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Abstract In this paper, we compare optimal homotopy

asymptotic method and perturbation-iteration method to

solve random nonlinear differential equations. Both of

these methods are known to be new and very powerful for

solving differential equations. We give some numerical

examples to prove these claims. These illustrations are also

used to check the convergence of the proposed methods.
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1 Introduction

The mathematical description of a significant number of

scientific and technological problems leads to nonlinear

differential equations and most of them cannot be solved

analytically using traditional methods. Therefore, these

problems are often handled by the most common methods

such as Adomian decomposition method, homotopy

decomposition method, Taylor collocation method, differ-

ential transform method, homotopy perturbation method,

variational iteration method (Adomian 1988; Atangana and

Abdon 2012; Atangana et al. 2013; Bildik et al. 2006;

Bulut et al. 2003; He 1999, 2005; Bayram et al. 2012;

Bildik and Konuralp 2006; Bildik and Deniz 2015a, b; Öziş

and Ağırseven 2008). These methods can deal with non-

linear problems, but they have also problems about the

convergence region of their series solution. These regions

are generally small according to the desired solution. In

order to cope with this task, researchers have recently

proposed some new methods.

In the presented study, we apply the perturbation-itera-

tion method (PIM) and optimal homotopy asymptotic

method (OHAM) to obtain an approximate solution of

random nonlinear differential equations. Each method has

its own characteristic and significance that shall be exam-

ined. PIM is constructed recently by Pakdemirli et al. They

have modified well-known perturbation method to con-

struct perturbation-iteration method. It has been efficiently

applied to some strongly nonlinear systems and yields very

approximate results (Aksoy and Pakdemirli 2010; Şenol

and Mehmet 2013; Aksoy et al. 2012; Dolapçı et al. 2013).
On the other hand, Vasile Marinca et al. have developed

optimal homotopy asymptotic method for solving many

different types of differential equations (Marinca and

Herişanu 2008; Marinca et al. 2008, 2009). This method is

straight forward and reliable for the approximate solution

of many nonlinear problems (Gupta and Ray

2014a, b, 2015a; b; Iqbal et al. 2010; Ali et al. 2010).

OHAM also provides us with a convenient way to control

the convergence of approximation series and adjust con-

vergence regions. Our purpose is to solve some nonlinear
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problems and test their convergence for these illustrations.

Our results also prove one more time that both of these

methods are very effective and powerful to solve nonlinear

problems.

2 Perturbation-Iteration Method

In this section, we give some information about perturba-

tion-iteration algorithms. They are classified with respect to

the number of terms in the perturbation expansion (n) and

with respect to the degrees of derivatives in the Taylor

expansions (m). Briefly, this process has been represented

as PIA (n, m) (Marinca and Herişanu 2008; Marinca et al.

2008, 2009).

2.1 PIA(1,1)

In order to illustrate the algorithm, consider a second-order

differential equation in closed form:

Fðy00; y0; y; eÞ ¼ 0; ð1Þ

where y = y(x) and e is the perturbation parameter. For

PIA(1,1), we take one correction term from the perturba-

tion expansion:

ynþ1 ¼ yn þ e ycð Þn: ð2Þ

Substituting (2) into (1) then expanding in a Taylor series

gives

Fðy00n ; y0n; yn; 0Þ þ Fyðy00n; y0n; yn; 0Þ ðycÞne
þ Fy0 ðy00n ; y0n; yn; 0Þ ðy0cÞneþ Fy00 ðy00n; y0n; yn; 0Þ ðy00c Þne
þ Fee
¼ 0: ð3Þ

Rearranging Eq. (3) yields a linear second-order differen-

tial equation as:

y00c
� �

n
þ Fy0

Fy00
y0c
� �

n
þ Fy

Fy00
ycð Þn¼ �

F
e þ Fe

Fy00
: ð4Þ

Note that all derivatives are computed at e = 0. We can

easily obtain (yc)0 from Eq. (4) by using an initial guess

y0. Then y1 is determined by using this information. One

can obtain satisfactory results for the considered equation

by constructing an iterative scheme with the help of (2)

and (4).

