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Abstract

Siegel defined zeta functions associated with indefinite quadratic forms, and proved
their analytic properties such as analytic continuations and functional equations.
Coefficients of these zeta functions are called measures of representations, and play an
important role in the arithmetic theory of quadratic forms. In a 1938 paper, Siegel made
a comment to the effect that the modularity of his zeta functions would be proved with
the help of a suitable converse theorem. In the present paper, we accomplish Siegel’s
original plan by using a Weil-type converse theorem for Maass forms, which has
appeared recently. It is also shown that “half” of Siegel’s zeta functions correspond to
holomorphic modular forms.
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Introduction
In 1903, Epstein [3] defined the zeta function ζ0(s) associated with a positive definite
symmetric matrix S of degreem by

ζ0(s) =
∑

a∈Zm\{0}

1
S[a]s

(S[a] = taSa),

and studied their analytic properties such as analytic continuations and functional equa-
tions. (For a modern treatment of Epstein’s zeta functions, we refer to Terras [31, §1.4.2].)
In a 1938 paper [23], Siegel defined and investigated the zeta functions associated with
quadratic forms of signature (1, m− 1), and in a 1939 paper [24], those for general indefi-
nite quadratic forms. Although Siegel’s calculations were rather involved, Siegel’s results
are now well understood in the framework of the theory of prehomogeneous vector
spaces. Let Y be a non-degenerate half-integral symmetric matrix of degree m with p
positive eigenvalues and m − p negative eigenvalues (0 < p < m). Let SO(Y ) be the
special orthogonal group of Y and denote by SO(Y )Z its arithmetic subgroup. We put
V± = {v ∈ R

m ; sgnY [v] = ±}. Then Siegel’s zeta functions are Dirichlet series associated
with the prehomogeneous vector space (GL1(C) × SO(Y ), Cm), and are defined by

ζ±(s) =
∑

v∈SO(Y )Z\(Zm∩V±)

μ(v)
|Y [v]|s ,

where the sum runs over a complete set of representatives of SO(Y )Z\(Zm∩V±), andμ(v)
is a certain volume of the fundamental domain related to the isotropy subgroup SO(Y )v
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of SO(Y ) at v. In the positive definite case, themodularity of Epstein’s zeta function ζ0(s)
is almost obvious; ζ0(s) is obtained by taking the Mellin transform of (the restriction to
the imaginary axis of) the theta series

θ (S, z) =
∑

a∈Zm

eπ iS[a]z (z = x + iy ∈ C, y > 0),

which is a modular form for a subgroup of SL2(Z). (cf. Miyake [15, §4.9], Terras [31,
§3.4.4].) On the contrary, it is not clear from the definition whether or not Siegel’s zeta
function arises as an integral transform of some infinite series with modular properties.
Rather, in the preface to a 1938 paper [23], Siegel wrote that such theta series would be
constucted from his zeta functions, citing the work of Hecke [7], in which Hecke derived
the transformation formula for the theta series associated with indefinite binary quadratic
forms from the functional equation of zeta functions of real quadratic fields. Furthermore,
Siegel made the following remark in the last section of [23]:

Will man die Transformationstheorie von f (S, x) für beliebige Modulsubstitutio-
nen entwickeln, so hat man außer ζ1(S, s) auch analog gebildete Zetafunktionen mit
Restklassen-Chrakteren zu untersuchen. Die zum Beweise der Sätze 1, 2,3 führenden
Überlegungen lassen sich ohne wesentiche Schwierigkeit auf den allgemeinen Fall
übertragen. Vermöge der Mellinschen Transformation erhält man dann das wichtige
Resultat, daß die durch (53) definierte Funktion f (S, x) eine Modulform der Dimen-
sion n

2 und der Stufe 2D ist; dabei wird vorausgesetzt, daß n ungerade und x′Sx keine
ternäre Nullform ist.

