

view of the data in Table 2. Figure 5b for Table 2 with
arbitrary values o; = 0.15, f8; = 0.40 is drawn using GC'!

@ Springer

W-axis

function with parameter o; = 0.01. d GC' constrained cubic trigono-
metric spline function with parameter o; = 0.12

cubic trigonometric spline function (3). In Fig. 5b, the

data in Table 2 lies above the given straight line. This

means that the required shape of the data given in Table 2

is not achieved. Figure 5c for Table 2 is produced using

the scheme developed in Sect. 4.2 (case 1), which pre-

serves the required shape of the data given in Table 2. By
varying the value of the free parameter o;, Fig. 5d is pro-
duced to show the control on o;.

5.2.2 Case 2: Data Lie Below a Line

The constrained data taken in Table 3 lies below the straight
line y = x + 2.5. Figure 6a shows the graphical view of the
data in Table 3. Figure 6b for Table 3 with arbitrary values
% = 0.2, B; = 0.21 is drawn using GC' cubic trigonometric
spline function (3). In Fig. 6b, the data of Table 3 lies below
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Fig. 6 a Graphical view of constrained data of Table 3. b GC! cubic

trigonometric spline function with arbitrary values of parameters o; =
0.2, B; = 0.21. ¢ GC! constrained cubic trigonometric spline function

Table 4 Constrained data

X 0 1 2 4 5 6 8

f 2.5 7 8 29 8 21 30

the given straight line. This means that the required shape of
the data given in Table 3 is not achieved. Figure 6¢ for
Table 3 is produced using the scheme developed in Sect. 4.2
(case 2) which preserves the required shape of the given data.
More smooth result of Fig. 6¢ is obtained in Fig. 6d by
varying the value of the free parameter «;.

5.2.3 Case 3: Data Lie Between Two Lines

The constrained data is taken in Table 4 and lies between the
two arbitrary straight lines y; = x+ 0.1 and y, = 8x + 6.

(b)

y-axis

@ ° ! | ! | !

y-axis

H-axis

with parameter o; = 0.001. d GC' constrained cubic trigonometric
spline function with parameter o; = 0.1

Figure 7a shows the graphical view of the data given in
Table 4. Figure 7b for Table 4 with arbitrary values o; =
0.2, B; = 0.5is drawn using GC' cubic trigonometric spline
function (3) which does not preserve the original shape of the
data given in Table 4. The constrained curve is shown in
Fig. 7c for data in Table 4, which is produced using con-
strained preserving scheme developed in Sect. 4.2(case 3).
So, more pleasing constrained curve is obtained by varying
the value of the free parameter o; as shown in Fig. 7d.

6 Conclusion

In this paper, a GC' cubic trigonometric spline function is
developed consisting of two parameters in each subinter-
val. One parameter is constrained to preserve positive and

A2 Q) Springer
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Fig. 7 a Graphical view of constrained data of Table 4. b GC! cubic
trigonometric spline function with arbitrary values of parameters o; =
0.2,8; =0.5. ¢ GC' constrained cubic trigonometric spline function

constrained data, while the other parameter is the free
parameter. Instead of Butt and Brodlie (1993), the devel-
oped trigonometric spline function requires no extra knots
to preserve the intrinsic properties of the data. In Cravero
and Manni (2003), global schemes were developed.
Therefore, it was not possible to modify the shape of the
curve in some particular interval. Considering this defi-
ciency, in the presented paper, local schemes are developed
to obtain local control on the shape of the curve. Also, the
developed schemes are equally suitable for both uniform
and non-uniform data. The developed trigonometric spline
function includes one free parameter which provides free-
dom to the user to modify the shape of the curve, whereas
in Hussain et al. (2014) the degree of freedom is not pro-
vided to the user. The developed trigonometric spline
function preserves the shape of the data with two param-
eters, whereas in Ibraheem et al. (2012) and Sarfraz et al.

@ Springer

H-axis

with parameter o; = 0.4. d GC' constrained cubic trigonometric
spline function with parameter o; = 0.1

(2013) four parameters are used for shape preservation of
the data. The degree of the developed function is unique
over each subinterval, whereas in Verlan (2010) variable
degree was used in the subintervals. The approximation
error of the developed function is also discussed and is of
order three.
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