2.2 PIA(1,2)

As distinct from PIA(1,1), we need to take n = 1, m = 2 to

obtain PIA(1,2). That is, we need to take also second-order

derivatives:

Fðy00n; y0n; yn; 0Þ þ Fyðy00n; y0n; yn; 0Þ ðycÞne
þ Fy0 ðy00n ; y0n; yn; 0Þ ðy0cÞneþ Fy00 ðy00n; y0n; yn; 0Þ ðy00cÞne

þ Feeþ
1

2
e2Fy00y00 ðy00n; y0n; yn; 0Þ ðy00cÞ

2
n

þ 1

2
e2Fy0y0 ðy00n; y0n; yn; 0Þ ðy0cÞ

2
n þ

1

2
e2Fyyðy00n; y0n; yn; 0Þ ðycÞ

2
n

þ e2Fy00y0 ðy00n; y0n; yn; 0Þðy00cÞnðy0cÞn
þ e2Fy0yðy00n ; y0n; yn; 0Þðy0cÞnðycÞn
þ e2Fy00yðy00n; y0n; yn; 0Þ ðy00cÞnðycÞn þ Fey00 ðy00n; y0n; yn; 0Þ ðy00cÞne2

þ Fey0 ðy00n; y0n; yn; 0Þ ðy0cÞne2 þ Feyðy00n ; y0n; yn; 0Þ ðycÞne2

þ 1

2
e2Fee ¼ 0

ð5Þ

or by rearranging

ðy00cÞn eFy00 þ e2Fey00
� �

þ ðy0cÞn eFy0 þ e2Fey0
� �

þ ðycÞn eFy þ e2Fey
� �

þ ðy00cÞ
2
n

e2

2
Fy00y00

� �

þ ðy0cÞ
2
n

e2

2
Fy0y0

� �
þ ðycÞ2n

e2

2
Fyy

� �
þ ðycÞnðy0cÞn e2Fy0y

� �

þ ðy00c Þnðy0cÞn e2Fy0y00
� �

þ ðy00c ÞnðycÞn e2Fyy00
� �

¼ �F � Fee�
e2Fee

2
ð6Þ

Note again that all derivatives are calculated at e = 0. By

means of (2) and (6), iterative scheme is developed for the

particular equation considered.

3 Optimal Homotopy Asymptotic Method

In order to review the basic principles of OHAM, let us

consider the nonlinear differential equation:

F ¼ L yðxÞð Þ þ gðxÞ þ N yðxÞð Þ ¼ 0; B y;
dy

dx

� �
¼ 0; ð7Þ

where g(x) is a source function, L, N and B are linear,

nonlinear and boundary operators, respectively. First, we

construct a homotopy h(/i(x, p), p) which satisfies

ð1� pÞ L /ðx; pÞð Þ þ gðxÞ½ �
¼ HðpÞ L /ðx; pÞð Þ þ gðxÞ þ N /ðx; pÞð Þ½ �;

B /ðx; pÞ; o/ðx; pÞ
ox

� �
¼ 0; p 2 ½0; 1�; Hð0Þ ¼ 0;

ð8Þ

where /(x, p) is an unknown function, p is an embedding

parameter, H(p) is a nonzero auxiliary function for p = 0.

Clearly, at p = 0 and p = 1, we have /(x, 0) = y0(x) and

/(x, 1) = y(x). So, as the embedding parameter p increases

from 0 to 1, the solution /(x, p) deforms from the initial
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guess y0(x) to the exact solution y(x) of the original non-

linear differential equation. y0(x) can be computed from (8)

for p = 0:

L y0ðxÞð Þ þ gðxÞ ¼ 0; B y0;
dy0

dx

� �
¼ 0: ð9Þ

For this study, we choose the auxiliary function H(p) in the

form:

HðpÞ ¼ pC1 þ p2C2 þ p3C3 þ � � � ð10Þ

for the sake of simplicity. Here C1, C2,… are constants

which are to be determined later. Most recently, Herişanu

et al. have proposed a generalized auxiliary function:

Hðt; p;CiÞ ¼ pH1ðt;CiÞ þ p2Hðt;CiÞ þ . . .;

where Hi(t, Ci), i = 1, 2,… are auxiliary functions. Some

examples of such generalized auxiliary functions are pre-

sented in the papers (Herişanu et al. 2012, 2015). Let us

consider the Taylor expansion of the solution of Eq. (8)

about p:

/ðx; p;CiÞ ¼ y0ðxÞ þ
X1

k¼1

ykðx;CiÞpk; i ¼ 1; 2; . . . ð11Þ

Substituting (11) and (10) into (8) and equating the coef-

ficients of the like powers of p equal to zero, we obtain the

linear equations:

L y1ðxÞð Þ ¼ C1N0 y0ðxÞð Þ; B y1;
dy1

dx

� �
¼ 0 ð12Þ

and in general form

L yk � yk�1ð Þ ¼ CkN0 y0ð Þ

þ
Xk�1

i¼1

Ci L yk�ið Þ þ Nk�i y0; y1; . . .; yk�1ð Þ½ �

k ¼ 2; 3; . . .; B yk;
dyk

dx

� �
¼ 0 ð13Þ

where Nm(y0, y1, …, ym) is the coefficient of pm in the

expansion of about the embedding parameter p:

N /ðx; p;CiÞð Þ ¼ N0 y0ð Þ þ
X1

m¼1

Nm y0; y1; . . .; ymð Þpm; i

¼ 1; 2; . . .

