K. Sugiyama Res. Number Theory (2024) 10:31 . H
https://doi.org/10.1007/540993-024-00516-7 0 Resea rCh In N um ber Theo ry

RESEARCH
®

The modularity of Siegel’s zeta functions =t

Kazunari Sugiyama

“Correspondence:
skazu@sky.it-chiba.ac.jp Abstract

gﬁgmﬂagg?:;r:jggy Siegel defined zeta functions associated with indefinite quadratic forms, and proved
2-1-1 Shibazono, Narashino, their analytic properties such as analytic continuations and functional equations.

Chiba 275-0023, Japan Coefficients of these zeta functions are called measures of representations, and play an
important role in the arithmetic theory of quadratic forms. In a 1938 paper, Siegel made
a comment to the effect that the modularity of his zeta functions would be proved with
the help of a suitable converse theorem. In the present paper, we accomplish Siegel’s
original plan by using a Weil-type converse theorem for Maass forms, which has
appeared recently. It is also shown that “half” of Siegel's zeta functions correspond to
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Introduction
In 1903, Epstein [3] defined the zeta function ¢o(s) associated with a positive definite

symmetric matrix S of degree m by

0O = Y s (Slal="asa)
aeZm\(0)

and studied their analytic properties such as analytic continuations and functional equa-
tions. (For a modern treatment of Epstein’s zeta functions, we refer to Terras [31, §1.4.2].)
In a 1938 paper [23], Siegel defined and investigated the zeta functions associated with
quadratic forms of signature (1, m — 1), and in a 1939 paper [24], those for general indefi-
nite quadratic forms. Although Siegel’s calculations were rather involved, Siegel’s results
are now well understood in the framework of the theory of prehomogeneous vector
spaces. Let Y be a non-degenerate half-integral symmetric matrix of degree m with p
positive eigenvalues and m — p negative eigenvalues (0 < p < m). Let SO(Y) be the
special orthogonal group of Y and denote by SO(Y)z its arithmetic subgroup. We put
Vi = {v € R"”;sgnY[v] = %x}. Then Siegel’s zeta functions are Dirichlet series associated
with the prehomogeneous vector space (GL1(C) x SO(Y), C'), and are defined by

()
{x(s) = > YOIr

veSO(Y)z\(Z"NVy)

where the sum runs over a complete set of representatives of SO(Y)z\(Z" N V1), and u(v)
is a certain volume of the fundamental domain related to the isotropy subgroup SO(Y),
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of SO(Y) at v. In the positive definite case, the modularity of Epstein’s zeta function ¢o(s)
is almost obvious; ¢o(s) is obtained by taking the Mellin transform of (the restriction to
the imaginary axis of) the theta series

0(S,z) = Z Sz (s =x+iyeC y>0),

aeZm

which is a modular form for a subgroup of SLy(Z). (cf. Miyake [15, §4.9], Terras [31,
§3.4.4].) On the contrary, it is not clear from the definition whether or not Siegel’s zeta
function arises as an integral transform of some infinite series with modular properties.
Rather, in the preface to a 1938 paper [23], Siegel wrote that such theta series would be
constucted from his zeta functions, citing the work of Hecke [7], in which Hecke derived
the transformation formula for the theta series associated with indefinite binary quadratic
forms from the functional equation of zeta functions of real quadratic fields. Furthermore,
Siegel made the following remark in the last section of [23]:

Will man die Transformationstheorie von f(&, x) fiir beliebige Modulsubstitutio-
nen entwickeln, so hat man aufSer ¢; (6, s) auch analog gebildete Zetafunktionen mit
Restklassen-Chrakteren zu untersuchen. Die zum Beweise der Sétze 1, 2,3 fithrenden
Uberlegungen lassen sich ohne wesentiche Schwierigkeit auf den allgemeinen Fall
tibertragen. Vermoge der Mellinschen Transformation erhilt man dann das wichtige
Resultat, daf$ die durch (53) definierte Funktion f(&, x) eine Modulform der Dimen-
sion 5 und der Stufe 2D ist; dabei wird vorausgesetzt, daf$ # ungerade und 'Sy keine
terndre Nullform ist.

(A translation) If one wants to develop the transformation theory of f(&, x) for arbi-
trary modular substitutions, then in addition to ¢1(&, s) one also has to investigate zeta
functions formed analogously with residual class characters. The considerations lead-
ing to the proof of Theorems 1, 2, 3 can be transferred to the general case without any
major difficulty. By virtue of the (inverse) Mellin transformation, one then obtains an
important result that the function f(&, x) defined by (53) is a modular form of weight
5 and level 2D, provided that 7 is odd and ¢'&y is not a ternary zero form.

As of 1938, Siegel seemed to have noticed the possibility that by considering the twists
of zeta functions by Dirichlet characters, one can prove modularity for congruence sub-
groups. In the holomorphic case, this fact is known as Weil’s converse theorem [34]. It
was 1967 when Weil’s paper [34] appeared! Revisiting Siegel’s prediction in the light of
recent developments is one motivation for the present study.

We should note that in the quotation above, Siegel mentioned the parity of #, the
number of variables of quadratic forms. This is related to the fact that the concept of non-
holomorphic modular forms was not yet in place at that time. In a celebrated paper [12],
Maaf} introduced the notion of the so-called Maass forms and established a Hecke cor-
respondence for Maass forms. Further, in [13], as its application of his theorem, Maafd
proved that in a very special case (when Y is diagonal of even degree with detY = 1),
Siegel’s zeta functions can be expressed as the product of two standard Dirichlet series
such as the Riemann zeta function ¢ (s) and the Dirichlet L-function L(s, x ). On the other
hand, it is only recently that papers on Weil-type converse theorems for Maass forms have
emerged (cf. [16,17]). It would be a very natural idea for us to accomplish Siegel’s original
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plan to prove the modularity via converse theorem including the case of non-holomorphic
forms.

Siegel’s zeta functions are closely related to the so-called Siegel's main theorem
(Siegelsche HauptSatz). In a 1951 paper [26], Siegel proved the transformation formula
for some theta series arising from indefinite quadratic forms, and the equality between
an integral of the indefinite theta series over fundamental domains and some Eisenstein
series (cf. [26, Satz 1]). It was shown in [26, Hilfssatz 4] that the coefficients

M(Y;4n) = > u)  (n=1,23...)

veSO(Y)z\(Z"NVy)
Y[v]==%n

of ¢4(s) coincide with the Fourier coefficients of the non-holomorphic modular forms
appearing in Siegel’s formula. Here we ignore the differences in the definitions of w(v);
the definitions of measures are different for each of the papers [23,24,26]. Siegel called
M(Y;n) the measures of representations (Darstellungsmafs). The measure M(Y;n) of
representations is an analogue of the representation number

r(S;n) = tt{a € Z" ; Sla] = n}

for a positive symmetric matrix S, and Siegel’s formula can be reformulated as an arith-
metic identity that M(Y, n) is equal to the product of local representation densities over
all primes. Weil [33] generalized Siegel’s result by using the language of adeles, and it is
the Siegel-Weil formula—a cornerstone in the modern number theory.

Now we explain the main results of the present paper. First, along the Sato-Shintani
theory [21] of prehomogeneous vector spaces, we define Siegel’s zeta functions and prove
their analytic properties. Here, to treat twisted zeta functions as well as the original Siegel’s
zeta functions, we first consider Siegel’s zeta functions with congruence conditions, which
are defined using Schwartz-Bruhat functions on Q™. This idea is due to Sato [20]. Then
the converse theorem in [16] is applied to the zeta functions, and the following result is
obtained:

Mainresult 1 (Theorem 2) Let m > 5. Assume that at least one of m or p is an odd integer.
Take an integer £ with £ = 2p — m (mod 4), and put D = det(2Y). Let N be the level of
2Y. Define C*°-function F(z) = F(x + iy) on the Poincaré upper half-plane H by

F(z) =y 0% f d'g + a(0) -y ~lmHO/4
SO(Y)r/SO(Y)z
0] m _m
—m—pya MY5n) md - nlme e
+ ) (=@ sy Y Wi (4t |nly)elna),
ey DIF () e

where d'g is a suitably normalized Haar measure on SO(Y)R, «(0) is some constant deter-
mined by the residues of t+(s), and W, (y) denotes the Whittaker function. Then, F(z) is
a Maass form of weight £ /2 with respect to the congruence subgroup I'o(N).

The above formula can be compared with Siegel’s calculation [26, Hilfssatz 4] of the
Fourier expansions of non-holomorphic modular forms. Our F(z) is essentially the same
as the modular form given by Siegel [26]. See Remark 4. The theorem above excludes the
case where both m and p are even. Our second result states that if one of m — p and p are
even, we can construct holomorphic modular forms from M(Y; £n).
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Mainresult 2 (Theorem 3) Let m > 5. Assume that m—p is even. We define a holomorphic
function F(z) on 'H by

F@ = (0" en o (5) | d'g
27 Jsomr/sors

+ D72 ZM(Y; n)e[nz).

n=1

Then, F(z) is a holomorphic modular form of weight m/2 with respect to I'o(N). (In the
case that p is even, we can construct holomorphic modular forms from M(Y; —n) (n =
,23...).)

The theorem above is consistent with a result of Siegel that was published in a 1948
paper [25]. In this paper, Siegel calculated the action of certain differential operators
on indefinite theta series, and proved that in the case of detY > 0, we can construct
holomorphic modular forms from indefinite theta series associated with Y.