ð14Þ

Previous researches have showed that the convergence of

the series (11) depends upon the constants C1, C2,…. If the

series (11) is convergent at p = 1, one has

yðx;CiÞ ¼ y0ðxÞ þ
X1

k¼1

ykðx;CiÞ: ð15Þ

Generally speaking, the solution of Eq. (7) can be deter-

mined approximately in the form:

yðmÞðx;CiÞ ¼ y0ðxÞ þ
Xm

k¼1

ykðx;CiÞ: ð16Þ

Substituting (16) into (8), the general problem results in the

following residual:

Rðx;CiÞ ¼ L yðmÞðx;CiÞ
� �

þ gðxÞ þ N yðmÞðx;CiÞ
� �

: ð17Þ

Obviously, when R(x, Ci) = 0 then the approximation

y(m)(x, Ci) will be the exact solution. For determining

C1, C2,…, a and b are chosen such that the optimum values

for C1, C2, … are obtained using the method of least

squares:

JðCiÞ ¼
Zb

a

R2ðx;CiÞdx; ð18Þ

where R = L(y(m)) ? g(x) ? N(y(m)) is the residual and

oJ

oC1

¼ oJ

oC2

¼ � � � ¼ oJ

oCm

: ð19Þ

After finding constants, one can get the approximate

solution of order m. The constants C1, C2, … can also be

defined from

Rðk1;CiÞ ¼ Rðk2;CiÞ ¼ � � � ¼ Rðkm;CiÞ ¼ 0; i
¼ 1; 2; . . .;m; ð20Þ

where ki 2 (a, b).

4 Numerical Examples

In this section, we will examine a few examples with a

known analytic and numerical solution in order to compare

the convergence of these two new methods. We wish to

emphasize that the purpose of the comparisons is not

definitive, but only to give the reader insight into the rel-

ative efficiencies of the two methods.

Example 1 Consider the following nonlinear differential

equation (Fu 1989):

y0 ¼ x2 þ y2; yð0Þ ¼ 1 ð21Þ

which has no exact solution.
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4.1 PIA(1,1)

For the equation considered, an artificial perturbation

parameter is inserted as follows:

Fðy0; y; eÞ ¼ y0 � x2 � ey2: ð22Þ

Performing the required calculations

F ¼ y0n � x2; Fy ¼ 0;Fy0 ¼ 1; Fe ¼ �ðynÞ2 ð23Þ

for the formula (3) and setting e = 1 yields

y0c
� �

n
¼ y2n � y0n þ x2: ð24Þ

We start the iteration by taking a trivial solution which

satisfies the given initial conditions:

y0 ¼ 1: ð25Þ

Substituting (25) into the iteration formula (24), we have

ycð Þ0 ¼ xþ x3

3
þ c1: ð26Þ

Inserting Eq. (26) into Eq. (2) and applying the initial

conditions we get

y1 ¼ y0 þ e ycð Þ0 ¼ 1þ xþ x3

3
: ð27Þ

We remind that y1 does not represent the first correction

term; rather it is the approximate solution after the first

iteration. Following the same procedure, we obtain new

and more approximate results:

y2 ¼ 1þ xþ x2 þ 2x3

3
þ x4

6
þ 2x5

15
þ x7

63
ð28Þ

y3 ¼ 1þ xþ x2 þ 4x3

3
þ x4 þ 2x5

3
þ x7

21
þ x8

105
þ 299x9

11340

þ � � � ..
.