Before closing Introduction, we give some remarks on related researches, future prob-
lems, and possible applications. Special values of Siegel’s zeta functions associated with
Y of signature (1, m — 1) appear in the dimension formula for automorphic forms on
orthogonal groups of signature (2, m) (cf. Ibukiyama [8]), and it is important to investi-
gate their arithmetic aspects. Ibukiyama [9] proved an explicit formula expressing Siegel
zeta functions (with m even) as linear combinations of products of two shifted Dirich-
let L-functions and certain elementary factors. His proof is given by direct calculations
using Siegel’s main theorem in [26] and not by converse theorems. Ibukiyama’s explicit
formula is quite general and includes the above-mentioned result of Maaf3 [13]. We also
mention the work [6] of Hafner-Walling, in which they carried out extensive calculations
to make Siegel’s formula more explicit in terms of standard Eisenstein series. This work is
also restricted to the case where m is even. It is worthwhile to investigate the case where
m is odd. Finally, in a good situation, the method of converse theorems can be used to
prove lifting theorems. In [29], a Shintani-Katok-Sarnak type correspondence is derived
from analytic properties of a certain prehomogeneous zeta function whose coefficients
involve periods of Maass cusp forms. In [14], Maaf studied a generalization of Siegel’s zeta
functions, which can be regarded as prehomogeneous zeta functions whose coefficients
involve periods of automorphic forms on orthogonal groups. It is quite probable that our
method can be applied to these zeta functions, and some lifting theorems will be obtained.
We hope to discuss this topic elsewhere.

The present paper is organized as follows. In Sect. 1, we recall a Weil-type converse
theorem for Maass forms, and in Sect. 2, we define our prehomogeneous vector spaces
and give the local functional equations. Section 3 is devoted to define Siegel’s zeta functions
with congruence conditions, and analytic properties of Siegel’s zeta functions are proved
in Sect. 4. We prove our main theorems in Sects. 5 and 6.

Notation. We denote by Z, Q, R, and C the ring of integers, the field of rational numbers,
the field of real numbers, and the field of complex numbers, respectively. The set of
non-zero real numbers and the set of positive real numbers are denoted by R* and R,
respectively. The set of positive integers and the set of non-negative integers are denoted
by Z-.o and Z>, respectively. The real part and the imaginary part of a complex number s
are denoted by f(s) and J(s), respectively. For complex numbers ¢, z with @ # 0, &% always
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stands for the principal value, namely, o = exp((log ||+ arg &)z) with —7 < arga < 7.
We use e[x] to denote exp(27ix). The quadratic residue symbol (E) has the same meaning
as in Shimura [22, p. 442]. For a meromorphic function f (s) with a pole at s = «, we denote
its residue at s = « by Bzegf(s).

1 A Weil-type converse theorem for Maass forms

In this section, we define Maass forms on the Poincaré upper half-plane H = {z €
C|3(z) > 0} of integral and half-integral weight, and recall a Weil-type converse theorem
for Maass forms that is proved in [16]. We refer to Cohen-Stromberg [2] for an overview
of the theory of Maass forms. Let I' = SLy(Z) be the modular group, and for a positive
integer N, we denote by I'g(N) the congruence subgroup defined by

To(N) = { (‘C’ 2) er

As usual, I' acts on ‘H by the linear fractional transformation

Z_az~|—b for = ab el’
&= Ztd £=\ca '

We put j(y, z) = cz + d, and define 6(z) and J(y, z) by

3 0
0@)= ), expQrin’s)  J(y,2) = %)

c=0 (modN)}.

n=—0o0

Then it is well-known that

J(y,z) = 8;1 : (2) (ez+d)V? for y = (6: Z) € I'o(4),

where

1 d=1 (mod4)),
&d = 1)
i (d=3 (mod 4)).

For an integer ¢, the hyperbolic Laplacian A/, of weight £/2 on H is defined by

a2 92 ity (9 9
A = — 2 -y -y —_— —_— | — = [ . 2
/2 Y <8x2+8y2)+ 5 (8x+18y) (z=x+iyeH) (2)

Let x be a Dirichlet character mod N. Then we use the same symbol x to denote the
character of I'g(NN) defined by

X0 = x(d)  for y = (Z Z) € To(N). 3)

Definition 1 (Maass forms) Let £ € Z, and N be a positive integer, with 4|N when ¢ is
odd. A complex-valued C*°-function F(z) on H is called a Maass form for I'o(N) of weight
£/2 with character y, if the following three conditions are satisfied;

(i) foreveryy € I'o(N),

x(»)j(y,2)"* - F(z) (£iseven)

F(yz) = ,
xWJ (v, 2)¢ - F(z)  (€is odd)
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(ii) AgpF = A - F withsome A € C,

(iii) F is of moderate growth at every cusp, namely, for every A € SLy(Z), there exist
g Y cusp Y Y
positive constants C, K and v depending on F and A such that

IF(A2)] - [j(4, 2|7 < ¢y’ if y=3(2) > K
We call A the eigenvalue of F.
Let A be a complex number with A ¢ 1 — %Zz& Let @ = {a(n)}yez\(0) and B =

{B(n)}nez\(0) be complex sequences of polynomial growth. For a, 8, we can define the
L-functions &+ (a; s), §+(B; s) and the completed L-functions E4(«;s), E+(B;s) by

HEDEDS a(;n), Ex(ass) = (2m) T ()62 (05 5),

n=1
00

+
(i) =3 L (ns”), 24 (89) = (21) T ()8x(B;).

n=1

In the following, for simplicity, we put
Ee(a;8) = & (a;8) +6-(a58),  Eolass) = 4 (a;8) — E—(a59).
Now we assume the following conditions [A1l] — [A4]:

[A1] The L-functions &4 (w;s), £4(B;s) have meromorphic continuations to the whole

s-plane, and (s — 1)(s — 2 4+ 2X)é+(a;s) and (s — 1)(s — 2 + 21)&4(«; s) are entire
functions, which are of finite order in any vertical strip.

Here a function f(s) on a vertical strip o1 < R(s) < o3 (01, 02 € R, 01 < 09) is said to be

of finite order on the strip if there exist some positive constants A, B, p such that

[F(s)| < AeBRO 61 < 9(s) < 0.

[A2] The residues of &1 (c;s) and £4(B;s) at s = 1 satisfy
R_els Er(ass) = R_els & (a;3), R_els E.(B;s) = R_els & (B;s).

[A3] The following functional equation holds:

+(a;5)
y(s) ( ) a;s)>

=NZ25.50) - y(2—2x1—5) (

o 0]

=
=
=
=

+(B;2 =21 —5)
(B2 =21—3))’

where y(s) and X (¢) are defined by

eTSi/2 o= Tsi/2 0t
y(s) = (e”“/z emsif2 |’ O=1, 0/ (4)

[A4] Ifr =1 (q € Z=0, q = 4), then

Ep (s —k) + (D6 (0;—k) =0 (k=12

e q—3).
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Under the assumptions [A1] — [A4], we define «(0), 8(0), «(c0), B(oc0) by

&(0) = ~&.(@;0) )

a(o0) = 5 Res(6;5), ©

BO) = —&.(5;0) @
)

B(00) = 5~ Res&e(ss) ®)

For an odd prime number r with (N,r) = 1 and a Dirichlet character ¥ mod r, the
twisted L-functions &4 (o, ¥;5), Ex(a, ¥;5), Ex(B, ¥;5), E+(B, ¥; s) are defined by

exta,vis) = 3 U g g5 = 0m) T i),
n=1
>, B+ +

epus9 =3 PEVED g (i) = ) T8 v
n=1

where ty (1) is the Gauss sum defined by

wm = wme )
m mod r
(mr)=1
We put
w=ny0)= ) vme
m mod r
(mr)=1

and denote by 0 the principal character modulo r. Recall that the Gauss sums are
calculated as follows:

v(mty (m#0 (mod r)),

i # o (10)
0 (n=0 (mod r)),

Ty (n) =

r0, () = -1 (n#£0 (mod r)), (11)
r—1 (n=0 (modr)).

Let P be a set of odd prime numbers not dividing N such that, for any positive integers
a, b coprime to each other, Py contains a prime number r of the form r = am + b for
some m € Z-g. For an r € Py, denote by X, the set of all Dirichlet characters mod r
(including the principal character v,,). For ¢ € X,, we define the Dirichlet character ¥ *

by
NG
v = () (12)
We put
[ 1 (¢iseven),
Cor = (13)
sf (€ is odd).

(For the definition of &, see (1).)
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In the following, we fix a Dirichlet character x mod N that satisfies x(—1) = it (resp.
x(—=1) = 1) when ¢ is even (resp. odd).
Foranr € Py and a ¢ € X,, we consider the following conditions [A1],,y — [A5],,y on

Ex(a, ¥;s) and £+(B, ¥ s).

[Al],y &Ex(o, ¥;5), E+(B, ¥™;s) have meromorphic continuations to the whole s-plane,
and (s —1)(s —2+2A)é+ (o, ¥r;8), (s—1)(s—24+21)EL(B, ¥™*; s) are entire functions,
which are of finite order in any vertical strip.

[A2],y The residues of &1 (a, ¥;s) and £+(B, ¥™;s) satisfy

Res £, ¥s58) = Res £ (a, ¥;9), Res E+(B,Y";s) = Res E_(B,Y™;s).

[A3],y Ei(x, ¥;s)and EL(B, ¥*;s) satisfy the following functional equation:

y(s) <E+EZ’ ‘53) — x(r) - Cop - W (=N) - 1272 (Np2)22s

By (ByY*2—21—5)
ST - y(2 =21 —35) (E_(ﬂ,lﬁ*;z_Z)‘_S))’

where y (s) and 2(€) are the same as (4) in [A3].
[A4],, If) = 1(q e Z=0o, q > 4), then

E(o ¥ —k) + (=DFe_(a, y;—k) =0 (k=12,...,q9—3).

[A5],y The following four relations between residues and special values hold:

o &elo, ¥50) = 7y (0)6e(ar; 0).

 X() YT (=N) - Cop - rRes £ (B, %) = 1y (O)Res &+(; 9).

o &(B¥*50) = Ty=(0)6:(8;0).

» Resto (o y/;s) = x(r) - Y*(=N) - Cop - =2 7y (0) - Res & (e35).

Lemma 1 (Converse Theorem) We assume that &1 («; s) and E1(B; s) satisfy the conditions
[A1] — [A4], and define a(0), a(00), B(0), B(00) by (5), (6), (7), (8), respectively. We assume
furthermore that, for any r € Py and ¥ € X,, &x(a, ;) and §+(B, V*;s) satisfy the
conditions [Ally,y — [A5]y,y. Define the functions Fy(z) and Gg(z) on the upper half plane
H by

2m)21=2*r @21 — 1) ity

_ At/ L2,
Fy(z) = a(00) - y +a(0) - rr+5rx-1%)

o0 i7£/2 . 7.[)\ . |n|kfl m
Y ) e T W,y () -elnl, (14)
= F(A—l—%) 1 A3
n#0

gp @U)27PT@A=1) 1, gy
P+ 9T (—5)

Gp(z) = N*B(oo) -y H/* + N**B(0) - i~

0 —L/2 JT)‘ . A—1
+N1—)~ Z /3(”) . l |I’l|
oo r (A 4 M)
n#0 4

y Tt Wignine , (4 Inly) - e[na].

(15)
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Here W, (x) denotes the Whittaker function. Then F,(z) (resp. Gg(z)) gives a Maass form
for To(N) of weight % with character x (resp. xn¢), and eigenvalue (. — £/4)(1 — A — £/4),
where

t
o) =@ () 16

Moreover, we have

1
E, <_I\TZ) (WNz)7Y? = Gg(2).

Remark 1 1n [16], we proved the converse theorem under a weaker condition A ¢ % —
%Zzo In the present paper, since the case of A = 1 will not be treated, we assume
A¢gl— %Zzo, which simplifies the description of the converse theorem.

2 Prehomogeneous vector spaces

Let Y be a non-degenerate half-integral symmetric matrix of degree m, and let p be
the number of positive eigenvalues of Y. Throughout the present paper, we assume that
m > 5 and p(m — p) > 0. We denote by SO(Y) the special orthogonal group of YV’
defined by SO(Y) = {g € SL,,(C) | 'g¥Yg = Y}. We define the representation p of
G = GL1(C) x SO(Y) on V = C"™ by

p@v=pltgv=tgv @=(geGveV)
Let P(v) be the quadratic form on V defined by
Pv)=Y[v] =tvyy, (17)

where we use Siegel’s notation. Then, for g = (£ g) € G and v € V, we have

P(p(@v) = x(68)P(v), with x(5g) =1> (18)

and V — S is a single p(G)-orbit, where S is the zero set of P:
S={veV|PWy)=0}

Thatis, (G, p, V) is areductive regular prehomogeneous vector space. (We refer to [11,21]
for the basics of the theory of prehomogeneous vector spaces.) We identify the dual space
V* of V with V itself via the inner product (v, v*) = ‘vv*. Then the dual triplet (G, p*, V*)
is given by

pF@W = p*t vt = ¢! ~tg*1v* E=@0geGrveV".

We define the quadratic form P*(v*) on V* by
P*(v*) = lY—l[v*] _ Lyt (19)
4 4 '
Then, for § = (¢, g) € G, v* € V*, we have

P*(p*@v*) = x* (P (), with x*(6g) =t (20)
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and V — §* is a single p*(G)-oribit, where S* is the zero set of P*:
S* ={* e V¥ P*(V*) =0).
For e, n = £, we put
Ve ={v € Vr|sgnP(v) = €}, V;‘ = {v* € Vg |sgnP*(v*) = n}.

We denote by dv = dv; - - - dv,, the Lebesgue measure on Vg, and by S(VR) the space of
rapidly decreasing functions on Vg. Then, for f, f* € S(Vg) and €, n = &£, we define the
local zeta functions ®¢(f;s) and @7 (f*;s) by

ol = [ fwewrtay ot = [ prwrenian e

For %(s) > %, the integrals ®(f;s) and <I>’;,(f *;5) converge absolutely, and as functions
of s, they can be continued analytically to the whole s-plane as meromorphic functions.
Further, we define the Fourier transform f(v*) of f € S(VRr) by

for) = S Oelty vl

The following lemma is due to Gelfand-Shilov [5]; a detailed proof is given in Kimura [11,
§ 4.2].

Lemma 2 (Local Functional Equation) Let p be the number of positive eigenvalues of Y,
and put D = det(2Y). Then the following functional equation holds:

* (F.
(q’+<ﬁ’s’) = (s+1=Z)rED|? - 272%F . 772457

D (f;s)
sinm (5 —s) sin 72 O (f; 2 —5)
“\ sin —"(Wé_p) sin 7w (—mz_p — s) D_(f;% —5) '

In the rest of this section, we investigate singular distributions whose supports are
contained in the real points Sg of S; these distributions play an important role in the

calculation of residues of Siegel’s zeta functions. We decompose Sk as
SR=S1,RUSR Sir={veVr|P(W)=0v#0} Sr={0}

A measure on Sg that is SO(Y)gr-invariant is constructed as follows. Since P(v) is a non-

degenerate quadratic forms, we have

m
9
Sir = ZL_Jl u, U = {v €Sir a_wP(V) + 0}.

Fori=1,...,m, we define an (m — 1)-dimensional differential form w; on U; by

. 9 -1
w; = (—1)L71 (3_P(V)> dvi N+ A dvi,1 A dV,’+1 VASRIRIVAN dvm. (22)
Vi

It is easy to see that there exists an (m — 1)-dimensional differential form w on Sg that

satisfies

oly, = w; (i=1,...,m)
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and
dPWV)Aw=dv (=dvi A--- ANdvy).
Since P(gv) = P(v) for g € SO(Y)Rr, we have
dv = dP(v) A w(v) = dP(v) A w(gv).

Further, o(tv) = " 2w(v) for t > 0. Now let |@(v)|« denote the measure on St g defined

by w. Then we have

j(p(6 @)loo = Ix (617 " - [0()loo (23)
for g € SO(Y)r and ¢ > 0. Similary, for the zero set S* of P*, we decompose the real
points Sy as

SHE:ST,RUS;,R’ SiR:{V*GVR|P*(V*):O,V*#O}, SZR:{O}

The same argument as above ensures the existence of an (m — 1)-dimensional differential
form w* on S} such that the restriction of ®* on

14

uy = {v* €Sip

aa*P*(V*);éO} i=1...,m)

is given by
. 9 -1
w*|ui* = (-1)! (mP*(V*)> Avi A NdVi  Advi A ANdvy,
L

We have

|l (0* (6 €)oo = X6 Q)17 - 0" (V) oo (24)

for g € SO(Y)r and ¢ > 0, where |0*|« denotes the measure on Si"’R defined by w*. We
refer to [5, Chap. III] for further details on the measures |w|oo, |®*|0o. Then we have the
following

Lemma3 (1) Iff € C{°(Vr — Sr), then we have

/ FOw* (7)o =T (g - 1) ID|? - 225 1%
LR

FOIPE)' 2 dv
X (sin g(m — p) sin E) Vi o
[ sorpor-ta

2) Iff € C(Vie — SL), then we have

/ f(V)|w(V)|oo—F<——1> D77 .22 % . p17%
VP S dy

P dv

X (sin%(m—p sm— ;
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This is stated, without proof, on p. 156 of Sato-Shintani [21] where Siegel’s zeta function
is picked up as an example of their theory. Since the details cannot be found in other
literature, we give a proof of the lemma for convenience of readers.

Proof For f € C§°(Vr — Sgr), we consider the integral
[ 700 0
Sir

We may replace ST by S = {v* € Vg |P*(v*) = 0}, since S; = {0} has measure 0 in
Sk From the identity (19) (or the first formula on p. 257) in Gelfand-Shilov [5, Chap III,
§2.2], we have

/ F")|w*(v*)|s = Res f P () dv,
S s=0 Jp+(y)>0

By the shift s — s — %, we have

—m
5=73

lim (s—2) 7 (Fis—1).

s—>+%

;‘\(V*)|a)*(v”‘)|oo = Resf P*(v*)s_%_1 F*)dv*
st Vi

It then follows from the local functional equation (Lemma 2) that
m o m
lim (S——)CD* ( ;s—l) = lim <s——)
s—>+% 2 + Y s—>+4 2

r (s — %) I'(s— 1)|D|% L2 T2 25t

FOIPE)* v
x <Sin7t (g—s+1> sin y) fv + FWIPW)[* " dv

—r (% — 1) ID|? .22 % . 7175

FWIPW)~ % dv
Vi

/ FW)IPW)~% dv
V_

(. ud )i n;9>
Sin —\m — Sin —
sV p 2

which proves the first assertion of Lemma 3. The second assertion can be proved in a
similar fashion. ]

3 Siegel’s zeta functions with congruence conditions

In this section, followig Sato-Shintani [21], we define Siegel’s zeta functions associated
with (G, p, V), and give their integral representations. Moreover, we calculate the singular
parts of the zeta integrals. For this calculation, we also refer to Kimura [11]. Furthermore,
following Sato [20], we slightly generalize Siegel’s zeta functions with using Schwartz-
Bruhat functions on Q™ in order to treat the twisted zeta functions simultaneously. Let
dx be the measure on GL,,(R) defined by

dx = | detx|™" 1_[ dx;j for x = (xj) € GLu(R),

1<ij<m
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and dX the measure on the space Sym,, (R) of symmetric matrices of degree m defined by

di.=|deti]"5 [] dry for A=(rj) € Sym,(®).