ð29Þ

4.2 PIA(1,2) Solution

As in the previous case, we construct a perturbation–

iteration algorithm by taking one correction term in the

perturbation expansion and two derivatives in the

Taylor series. Then the algorithm takes the simplified

form:

y0c
� �

n
�2 ycð Þn ynð Þ ¼ x2 þ y2n � y0n: ð30Þ

Using the trivial solution y0 = 1, we have

ðy0cÞ0 � 2ðycÞ0 ¼ x2 þ 1: ð31Þ

Substituting the solution of (31) into (2) and applying the

initial conditions yields

y1 ¼
1

4
ð3e2x � 2x2 � 2xþ 1Þ: ð32Þ

Following the same procedure using (32), the second iter-

ation is obtained as

y2 ¼
1

32
�8x3ðe2x þ 2Þ � 4x2ð3e2x þ 14Þ þ 50e2x
�

þ 9e4x � 4xð9e2x þ 17Þ � 4x4 � 27
�
: ð33Þ

We do not give higher iterations here for brevity. One can

easily realize that, we have functional expansion for

PIA(1,2) instead of a polynomial expansion as obtained in

PIA(1, 1).

4.3 OHAM Solution

We have

L y xð Þð Þ ¼ y0; g xð Þ ¼ �x2;N y xð Þð Þ ¼ �y2; y 0ð Þ ¼ 1: ð34Þ

Problem of zero order is written as:

y00ðxÞ ¼ x2; y0ð0Þ ¼ 1; ð35Þ

from which we obtain

y0 ¼
x3

3
þ 1: ð36Þ

Substituting Eq. (36) into (12), we get first-order

problem:

y01ðxÞ ¼ C1N0 ¼ �C1

x3

3
þ 1

� �2

; y1ð0Þ ¼ 0 ð37Þ

and its solution is

y1 ¼ �C1

x7

63
þ x4

6
þ x

� �
: ð38Þ

The problem of second order

y02ðxÞ ¼ C2
1

2x10

189
þ x7

7
� x6

9
þ x4 � 2x3

3
þ 2x� 1

� �
� 1

9
ðx3

þ 3Þ2ðC1 þ C2Þ; y2ð0Þ
¼ 0

ð39Þ

with the solution

y2ðxÞ ¼
2C2

1x
11

2079
þ C2

1x
8

56
� C2

1x
7

63
þ C2

1x
5

5
� C2

1x
4

6
þ C2

1x
2

� C2
1x�

C1x
7

63
� C1x

4

6
� C1x�

C2x
7

63
� C2x

4

6
� C2x

ð40Þ

We can obtain the approximate solution of second order

from Eqs. (36), (38), (40) and (16) for m = 2:
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yð2Þðx;C1;C2Þ ¼ y0ðxÞ þ y1ðx;C1Þ þ y2ðx;C1;C2Þ: ð41Þ

As we have mentioned in the previous section, one can find

constants C1 and C2 by using Eq. (20) and

Rðx;CiÞ ¼ L yð2Þðx;CiÞ
� �

þ gðxÞ þ N yð2Þðx;CiÞ
� �

ð42Þ

Substituting x ¼ 1
2
; 3
4
into Eq. (42):

Rð1
2
;CiÞ ¼ Rð3

4
;CiÞ ¼ 0 ð43Þ

and solving (43) we obtain

C1 ¼ �1:6494651884913274; C2 ¼ 1:9241003665957586

ð44Þ

and correspondingly the approximate solution of the sec-

ond order takes the following form:

yð2ÞðxÞ ¼ 0:002617350x11 þ 0:04858456x8

� 0:047545564x7 þ 0:54414708x5

� 0:499228431x4 þ x3

3
þ 2:72073540x2

þ 1:64946518ðx
7

63
þ x4

6
þ xÞ � 2:9953705xþ 1

ð45Þ

One can also compute more approximate results by fol-

lowing the same procedure with a computer program. We

do not give higher iterations due to huge amount of cal-

culations. Table 1 and Fig. 1 show the values of the PIM

solutions, OHAM solution and solution by Runge–Kutta. It

is clear that PIA(1,2) gives better results than OHAM even

for m = 2. Table 2 demonstrates the absolute errors for

different m.

Example 2 Consider the following nonlinear differential

equation:

y00 þ ðy0Þ2 þ ey ¼ cos x� 1; yð0Þ ¼ y0ð0Þ ¼ 0 ð46Þ

with the exact solution y xð Þ ¼ ln cosxð Þ.