1<L<]<Wl

Then we normalize a Haar measure d'g on the Lie group SO(Y)g in such a way that the

integration formula

/ F(x)dx = / dr(txY %) F(gx)d'g (25)
GLyu(R) SO(Y)r\GLn(R) SO(Y)r

holds for all integrable functions F(x) € L'(GL,,(R)). Further, let dt be the Lebesgue
measure on R and put

2
I = ff (26)

By (18), |P(v)|™ 3 dvisan R4 xSO(Y)r-invariant measure on V, and the isotropy subgroup
SO(Y)y = {g € SO(Y) |gv = v}

atv € V — S isareductive algebraic group. Hence, for v € V¢, there exists a Haar measure
dpy on SO(Y),r such that the integration formula

o
f d*t / H(t,g)d'g
0 SO(Y)r

— / / Plo(t )~ d(p(t, 2)) H(ghdpu () (27)
SO(Y)r/SO(Y)y,r SO(Y),r

holds for all integrable functions H(t, g) € L*(Gg). Similarly, for v* € V,;“, we write
SO(Y)yrr = {g € SOk | g~ 1v" = v¥)

and fix a Haar measure du}. on SO(Y),+r such that the integration formula

o0
/ d*t / H(t g)d!
0 SO(Y)Rr

o0
- f / 1P (06, )~ R (0¥ (6 2)v") / H( ghydpit ()
0 SO(Y)r/SO(Y)yxr SO(Y)x r

holds for all integrable functions H(t, g) € L} (Gg).
We call a function ¢ : Vg — C a Schwartz-Bruhat function if the following two
conditions are satisfied:

(1) there exists a positive integer M such that ¢(v) = 0 forv ¢ Al/[ V7, and
(2) there exists a positive integer N such that if v, w € Vg satisfy v — w € NV7z. then
o(v) = p(w).

The totality of Schwartz-functions on Vg is denoted by S(Vg). We define the Fourier
transform 55 € S(Vg) of a Schwartz-Bruhat function ¢ € S(Vg) by

P =—— D pWe[—(nv)], (29)
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where r is a sufficiently large positive integer such that the value ¢(v)e[—(v, v*)] depends
only on the residue class v mod rVz. Though r is not unique, the value $(v*) does not
depend on the choice of r. The following lemma is essentially an adelic version of Poisson
summation formula.

Lemma 4 (Poisson summation formula) For ¢ € S(Vg) and f € S(Vr),
Y S0 =D s ).

v*eVp veVp

For g = (£, g) € Gr = R* x SO(Y)R, we put f;(v) = f(o(t g)v) = f (¢gv). Since

fevn)= [ flgvel(v, v¥)ldv=]t| ™" f Wel(t g~ v, v¥)ldv=It| " - F(o* (£, @)v*),

Vi

we have the following
Lemma5 Forg = (1 g) € Gg, ¢ € S(Vg), f € S(Vr),

L7 Y d0 (0 V) = Y dW)f (p(t g)v).

veVp veVo

In the following, we assume that ¢ € S(Vg) is SO(Y)z-invariant. That is, ¢ is assumed
to satisfy

o(yv) = o(v) for ve Vg, y € SO(Y)z. (30)

Then we define the zeta integral Z(f, ¢;s) by

Z(f ¢;s d*t s dlg 31
(£ 659) / /SOMR/SO(Y XGPS B0 (ol v)d'e (31)

veVo—Sg

Since Vy — Sg can be decomposed as
e=£1eSO(Y)z\VeNVg y€SO(Y)z/SO(Y ),z

we have, by a formal calculation,

Z(f, ¢35)

3D | x6oP
SO(Y)r/SO(Y)z

e=t1eSO(Y)z\ VNV

x > (V) (p(t, @)y v)d'g

y€S0(Y)z/SO(Y)y,z

(30) o X s 1
30 d : o)
Y Y s fo ¢ fs s, D020

e=£veSO(Y)z\VeNVy

and further, by applying (27) to

|P(p(t, @)V)I*

H(tg) =[x Q) - f(p(6g)v) = PP

flp(t, gv),
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we have

Z(hdss) =) > ¢(v)/0°°dxt

e=% veSO(Y)z\VeNVg
X/ [P(p(t &I
SO(Y)z/SO)e POV

X / du,(h).
SO(Y)y,r/SOv,z

In the following, for v € Vg — Sg, we put

f(pt &V)IP(o(t, &)V~ 2 d(p(t, §)v)

() = / dyu (). (32)
SO(Y)V,]R/SOV,Z

Since it is assumed that m > 5, the generic isotropy subgroup SO(Y), is a semisimple
algebraic group, and thus we have ;(v) < +o00. (cf. [11, p. 184].) We further put p(, &)v = x
in the right hand side above. Then, since R4 x SO(Y)r/SO(Y),r = Ve, we have

ZZTED M DY P (33

e=+ veSO(Y)z\VeNVg |

The Dirichlet series

Le(gss) = Z d(v)u(v)

|P(v)I*
veSO(Y)z\VeNVg

converges absolutely for 9i(s) > %, as will be explained in Remark 2 shortly. Hence the

interchange of summation and integration, which leads to (33), can be justified under this
condition. Similary, for f* € S(Vr) and ¢* € S(V) that satisfies

o*(Cy W) =¢*(v*)  for v*e Vg y € SOY)z (34)

we define the zeta ingegral Z*(f*, ¢*;s) by

2ot = [ e [ EDE Y S b gvdle
0 SO(Y)r/SO(Y)z

vieVo—Sk
(35)

Furthermore, for v* € Vg — Sg, we put

W)= [ A (), (36)
SO(Y)V*,R/SOV*,Z

where d .}, is the Haar measure on SO(Y),+r defined by (28).
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Definition 2 (Siegel’s zeta functions with congruence conditions) Let €, = =+ and
assume that ¢, ¢* € S(Vp) satisty (30), (34), respectively. Then we define {.(¢;s) and

£:(6%5) by

N P(V)u(v)
Leldis) = SO(y)Z\VW PO (37)
ve 7\ Ve Q
gty =y e (38)

|[P*(v*)|*
v*eSO(Y)zZ\ViNVg

We can summarize our argument as the following

Lemma 6 (Integral representations of the zeta functions) Let f, f* € S(VRr) and assume
that ¢, ¢* € S(V) are SO(Y)z-invariant. For R(s) > %, we have

Z(Fdis) =) te(¢39)Pe(fs5),
e=+

ZH(f5 0%58) = Y (958D (% s).
n==+

Remark 2 (1) The original Siegel’s zeta functions are obtained by letting ¢ = ¢, where
¢o is the characteristic function chy,, of V7. To apply Weil-type converse theorems,
we need to examine the case where ¢(v) = ¥ (P(v))¢o(v) with Dirichlet character .
Since each ¢(v) is a linear combination of characteristic functions of subsets of the
forma + NVz (a € Vo, N € Z>1), we call £c(¢;s), £,(¢™;5) Siegel’s zeta functions
with congruence conditions.
(2) The absolute convergence of Siegel’s zeta functions is not at all obvious, though
Siegel wrote just “Die Konvergents der Reihe entnimmt man der Reduktiontheorie”.
A detailed proof of the convergence can be found in Tamagawa [30]. It also follows
from the general theory of prehomogeneous vector spaces (Saito [18], F. Sato [19]).
(3) We can write ¢4 (¢;s) as

(i) = ) M 95 r)

S
reQso g
with
M(P, ¢; +7) := > PpW)n).
veSO(Y)z\ V+Nsupp(¢)

P(v)==%r

Since ¢(v) = O for v ¢ %VZ with some integer L, we see that that the sum in the
definition of M (P, ¢; £r) is a finite sum (cf. Kimura [11, p.184]). In the case of ¢ = ¢y,
we have supp(¢g) = Vz and P(v) € Z\ {0} forv e VoNVz.Forn =1,2,...,we put

M(P; +n) = Z w). (39)

veSO(Y)z\VLNVy
P(v)==%n
Siegel called M(P; n) the measures of representation (Darstellungsmafs). We have

o0

ta(poss) = )

n=1

M(P; £n)
o
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To investigate analytic properties of the zeta integrals, we define measures on isotropy
subgroups at singular points. We fix an arbitrary point v of S} r. Recall that in the previous
section, we have defined an SO(Y)r-invariant measure |w|oo onS;r = SO(Y)Rr/SO(Y),,R-
We can normalize a measure do, on the isotropy subgroup SO(Y),r in such a way that

the integration formula

/ v(@)d'g = f (@)oo / W (@hydo,(h) (40)
SO(Y)r SO(Y)r/SO(Y),r SO(Y),r

holds for all integrable functions y(g) € L'(SO(Y)g). Similarly, for v* € Sir» we take a
measure do ;. on the isotropy subgroup SO(Y),«R such that the integration formula

/ v@)d'g = / 0% ()l / v@hdon() (1)
SO(Y)r SO(Y)r/SO(Y),x R SO(Y),x r

holds for all integrable functions ¥(g) € L}(SO(Y)r). Now we put

A d*t x& QI
+(f ss) = / fSO(nR/SO(Y GOF Y. eWf(ptgvid'g

veVo—Sg

Z_ ; d>t s dl
(i) = f /som/som xGF Y 6w o)

veVp—3Sg

1
2y 00 = [ e [ G Y SN0 vl
0 SO(Y)r/SO(Y)z

v*eVp—S}

2ot = [ e [ GO Y SO (o vl
1 SO(Y)r/SO(Y)z

v*eVp—Sh

It is obvious that

Z(f ¢3s) = Zi(f d3s) + Z-(f d3s),  Z7(f%, ¢%55) = ZL(", 6% ) + ZE(f", 673 5)
The four integrals above converges absolutely for %i(s) > %, and further, two integrals
Z(f ¢;5) and Z7 (f*, ¢*; 5) are absolutely convergent for any s € C and define entire func-
tions of s. Let us calculate Z_(f, ¢; s) formally by using Lemma 5, the Poisson summation
formula; the interchange of integral and summation will be justified later in Remark 3.
Since x (¢ g) = x*(t g)~! = t?, it follows from Lemma 5 that

1
z_w;s):/ d*t/ (6P
0 SO(Y)r/SO(Y)z,

< AT DT B (6 gv) — Y dW)f (p(tg)v) t d'g

veVg veSQ

1 -
=[xt e Y B0 ovd'e
0 SO(Y)r/SO(Y)z

v*eVp—S}

1
N / [ g%, f > ) (p*(bgv)d'g
0 SO(Y)r/SO(Y)

Z *
v ESQ

1
2s Xt L
_/o ol /SO( > pWf (o gvid'e.

Y)r/SO(Y)z vesy
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The first term of the most right hand side is

(o

1
d*t * t, F—s * t Z*
/0 /SO(Y)R/SO(Y)Z|X ®)l Z PO (0* (6 g)v*)d g= (f

veVg— S@

w|§
\—/

Using (40) and (41), we calculate the second and third terms following the method of
Sato-Shintani [21, Theorem 2]. Put

Si,o={veVg|Prv)=0v+#0} ST,@ ={v" € Vo | P*(v*) = 0,v* # 0}

By the interchange of summation and integration, the third term above becomes

1
2s X 1
fo 2=t /S > s0)f (ot gvid'g

OW)e/SOW)z e5h

1
_ 25 X 1
= } : ¢(v)/0 t3d t/s flptgv)d' g

veSO(Y)z\S1,0 O(Y)r/SO(Y ),z
1
ooy [ e d'g w)
0 SO(Y)r/SO(Y)z

By applying (40) to ¥(g) = f (o (% g)v) = f (tgv), we have

flpt gv)d'g= lo(@v)loo

/SO(Y)R/SO(Y)V,R
“ / ftghv)do,(h)
S

O(Y)yr/SO(Y )z

/SO(Y)R/SO(Y)V,Z

= | fi)o@)lx /
S1r SO(Y)y,r/SO(Y)y,z

o [ @)@ f do ().

SLR SO(Y)y,r/SO(Y)y,z

doy(h)

Here we have used (23) in the third equality. Hence the integral (42) is calculated as

1
25 71X 1
/0 2"t /S 3 60 (o6 v

O(Y)e /SO )z Jest

d
_ () f rs+2-m 20 RCIZCIS / do,(h)

veSO(Y)Z\Sl 0 SO(Y)y,r/SO(Y)y,z

24t
1 $(0)f(0) / il / dlg
0 £ Jso)r/SO(Y)z

1
p - f@lo@lo Y

SR veSO(Y)z\S1.0

) f doy,(h)
SO(Y)V,]R/SO(Y)V,Z

$(0)f(0)

dlg
s SO(Y)r/SO(Y)z,
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Similarly, by term-by-term integration, we have

1 -~
/ [ g / > SN (0" (6 g)vH)d'g
0 SO(Y ) /SO

Y)z P 656

1
= > o[ e o gvaig
* 0 SO(Y)r/SO(Y)yxz

v*eSO(Y)z\S}

R 1
+ $(0)f (0) /O ALy /S dlg (43)

O(Y)r/SO(Y)z

and by using (24) and (41), we obtain

f T (6 9v)d'e
SO(Y)Rr/SO(Y),* 7

f(t_l . tg—lv*)|w*(tg—lv*)|oo / dO";k*(h)
SO(Y)yx r/SO(Y)yx 7,

= / FE 20" @)l / do . (h)
Sir SO(Y)yxm/SO(Y )7

— M2 f F@)o* ()]s / do’s (h).
SfR SO(Y)V*,R/SO(Y)V*,Z

/SO(Y)R/SO(Y)V*,R

Hence we see that

1
/ t2s—md><t/ Z ¢(V*)f(p*(t»g)1’*)dlg
0 SO(Y)R/SO(Y)y,

V*ES@
1 - N
=1 / f@No* (@) Y, ) do(h)
§T SR v eSOM\S g SO(Y )y 1 /SO(Y )y 2

$0)f(0) /
+ o
S— 3 JSO(Y)r/SO(Y)z

dlg

Now we put

o (V) = / doy (), (44)
SO(Y)y,r/SO(Y)y,z,

o*(v*) = / doy.(h). (45)
SO(Y)yx g /SO(Y )7,

Then we have the first assertion of the following lemma; the second assertion can be
proved similarly as the first assertion, and then the third assertion follows immediately
from the first and second assertions.

Page 190f38 31
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Lemma?7 (1) ForN(s) > 7, we have
(~ ~ M
2 ¢i5) = Zo (i) + 25 (6 5 )
— [ T Y a6
LR v*eSO(Y)z\S} ¢
$(0)(0)
+—

S— 7 SO(Y)r/SO(Y)z

/ @@k Y ¢0ow)

VESO(Y)Z\SLQ

dlg

s+1—
~ (0)f(0

$ SO(Y)r/SO(Y)z

dlg

(2) For(s) > 75, we have

2°(.di5) = 23, dis) + 2+ (£, 5 —)
—;;ﬁmfwwxmw S mew)

VESO(Y)Z\SL@

+¢m%9/
s— 7 SO(Y)r/SO(Y)z,
/.fﬁm&Wm Yo e

v*eSO(Y)z\Stq

dlg

s—l—l—

_ $0)f(0)

—
§ SO(Y)r/SO(Y)z

(3) As functions of s, the integrals Z(f, ¢, s) and Z*(?, a; s) can be continued analytically
to the whole s-plane, and satisfy the following functional equation:

(49 =2 (foi 5 —5).

Remark 3 In [10], Igusa studied the so-called admissible representations related to the
Siegel-Weil formula [33]. According to his classification, our prehomogeneous vector
space (GL1(C) x SO(Y), C™) gives an admissible representation if m > 5, and this implies
that the integrals

A Y s0if @'

OR/SOM)z yevry /somR/somz

¢ () (g vd'g

vieVp

are absolutely convergent for all Schwartz-Bruhat functions f, f* € S(Vg) and ¢, ¢* €
S(Vg). Hence the integrals

/SO(Y)R/SO() Z¢>V)f(gv 'g= / f@)w(@)]o Z p(v)o (v),

Z yeSig veSO(Y)z\S1,
/ BT e [ Tl T 560w
SOYV)r/SOY)z. Sto v eSO(Y)z\Sg

which appear in Lemma 7, are absolutely convergent, and the interchange of integral and
summation can be justified by Fubini’s theorem.
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4 Analytic properties of Siegel’s zeta functions
Theorem 1 Assume that ¢ € S(Vg) is SO(Y)z-invariant.

(1) The zeta functions {c(¢p;s) and {;7“ (a; s) have analytic continuations of s in C, and the
zeta functions multiplied by (s — 1)(s — ') are entire functions of s of finite order in
any vertical strip.

(2) Th zeta functions {c(¢;s) and ;,’)" (a; s) satisfy the following functional equation:

<‘°+ (05 ‘5)) =T (s+ 1= Z)M@ID|F - 272 F . g 205

S T (Ge)
sin =~ sinw (T - S) CX(ss)

(3) The residues of ¢c(¢; s), ;,T ($; s)ats=1ands = % are given by

-~

Res ¢ (@3s) = $(0) d'g (47)
=7

/SO(Y)R/SO(Y)Z

Res ¢ (;5) = ¢(0) d'g (48)
s=12 SO(Y)R/SO(Y)z,
Reste(gss) =T (3 —1) 1D 2% x'"% 3" §0)o* (")

veS0(Y)z\Si g

m%w—m&=ﬁ

1 . mp (€ = ) ) (49)
Sin ? € = —
Resy(@is) =T (3 —1)1DI72 227 % 2% 3 4(mow)
B veSO(Y)z\S1,0
sin 2 (m — p) (n = +)
x mp ' (50)
sin - (n=")

(3) The following relations hold:

(o5 1)+ (65 -1)=- X ewow), (51)
veSO(Y)z\S1,0
(@5 -1)+e (@5 -1)== X 090 (52)

v*eSO(Y)z\S}

Proof Letf € C{°(VR) in Lemma 7 (1). Then we see that

Z(f ¢55) = Z1(h d35) + Z7 (f,a;% ~s)
+ s—;l/s;R?(z*”w*(z*)'“ > et

v¥ ESO(Y)Z\ST’Q
o~ o~

i / d'g
S— 73 JSOY)r/SO(Y)z
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and thus the integral Z(f, ¢; s) can be continued to a meromorphic function on the whole
C, and (s — 1)(s — F)Z(f, ¢;5s) is an entire function of s. Further, for any s € C, we take
Je € C5°(Ve) such that ®(f;s) # 0. Then Lemma 6 implies that
Ce(gss) = %;
(fss)
and hence ¢ (¢; s) also can be continued to a meromorphic function on the whole C, and
(s — 1)(s — 5)¢e(¢; 5) is an entire function of s. The analytic continuation of ;‘,;‘ (a; s) can
be proved in a similar fashion. Further, one can prove the boundedness of . (¢;s) and
;“,T (5; s) in the same method as in Ueno [32, § 4]. By Lemma 6 and Lemma 7 (3), we have

(02 0)(370) = o530 -5 -0 (0 01 7),

and by Lemma 2, we have

(5659 @2 F59)) = (@4 (f: 5 —5) &— (% —5)) -'A6)
where A(s) is given by

A(s)=I" (s+1—%) T(s)|D|3 - 27 25+% . g=2s+5 -1 (
2

sinm (§ —s) sin 72 )
J— S) :

sin 22 gin <w

This implies that the vector

G (B35 =9)\ iy (C1@9) 53
(é“— (4% — S)> © ¢ (55) 3
is orthogonal to the vector

(@+ (5% —3) @~ (/5 —5))
forarbitraryf € S(Vr).Foranys € C, thereexistsanf. € C5°(V) suchthat ®.(f; 5 —s) #

0, and hence (53) is the zero vector. This proves the functional equation (46). Next we
calculate the residues. For the simple pole at s = 3, we have

Res Z(9,f35) = $(0)(0) - d'g

[SO(Y)R/SO(Y)Z
by Lemma 7 (1). For f € C§°(V), Lemma 6 implies Z(¢, f;5) = ¢c(¢;5) - Pe (f35), and
o, (f f %) is meaningful:

o (i4) = lim [ foperta= [ fwar=7o.
S Ve VR
Hence we have
Res & (¢35) = 3(0) [ d'g
=7 SO(Y)r/SO(Y)y,
and similarly
Res £,/ (;5) = $(0) d'g
=7 SO(Y)r/SO(Y)z,
By Lemma 7 (1), it is easy to pick up the residue of Z(f, ¢; s) at the simple pole s = 1, and
together with Lemma 6, it implies that for f € C§°(Ve),
Resce(i9) @ (i) = [ TN Y 30"
s=1 Si]R

*eSO(Y)z\S%q
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Here the value @ (f; 1) is meaningful, and

@ (f;1) = lim /V NPT de = [ rerei-ta

Ve

Furthermore, by Lemma 3 (1), we have

m
— -1

5 )|D|%-22_%-n1_%

[ 0 =r

sin ”(n — p) / FOIPW~Fdv  (f e CR(V4)
X &

sin%/‘/_f(v)w(vﬂl_%dv (f € CSO(V—)’

and hence we obtain the residue formula (49). Similarly, the residue formula (50) can be
proved with Lemma 3 (2); the detail is omitted. To prove the relation (51), we lets = 1 in
the functiona equation (46):

N )

1
— F(S)|D|§ . 2728+% . 777234»%71

* (P,
X (sinn (5 —s) +sin %2 sin w +sinmw (% — s)) (C+(¢’S)> .