4.4 PIA(1,1)

For the equation considered, an artificial perturbation

parameter is inserted as follows:

Fðy00; y0; y; eÞ ¼ y00 þ eðy0Þ2 þ eey � cos xþ 1: ð47Þ

Performing the required calculations for the formula (3)

yields

F ¼ y00n � cos xþ 2; Fy ¼ Fy0 ¼ 0;Fy00 ¼ 1; Fe

¼ ðy0nÞ
2 þ yn ð48Þ

and setting e = 1

y00c
� �

n
¼ cos x� y00n þ ðy0nÞ

2 þ yn þ 2
� �

: ð49Þ

We start the iteration by taking a trivial solution which

satisfies the given initial conditions:

y0 ¼ 0: ð50Þ

Substituting (50) into the iteration formula (49), we have

ycð Þ0¼ c1 þ c2x� cos x� x2: ð51Þ

Inserting Eq. (51) into Eq. (2) and applying the initial

conditions we get

y1 ¼ y0 þ e ycð Þ0¼ 1� x2 � cos x: ð52Þ

Table 1 Comparison of

numerical results with the

Mathematica solution for

different values of m

x OHAM for m = 3 PIA(1,1) for m = 3 PIA(1,2) for m = 2 Runge–Kutta

0.2 1.252865022164 1.2524806474045 1.2529378993738 1.2530169304154

0.4 1.6799015224658 1.6778511724811 1.6908635417435 1.6961108880281

0.6 2.4905996755315 2.4311987090285 2.5464200275869 2.6439994625647

0.8 3.9699846440393 3.7658431659569 4.3874921669213 5.8486029716165

0.9 5.8356489911428 4.7688507857928 6.0601683750068 14.303676639362

0.95 6.9053364981836 5.3822170090368 7.2051564324450 50.436365035450

Fig. 1 Comparison of the solutions for Example 1
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We remind that y1 does not represent the first correction

term; rather it is the approximate solution after the first

iteration. Following the same procedure, we obtain new

and more approximate result:

y2 ¼ 1� x2 � cos x

þ 1

8
�2x4 � 6x2 � 32x sinðxÞ � 72 cosðxÞ � cosð2xÞ þ 73
� �

:

ð53Þ

4.5 PIA(1,2)

As in the previous case, we construct a perturbation–iter-

ation algorithm by taking one correction term in the per-

turbation expansion and two derivatives in the Taylor

series. Then Eq. (6) takes the simplified form:

ðy00cÞn þ 2ðy0cÞnðy0nÞ þ ðycÞn ¼ �y00n � ðy0nÞ
2 � yn �

y2n
2

þ cos x� 2: ð54Þ

Using the trivial solution y0 = 0 and Eq. (2) we get

y1 ¼ �2þ 2cosxþ x sin x

2
: ð55Þ

Following the same procedure with Mathematica, we get

y2 ¼
1

432
�3ð27x2 � 324x sinðxÞ þ 20x sinð2xÞ þ 540Þ
�

� 4ð27x2 � 428Þ cosðxÞ þ ð9x2 � 92Þ cosð2xÞ
�

þ 1

2
x sinðxÞ þ 2 cosðxÞ � 2

ð56Þ

Note that the function in the parentheses of the second term

of Eq. (54) is approximated as 0 for simplicity.

4.6 OHAM

We have

L y xð Þð Þ ¼ y00; g xð Þ ¼ cosx� 1;N y xð Þð Þ ¼ y0ð Þ2þey; y 0ð Þ
¼ y0 0ð Þ ¼ 0:

ð57Þ

Problem of zero order is written as:

y000ðxÞ ¼ cos x� 1; y0ð0Þ ¼ y00ð0Þ ¼ 0 ð58Þ

from which we obtain

y0 ¼ 1� x2

2
� cos x: ð59Þ

Substituting Eq. (59) into (12), we get first-order problem:

y001ðxÞ ¼ C1 2� cos xþ x2

2
� 2x sin xþ sin2 x

� �
; y1ð0Þ

¼ y01ð0Þ ¼ 0 ð60Þ

having solution

y1 ¼
C1

24
x4 þ 30x2 þ 48x sinðxÞ þ 120 cosðxÞ
�

þ 3 cosð2xÞ � 123Þ: ð61Þ

Second-order problem is

Table 2 Absolute errors for OHAM, PIA(1, 1) and PIA(1, 2) for different values of m

x |ynmrcl - yOHAM| for m = 3 |ynmrcl - yPIA(1,1)| for m = 3 |ynmrcl - yPIA(1,2)| for m = 2 |ynmrcl - yPIA(1,2)| for m = 3