SlCD)
. p . Tp _ . wim—p) m—p

(SHUT (5 —S> + sin 7) T 0, (smT +sin ( 5 —s))

we have

e (1-2) (o (05 -9) o (0 -9)

= |D|% . 2_2_‘_% . 71_3_’_%

Since

) Res¢ (;9)
s=1

) <%Si“” (=) Res c* (:5)

By using (50) and

we see that
i (1) o (02 ) e (02 9)
n(m—p)

=T (% _ 1) g2 Z o(W)o(v) - (7[ cos % T Cos w> (sin T)

veSO(M)Z\S1.0 s 5

=-T (% — 1) sinm (% — 1) AT Z op(v)o (v).

veSO(Y)z\S1,0
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Since

. m\ —1 m . m 1
llmF(s—l—l——) =F<——1)smn<——1>-7r A
s—1 2 2 2

we obtain the desired relation

(05 -1+ (65 -1)== X ¢0ow.

veSO(Y)z\S1,0

Finally, let s = 5 — 1 in the functional equation (46). We have

—Res (§+ (¢‘S)) =ResT"(s)- ' (5 — 1) ID|2 - 27572 =51
s=1 2

{—(¢58))  s=0
(oG- g ey st (e @y o)
sinZ  sinm (-5+1)) \¢* (B% - 1)
and by using (49), we obtain
*A'T— *A~T_ — R\ Kk
ﬁ(¢'2 1)+¢W?'2 1)— > e,
v*eSO(Y)z\S}

0

Let N be the level of 2Y. By definition, N is the smallest positive integer such that
N(2Y)~! is an even matrix (a matrix whose entries are integers and even along the diag-

onal). We normalize the zeta functions Z¢(¢; s), ;;f (:5; s) as follows:

T(dis) = |D|"7 - ed . o

Ce(is) = D12 - e T g (g5 + -~ 1), (54)
~ B m

Gr@i9) =N (s + 5 —1). (55)

Lemma 8 The normalized zeta functions Ce(35), E,;k (®;5) satisfy the following functional

equation:
- E+(¢; s)
(27) 7T (s)y (s) (E— & S))
— N2 %5 (o) (o " _
=N (2m) r (2 5 s)
_ _m N (G(#2-5 )
x 2 -my (23 ~5) (Z* G _s)), (56)

where y (s) and X.(£) are matrices defined by (4).

Proof Lets > 1 — sin the functional equation (46):

~—

) =r(2- % —5) T(1 = )|D|2 - 224572 g2+ 53

sin Z07=2) cr@i1—s) )
sinn<s+$—1 *(p1—s))"

~—

X
R
@,
=]
9
—
)
g T
ASJNCTL R
|
—_
SN—

(%)
.
=]

o}
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By (54), (55) and I'(1 — s) = L_, we see that this relation can be written as
I'(s)sinms

—s E+(¢;S) — A2 2 —2-1 ) m
(27)~T(s) <~ >_N - (27) r(z— : —s)

¢ (¢;5)
HOm fsinz (545 -1)  sin T
O E— —
1)

sins sin —p sin (s + 2P

(E82710)

An elementary calculation with det y (s) = 2i sin s shows that

2@p-m) [ ( 14 1) . 7w (m—p)
es sin7 (s + 5 sin —— .

~ _ (2 (2 m ),
< sin p sinn<s+%_1> y(s) (2p — m)y 5~

which completes the proof of the lemma. O

sin s

The functional equation (56) is quite the same as the functional equation of the condi-
tion [A3] in Sect. 1 with 7 = 2, £ = 2p — m (mod 4). Hence it is reasonable to expect
that our converse theorem (Lemma 1) can apply to the normalized zeta functions ¢ (¢; s),
E,;‘ (¢; 5) to obtain Maass forms. The following lemma is indispensable for the application.

Lemma9 (1) Ifmis odd, then we have
G =k + (=D - T k) =0
fork=1,23,....
(2) Assume that m is even and p is odd. Let q = 5. Then we have
(s k) + (=D T (¢ —k) =
fork=12...,q—2

Proof By a little calculation, we obtain
x (7, — m m
<§+ (931 S)) =T(s)r (s + g - 1) IDl_% D LR SRl

¢ (651 —5s)
y (sinn <s+ ?) sin —”(”;_p) )) (§+ (55 + % 1)) (58)
- (ois +

p ,(d);s—l— —1)

sin 7 sinz (s + 4
Let us consider the values of both sides at s = —k (k € Z-(). On the left hand side,
¢y (5, 1-— s) is holomorphicats = —k except when misevenandk = % —1=¢—1.0n
the right hand side, if m is odd, then I'(s)I" (s + 5 - 1) has a simple pole ats = —k (k €
Z-0), and if m is even, then T'(s)I" (s + % — 1) = I'(s)'(s + ¢ — 1) has a simple pole at
s=—k(1 <k <g—2).Weassume that 1 < k < g — 2 in the case of even m. Then, since

L)l (s + 5 = 1) has a simple pole at s = —k, we see that

(Sinﬂ<S+ ) 0+ (d3s+ 2 —1) +sin T2 ”(m zm=p) i (pss+ 2 —1))
smT~{+(¢;s+7—1)+smﬂ(s+—)- _(¢>;S+7—1)
_ (Sin” <3+ ) Telgss) + sin 22 7 (¢;S)>
sm7~§+(q§;s)+sm7r(s+§)~ 7_(¢; )

31
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becomes the zero vector at s = —k. Since sin 77 (—k) = 0, cos 7(—k) = (—=1)K, we have
k. Tlm—p) ~ . am—p) ~
(=1)"sin — {4(¢5 —k) + sin — ¢—(¢;—k) =0,

sin ”—2” - Ze(¢—K) + (1)K sin % T_(¢s—k) =0,

If m is odd, then either p or m — p is odd, and thus we have
(g —k) + (=1 - T (g5 —k) = 0.

In the case of even m, if p is odd, then the relation above should hold. In the case that both

; ; P o w(m—p)
of p and m — p are even, this argument can not apply since sin &~ = sin =5~ = 0. O

The following lemma follows immediately from the relations (51) and (52).

Lemma 10 We have the following relations:

— @0+ T(4:0) = D72 TS G0 () (59)
veSO(Y)z\S1,0
— @0+ @:0) = Y 0. (60)
v*eSO(Y)z\S

In the rest of this section, we discuss the invariance of volumes with respect to scalar

multiplications.

Lemma 11 (1) Forv e Vg — Sg,v* € Vg — S(’@, we define the volumes u(v) and p*(v*)
by (32) and (36), respectively. For r > 0, we have

() =pv),  w (mv*) =u (v

(2) Forv e S v* € ST’Q, we define the volumes o (v) and o*(v*) by (44) and (45),
respectively. For r > 0, we have

o) =r>"" . o(v), o*(rv*) = r¥" L ot (v¥).

Proof (1) We prove the second formula pu*(rv*) = u*(v*), which will be used later. Let
F e Cgo(\/,;*). Then, by (28) and (36), we have

o0
/ dxt/ F(p*(t g)v¥)d'g
0 SO(Y)R/SO(Y),* 7,

= / F(x%)|P*(x%)| % dx* / dys (h)
v*

, SO(Y)yx r/SO(Y)y%z

= () - /v E()IP () ~ 3 dx*,

By the substitution v* + rv*, we have

S5 @7 fsoyya 500000 FP7(6.8) - v1)dlg = w*(v*) - [ F) ¥ ()|~ B .
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Put F,(v*) := F(rv*). Since SO(Y);+ = SO(Y),+, we have
o0 o0
f &t f F(p*(6g) - n)d'g = f t f Er(o™ (6 9v)d'g
0 SO(Y)]K/SO(Y)W*,Z 0 SO(Y)R/SO(Y)V*,Z

= w0 / E )P ()~ %
V,T

SN G R Trs
vy

— W) / F) [P )~ S d(r %)

n

_m
=[P*(x*)|” 2 dx*

— W) fv CFGIP )

This proves pu*(rv*) = pu*(v*). The first formula can be proved similarly.
(2) Let us show that o (rv) = r>~" . o(v). Take an f € S(VR) and put ¥(g) = f(gv). By
using (40), we have

(gV)dlg = F@o@)loe / do, ()

/SO(Y)R/SO(Y)V,IR SO(Y)yr/SO(Y)y,z

=o(v)- f(2)lw(2)]0o.