0.2 0.00015190825 0.00053628301 0.00007903104 0.00002056382

0.4 0.01620936556 0.01825971554 0.00524734628 0.00289663146

0.6 0.15339978703 0.21280075353 0.09757943497 0.08696614084

0.8 1.87861832758 2.08275980566 1.46111080472 1.02088952044

0.9 8.46802764822 9.53482585357 8.24350826436 7.90882011452

0.95 43.5310285373 45.0541480264 43.2312086034 41.0253368665

y002ðxÞ ¼
1

48

� 3 cosð2xÞ C2
1ðx2 � 4Þ þ 8C1 þ 8C2

� 	
� cosðxÞ C2

1ð2x4 þ 372x2 � 663Þ þ 48C1 þ 48C2

� 	

� C2
1x

6 � 42C2
1x

4 � 32C2
1x

3 sinðxÞ þ 27C2
1x

2 þ 624C2
1x sinðxÞ þ 72C2

1x sinð2xÞ þ 120C2

þ 9C2
1 cosð3xÞ � 636C2

1 þ 24C1x
2 � 96C1x sinðxÞ þ 120C1 þ 24C2x

2 � 96C2x sinðxÞ

2

664

3

775

yð0Þ ¼ y0ð0Þ ¼ 0

ð62Þ
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The solution of Problem (62) is given by

y2ðxÞ¼
cosð2xÞ
128

C2
1ð2x2�59Þþ16C1þ16C2

� 	

þcosðxÞ
48

C2
1ð2x4þ492x2�4671Þþ240C1þ240C2

� 	

�C2
1x

8

2688
�7C2

1x
6

240
þ3C2

1x
4

64
þ1

3
C2
1x

3 sinðxÞ�53C2
1x

2

8

�52C2
1xsinðxÞ�

13

32
C2
1xsinð2xÞ�

1

48
C2
1 cosð3xÞ

þ37553C2
1

384
þC1x

4

24
þ5C1x

2

4
þ2C1xsinðxÞ�

41C1

8

þC2x
4

24
þ5C2x

2

4
þ2C2xsinðxÞ�

41C2

8

ð63Þ

Following the procedure as in the previous example, we get

C1 ¼ 0:905464108016448; C2

¼ �0:099015663394332645: ð64Þ

One can proceed to obtain higher iterations by using a

computer program. Table 3 displays the approximate

results of OHAM and PIM for m = 3. PIA(1,1) and

PIA(1,2) gives better results than OHAM for this problem.

Figure 2 also demonstrates the difference between OHAM

solution and PIM solution. Table 4 shows the absolute

errors of the proposed methods for m = 3.

5 Conclusions

This paper applied the OHAM and PIM algorithms to solve

random nonlinear differential equations. These two meth-

ods are very effective and accurate for solving nonlinear

problems arising in many fields of science. In this work, we

consider two examples which were selected to show the

computational accuracy for illustration purposes. We have

showed that OHAM has substantial computational

requirements and more cumbersome to handle these chosen

problems when compared with the PIM. Perturbation-iter-

ation algorithms find more approximate results with less

computational work. It is worth mentioning also that there

might be some new developments about OHAM, but we

just use the early stage of OHAM for our comparison for

simplicity. For this study, it may be concluded that, the

PIA(1,2) is more effective and powerful in obtaining

approximate solutions for the selected problems.

0.2 0.4 0.6 0.8 1.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Exact  Solution
PIA1,2
OHAM

Fig. 2 Comparison of the solutions for Example 2

Table 3 Comparison of

numerical results with the

Mathematica solution

x OHAM for m = 3 PIA(1,1) for m = 3 PIA(1,2) for m = 3 Exact solution

0 0.000000000000 0.000000000000 0.000000000000 0.000000000000

0.2 -0.020138902588 -0.020136022585 -0.020134925465 -0.020134773052

0.4 -0.082590266055 -0.082282894552 -0.082229903385 -0.082229019075

0.6 -0.214856369854 -0.208969650025 -0.191993621402 -0.191965169419

0.8 -0.417200883132 -0.389993215269 -0.361639658840 -0.361390746811

1 -0.709993563214 -0.682365784122 -0.615829885532 -0.615626470386

Table 4 Absolute errors for OHAM, PIA(1,1) and PIA(1,2) for

m = 3

x |yExact - yOHAM| |yExact - yPIA(1,1)| |yExact - yPIA(1,2)|

0 0.00000000000 0.000000000000 0.000000000000

0.2 0.00000412953 0.00000124953 1.52413e-7

0.4 0.00036124698 0.00005387547 8.84311e-7

0.6 0.02289120043 0.01700448065 0.0000284519852

0.8 0.05581013632 0.02860246845 0.0002489120227

1 0.09436709282 0.06673931373 0.0002034151418
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