S1r

/SO(Y)R/SO(Y)V,Z

By the substitution v = rv, we have
/ famdig=om)- [ F@I0E)
SO(Y)r/SO(Y ),z SLR
Put f,(v) := f(rv). Since SO(Y ),y = SO(Y),, we have

Flgmd'g = / Flgnd'e

/SO(Y)R/SO(Y)W,Z SO(Y)r/SO(Y)y,z

— o). /S F@]0@)]s

=oW): [ f(rz)lok)lx

S1r

=o(v)- /; f(Z)|a)(l”_1Z)|oo

=o(v)- f(Z)ri(m72)|(U(Z)|oo

SR

=r". o) (2)|o(2)]00s
S1r
where we have used (23) on the fifth equality. This proves o (rv) = r>~" . (v). The second
formula can be proved in a similar fashion. O

5 The main theorem

To prove the functional equation of twisted zeta functions, we quote a result of Stark [28].
Let Y be a non-degenerate half-integral symmetric matrix of degree m. Let D = det(2Y)
and N be the level of 2Y. We define a half-integral symmetric matrix ¥ by

- 1.,
Y = -NY L,
4

31
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We define the quadratic form P(v) on V by P(v) = Y [v] = fvYv, and the quadratic form

-~

P(v*) on V* by
P(v*) = Y[v*] = NP*(v*), (61)

where P* is defined by (19). For this P, we define the measure M *(ﬁ; n) of representation
by

M PiEn) = Y ). (62)
vFeSO(Y)z\ViNVy,
P(v*)==n

For an odd prime r with (r, N) = 1 and a Dirichlet character ¢ of modulus », we define
the function ¢y, p(v) on Vg by

Gy,p(v) = Ty (P(V)) - do(v),
where 7y, (P(v)) is the Gauss sum defined by (9), and ¢o(v) is the characteristic function of

Z'™ 1t is easy to see that ¢y, p(v) is a Schwartz-Bruhat function on Vig. We define a field K
by

«_ |QW=D"PD) (m=0 (mod 2)
Q(v21DI) (m=1 (mod 2))
and xx be the Kronecker symbol associated to K. (If K = Q, we regard xx as the principal

character.) Furthermore, we define a Dirichlet character ¥* mod r by
K\
vr(k) = ¥ (k) (;) ,
and put
1 (m=0 (mod 2))
C2p7m,r = 2p—m
&y (m=1 (mod 2))

as (13). Then the following lemma follows from Stark [28, Lemmas 5 and 6].

Lemma 12 Let @}(V*) be the Fourier transform of ¢y, p defined by (29). Then the support
ofqb/&»(v*) is contained in r 7", and for v* € 7", we have

Gy () = "2y (r) - Coppr - YH(=N) - Ty (P(V)).

Let ¢ = ¢ in the normalized zeta function Ei(¢;s) of (54). For v € V. N Vz, we have
P(v) =enforsomen =1,2,3,...,and hence Ei(qbo; s) can be transformed as

Celgois) = D] 72 - e3P gy (¢o;s + % - 1)

—|D|"} . T 3 —“(:)m :
P
veSO(Y)z\VenVy, IP)I >

o0

e R LR S D SENUY P

n=1 | veSO(Y)z\V+NVyz
P(v)==+n

_ >, a(+n)
_Z P

n=1
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where a(+n) (n =1,2,3,...) is defined by

a(En) = |D|_% T 1Y Z wu(v)
veSO(Y)z\VLNVy
P(v)==%n
— D72 - T =5 (P i), (63)

where M(P; n) is the measure of representation defined as (39). Further, by plugging
¢y,p(v) = Ty (P(V)) - ¢o(v) in (54), we have

3 Ty (P(V))u(v)

= 1 i
Ca(dy,p;s) = |D| "2 . e'a Cr—m) oy (PE)RY)
' |P(v)st2 1

veSO(Y)z\VLNVy

>, 1y (£n)a(£n)
_ Yy e ?

nS

n=1

On the other hand, let ¢ = ¢ in the normalized zeta function E,;"(a; s) of (55). Since
q/bB = ¢o, we have

Ti(Gois) =N~ ¢5 (ois+ 5 — 1)

2
— N—5. Z wr(v*)
- P (v [+ E T
v¥eSO(Y)z\Vinvy
m_ wr(v*)
RN

s () |S+ 5 -1
resomviny, INPF)PT2

By the definition (61), we have ﬁ(v*) = NP*(v*) € Z \ {0} for v* € V} N Vz and hence

oo
Ei(fl%;s) =NZ71. Z Z W) as—5-1
n=1 | v*eSO(Y)z\ViNVz
ﬁ(v*)::ﬁ:n
_ o b(En)
- Z ns 4

n=1

where b(£n) (n =1,2,3,...) is defined by

v* ESO(Y)Z\Vj:ﬁVZ
P(v¥)=%n

31
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where M*(ﬁ; n) is defined as (62). Finally, let ¢ = ¢y,p(v) = 1y (P(v)) - ¢o(v) in (55). It
then follows from Lemmas 11 (1) and 12, and also ﬁ(r_lv*) =r2. ﬁ(v*) that

@)(r_lv*)//,*(r_lv*)
>

~ —
s) = 5
&, (Py,p3 9) NP1y B

Vv*eSO(Y)z\ViNVy

=NZ V2 (r) - Copr - UF(—N)

R T S 2 G T
. . [Pyt
v ESO(Y)7\ViﬂV7
tw*(:l:n)b(:tn)

T2 2y (r) - Copmr - Y*(=N) - Z

n=1
We thus obtain the first assertion of the following

Lemma 13 Forn =1,2,3,..., we define a(+n) and b(+n) by (63) and (64) respectively,
and let

Cel@is) =) a(fn)’ (@, yss) =) M,

S ns
n=1 n=1
. b(+ . 7y (£n)b(:
b = Y POy = 3 R,
n=1 n=1

(1) We have

Ci(¢oss) = ¢ (ass),
Ca(py,pis) = cx(a, ¥59),
£ (0;8) = tx(b;s),
CHbypss) = T2 72 xc(r) - Copemr - WH(=N) - S (b, Y%35).

(2) On residues and special values of zeta functions, the following four relations hold:

£ (@ ¥30) + £ 50) = 7y (0) - (£4(2;0) + ¢ (2;0)), (65)
r% KK () - Copomr - ¥ (=N) - Res ca(b, y755) = 7y (O) Resza(bis),  (66)
£ (b, Y%50) + £ (b, 750) = 1y+(0) - (£4.(030) + ¢ (b50)), (67)
ljzels a(@y;s) =172 - xx(r) - Copmyr - W*(=N) - Ezels s+(a;s). (68)

(3) Assume that at least one of m or p is an odd integer. Let . = 7 and take an inte-
ger L with £ = 2p — m (mod 4). Then ¢+(a;s) and {4 (b;s) satisfy the assumptions
[A1]-[A4] of Sect. 1, and further, ¢+ (a, V;s) and {4+ (b, W*; s) satisfy the assumptions
[Al1],y—[AS])y of Sect. 1.

Proof (2) By letting ¢ = ¢ in (59), we have

— (@0 +¢-(@0) = D] F@ . N 5(), (69)
VESO(Y)Z\SLZ



K. Sugiyama Res. Number Theory (2024) 10:31

and by letting ¢ = ¢y, p in (59), we have

— (@0 L@ ys0) = D2 T ) Y o)
veSO(Y)z\S1,z

= —14(0) - (¢4(a;0) + ¢ (a;0)),
which proves (65). By (55) and Theorem 1 (3), we have
Res ¢+ (b;s) = Res Ei (b0; 3)
s=1 s=1
-~ m
_ —S . * . .
=Reg (V<2 (s + 5 — 1))
=N"1. Res ;j‘t(q%;s)
=7
=N"! d'g
SO(Y)r/SO(Y)z
and we thus obtain
Res ¢4 (b;s) = N1 dlg (70)
s=1 SO(Y)r/SO(Y)z
Let us consider the residues at s = 1 of the both sides of
Sy pss) = T2 724k (r) - Copmr - Y*(=N) - C(b, Y %3).
The residue at s = 1 of the left hand side is

ResZL(y,pis) = N ™" - by, p(0) d'g = 7(0) Res £ (b; ),

SO(Y)r/SO(Y)z
and that of the right hand side is

E:els {I'ZSJF%*ZXK(;”) : C2p7m,r : W*(—N) - Z+(b, lﬁ*;s)}

() - Copmyr - ¥ (=N) - Res z(b, %)

=r
by which we obtain (66). Next let ¢ = ¢y in the relation (60). Then we have

(@0 + - (b;0)= Y o). (71)

v*eSO(Y)z\S} 5

By letting ¢ = ¢y, p in (60) and using Lemmas 12 and 11 (2), we have

— 82 (1) - Copmr  WH(=N) - (22 (b, ¥*50) + £_(b, ¥*;0))
= Y Gl
v*eSO(Y)z\ST =r"=2.g%(v*)
=) Copomr  WHEN) 10N 00
V*eSO(Y)z\St,,

23k (1) - Coppr - WH(=N) - 7y+(0) (¢4 (b; 0) + ¢ (b 0)),

m
2

= —r

and this proves

&4 (b, ¥50) + (b, ¥ 0) = 79+ (0) - (¢4-(b; 0) + £—(b;0)),

Page 31 of 38
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which is the relation (67). By (54) and Theorem 1 (3), we have
Res 7. (a;s) = Res T (do; s)
s=1 s=1
_ =3 JH@p-m) oM
= Res (ID|72 - ¢ e (gois+ 2~ 1))

= |D|7% - ¥ 2~ . Res £ (¢h; )
=4

= |D|_% .e%i(Zp—M)/ dlg,
SO(Y)r/SO(Y)z

and we thus obtain

Resca(ais) = DI 4 e¥ 00 | d'g 72)
s=1 SO(Y)r/SO(Y)z,

Furthermore, it follows from Lemma 12 that the residue of ¢4 (a, ¥;s) = Zi(dw,p;s) at
s = 1lis given by

Res ¢+ (a, ¥;5)=|D| "% - e 2P~ . 4.75(0) d'g
s=1 SO(Y)r/SO(Y),

=ID|72 - %P = (1) - Copar - H(=N) d'g
SO(Y)r/SO(Y)z
=1~ 7 xx(r) - Copmr - ¥*(=N) - Res £+(a;s),

by which we obtain the relation (68).
(3) By Theorem 1 (1), (3), we see that our zeta functions satisfy the assumptions [A1],
[A1],y,[A2],and [A2],,y . The functional equation of [A3] is nothing but the equation (56)
with ¢ = ¢o. Let ¢ = ¢y p in (56); then the first assertion of the lemma implies that
@m) Ty () (ma’ ‘/"3))
¢—(a, ;)

= XKk () - Copmr - YH(=N) 72 2 (Ny2)?7 27
4P (227
- (2m)~ =% (2 . S)

b; *; 2 -
ser-my (2= 3 - (SRR 27,
2 i~ (by*2-4% —5)
which shows that the functional equation of [A3],,; holds. Lemma 9 implies that our

zeta functions satisfy the assumptions [A4] and [A4],,y . Finally, the compatibility condi-
tion [A5],,y on residues and special values follows from (65), (66), (67) and (68). O

In general, SO(Y)7z\S1,z is always an infinite set, since for v € S} 7, any two of v, 2v, 3y, . ..
can not lie in the same SO(Y')z-orbit. However, as is seen in the following lemma that is
taken from [11, pp.188-189], the number of SO(Y)z-orbits in primitive vectors in Sy 7
and SiZ is finite.

Lemma 14 (1) We call a vectorv = (v, ..., Vi) € Vz primitive if the greatest common
divisor of vy, ..., vy is 1. Then

{v € SO(Y)z\S1z; vis primitive}
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is a finite set. Let ay, . . ., ay, be a complete system of representatives of this set. Then
we have

h
Y. oW=tm=-2)) o)
i=1

veSO(Y)z\S1,z

(2) Letby, ..., by be a complete system of the finite set

v* e SO(Y)Z\SiZ; v* is primitive}.

Then we have

k
Y. W) =5m=2)) 0¥ b
veSO(Y)z\Si 4, i=1

Now we are in a position to state

Theorem 2 Assume that at least one of m or p is an odd integer. Take an integer £ with
£ =2p —m (mod 4). Define C*®°-functions F(z) and G(z) on 'H by

| d'g
SO(Y)r/SO(Y)z

h _m m
1) O/ g — ) Y ola) Cr27 T (3 -1) i

. y
Dz T (2T (25

o0 m _m
M(P;n 4. |n|"a
o3 oo, MBA) 7%

¢
: _EWsnn m 4 )
o DJE  (tsmntat) V7 Wity (Am nlyelns]
n#0 4
G(z) = NT. |D|7787(2p m).y(m—ﬁ)/ﬁl_/ dlg

SO(Y)r/SO(Y)z
k

¢ im @m)2' 22 1)
+iTINY e (m—2)) o*(by) 2
27 )y T ()

m
ad T

Py ('NJ) M) —

¢
L 74
m-+sgn(n)l y Lnin)e,%*
n=—0o0 F 4

.y 1—(m+0)/4

i (47 |nly)elnz].

1
2

Then, F(z) (resp. G(z)) is a Maass form for T'g(N) of weight £ /2 with eigenvalue (m — €)(4 —

— {)/16 and character xx (resp. xxy). Here we denote by xx and xr, the Kronecker
characters associated to the fields

K- QKW (=1)"2D) (m=0 (mod 2))
Q(v/21D]) m=1 (mod?2)

and
Ko — QKW/(=1)y"/2D) (m=0 (mod 2))
Q(+/2|DIN) (m=1

respectively. Further we have

_1 —t2 _
F ( NZ) (v/Nz)~t* = G(z).

(mod 2))

Proof We apply the converse theorem (Lemma 1) to the normalized zeta func-

tions ¢+(a;s) and ¢4 (b;s) of Lemma 13. It remains to calculate the constant terms

31
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a(0), a(00), b(0), b(co) along with the definitions (5), (6), (7), (8). First, by (69) and
Lemma 14 (1), we have

a(0) = — (¢+(2;0) + ¢ (@;0)
, I
= D72 e ¥t (n—2) Y o (a).
i=1

Second, by (70), we have

a(oo0) = % <R_els sy (b;s) + Res z_(b; s))

— dlg.

/SO(Y)R/SO(Y)Z

Third, by (71) and Lemma 14 (2), we have
b(0) = — (£+(b; 0) + ¢—(b; 0))

k
={(m=2)) o*(bi).
i=1

Finally, by (72), we have

—

b(o0) = 17 (Ijzels &+(a;s) + Res ¢ (a; s))

=it |D|_%e%(2p_m)/ d'g
SO(Y)r/SO(Y)z

= |D|_%e_%i(2p_m)/ dlg
SO(Y)r/SO(Y)z

[}

Remark 4 One can verify that our M(P;n) is identical to M(GS, a,¢) (a = 0), which is
defined as the formula (14) of Siegel [26]. Moreover, up to a power of y, our F(z) coincides
with the integral |, rfa(zP)dv (a = 0) of the indefinite theta series fy(z, ) over some
fundamental domain F. See Siegel [26, Hilfssatz 4], [27] for the detail. We also note that
Funke [4] calculated the Mellin transform of some indefinite theta series and obtained
Siegel’s zeta functions associated with ternary zero forms.

6 Holomorphic modular forms arising from Siegel’s zeta functions

Under some conditions, the y -matrix in Siegel’s functional equation (46) can be an upper
or lower triangular matrix. In such a case, we obtain a single functional equation. More
precisely,

e Assume that the number of negative eigenvalues of Y is even; that is, m — p is an even
integer. Then the first row of (46) is of the following form:

‘. (¢;§ - s) —T (s r1- %) T(s)|D|? - 27 2+% . g 2+5-1

X sin 7w (‘g - s) fo (&;5).
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This suggests that {1 (¢;s) and ¢} (¢; s) satisfy the functional equation of Hecke type.
o Assume that the number of positive eigenvalues of Y is even; that is, p is an even integer.
Then the second row of (46) is of the following form:

I (¢;§ —s) -r (s+1—§) F(s)|D|? - 272+5 g 2+5 -1

X sin 7w <m2—p —S) (f@;s).

This suggests that {_(¢;s) and ¢*(¢; s) satisfy the functional equation of Hecke type.
In the following, we assume that m — p is even; if p is even, we replace P with —P. We
introduce Dirichlet series L(M;s) and L(M*;s) as follows:

L(M;g):Z“(':) with  a(n) := |D|~Y2 . M(P; n), 73)
n=1 n
o~ b(n) m  m ~
LM*s) =Y —— with b(n):=(-1)"1 -N% M*P;n). (74)
n=1 n
Further, we put
An(s; M) = (2—”)_S T(s) - L(M; s)
NS = \/ﬁ yS)
An(ss M*) = (%) -T(s) - L(M*; ),
and
m—p m m
0=(-1)"z @2r) 2 -T (= d'g, 5
al0) = ()" @m) % 1 (2) fs oo, 48 (75)
m m m m
b0)=i"2-2n) 2 -T(=)N%|D|"V? dlg 6
O=1 ) <2> P /sowm/somz § 76

Then Theorem 1 implies that the following lemma holds:

Lemma 15 Assume that m — p is even. Both An(s; M) and An(s; M*) can be continued
analytically to the whole s-plane, satisfy the functional equation

m m
AN(; M) =i2 Ay (E —S;M*>,

and the function
0) % b0
An(s; M) + ? + lmA

7—5

is holomorphic on the whole s-plane and bounded on any vertical strip.

Let r be an odd prime with (N, r) = 1. We denote by ¢ = (%) the Dirichlet character
defined by the quadratic residue symbol. For a primitive Dirichlet character ¢ mod r, we
define Dirichlet series L(M;s, ¥) and L(M*;s, ¥) by
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LMisy) =Y W
n=1
rz Z(:)ds) - Z b}(qr:) ifmisoddand ¢y = ¢ = (;)
LM*;s, ) = 3 =1 , n=1
X_; w otherwise,

where a(n) and b(n) are defined by (73) and (74), respectively. Furthermore, we set

AN(s M, ) = <%> -T'(s) - L(M; s, ),

AN(s;M™ ¢) = <%> -T(s) - LM*;5, ).

Then, by using Lemma 12, the formulas (10) and (11), we can prove the following
Lemma 16 Assume that m — p is even.

(1) Inthe case of even m, for any primitive Dirichlet character  mod r, An(s; M, V) can
be holomorphically continued to the whole s-plane, bounded on any vertical strip,
and satisfies the following functional equation

AN(s; M, ) = i2 Cy Ay (% —s;M*, J)
with the constant

Cy = xx ()Y (=N)zy /75

(2) In the case of odd m, for any primitive Dirichlet character v mod r with  # ¢ =
(é), AN(s; M, ) can be holomorphically continued to the whole s-plane, bounded on
any vertical strip, and satisfies the following functional equation

MM y) =3 CP Ay (5 — M7 Tp)

with the constant

N N
c = (;) Xk (r) (7> V(=N Ty /Ty

(3) In the case that m is odd and v = ¢ = (f),

r

(}”1/2 _ }"_1/2)19(0)
AN, ) + C) i —
2

can be holomorphically continued to the whole s-plane, bounded on any vertical strip,
and satisfies the following functional equation

An(s M, @) = i CP Ay (% — s M, w)

with the constant

N
C](//Z) = (;) - xx (7).
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These lemmas show that Weil’s converse theorems for holomorphic modular forms can
apply to L(M; s) and L(M*; s). We refer to Miyake [15, Theorem 4.3.15] for Weil’s converse
theorem for the case of integral weight. For the case of half-integral weight, Shimura [22]
stated a similar converse theorem. Although the details were not given in [22], the proof
is roughly identical to the case of integral weight, and can be found in Bruinier [1]. We
therefore obtain the following

Theorem 3 Assume that m — p is even. We define holomorphic functions F(z) and G(z)
on'H by

F@ = (0" a0 (5) | d'g
27 Jso)r/so(y);

+1DI7Y2- Y M(P; m)elnz)

n=1

G =i%.@7)%.T (T)N% DRE dlg
2 SO(Y)r/SO(Y)z,

+ (=) .N%. 3 M*(B;nyelnz).

n=1

Then, F(z) (resp. G(z)) is a holomorphic modular form for To(N) of weight m/2 with
character xx (resp. xxy ). Further we have

F (—é) (v/Nz)™"? = G(2).

Remark 5 1If p is even, we can prove the same assertion for M (P; —n). Theorem 2 excludes
the case where both m and p are even, but Theorem 3 shows that both ¢ and ¢_ corre-
spond to holomorphic modular forms in this case.
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