(A translation) If one wants to develop the transformation theory of f (S, x) for arbi-
trarymodular substitutions, then in addition to ζ1(S, s) one also has to investigate zeta
functions formed analogously with residual class characters. The considerations lead-
ing to the proof of Theorems 1, 2, 3 can be transferred to the general case without any
major difficulty. By virtue of the (inverse) Mellin transformation, one then obtains an
important result that the function f (S, x) defined by (53) is a modular form of weight
n
2 and level 2D, provided that n is odd and x′Sx is not a ternary zero form.

As of 1938, Siegel seemed to have noticed the possibility that by considering the twists
of zeta functions by Dirichlet characters, one can prove modularity for congruence sub-
groups. In the holomorphic case, this fact is known as Weil’s converse theorem [34]. It
was 1967 when Weil’s paper [34] appeared! Revisiting Siegel’s prediction in the light of
recent developments is one motivation for the present study.
We should note that in the quotation above, Siegel mentioned the parity of n, the

number of variables of quadratic forms. This is related to the fact that the concept of non-
holomorphic modular forms was not yet in place at that time. In a celebrated paper [12],
Maaß introduced the notion of the so-called Maass forms and established a Hecke cor-
respondence for Maass forms. Further, in [13], as its application of his theorem, Maaß
proved that in a very special case (when Y is diagonal of even degree with det Y = 1),
Siegel’s zeta functions can be expressed as the product of two standard Dirichlet series
such as the Riemann zeta function ζ (s) and the Dirichlet L-function L(s,χ ). On the other
hand, it is only recently that papers onWeil-type converse theorems forMaass forms have
emerged (cf. [16,17]). It would be a very natural idea for us to accomplish Siegel’s original
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plan to prove themodularity via converse theorem including the case of non-holomorphic
forms.
Siegel’s zeta functions are closely related to the so-called Siegel’s main theorem

(Siegelsche HauptSatz). In a 1951 paper [26], Siegel proved the transformation formula
for some theta series arising from indefinite quadratic forms, and the equality between
an integral of the indefinite theta series over fundamental domains and some Eisenstein
series (cf. [26, Satz 1]). It was shown in [26, Hilfssatz 4] that the coefficients

M(Y ;±n) =
∑

v∈SO(Y )Z\(Zm∩V±)
Y [v]=±n

μ(v) (n = 1, 2, 3, . . . )

of ζ±(s) coincide with the Fourier coefficients of the non-holomorphic modular forms
appearing in Siegel’s formula. Here we ignore the differences in the definitions of μ(v);
the definitions of measures are different for each of the papers [23,24,26]. Siegel called
M(Y ; n) the measures of representations (Darstellungsmaß). The measure M(Y ; n) of
representations is an analogue of the representation number

r(S; n) = �{a ∈ Z
m ; S[a] = n}

for a positive symmetric matrix S, and Siegel’s formula can be reformulated as an arith-
metic identity that M(Y, n) is equal to the product of local representation densities over
all primes. Weil [33] generalized Siegel’s result by using the language of adeles, and it is
the Siegel-Weil formula—a cornerstone in the modern number theory.
Now we explain the main results of the present paper. First, along the Sato-Shintani

theory [21] of prehomogeneous vector spaces, we define Siegel’s zeta functions and prove
their analytic properties. Here, to treat twisted zeta functions aswell as the original Siegel’s
zeta functions, we first consider Siegel’s zeta functions with congruence conditions, which
are defined using Schwartz-Bruhat functions on Q

m. This idea is due to Sato [20]. Then
the converse theorem in [16] is applied to the zeta functions, and the following result is
obtained:

Main result 1 (Theorem 2) Letm ≥ 5. Assume that at least one ofm or p is an odd integer.
Take an integer � with � ≡ 2p − m (mod 4), and put D = det(2Y ). Let N be the level of
2Y . Define C∞-function F (z) = F (x + iy) on the Poincaré upper half-planeH by

F (z) = y(m−�)/4 ·
∫

SO(Y )R/SO(Y )Z
d1g + α(0) · y1−(m+�)/4

+
∞∑

n=−∞
n �=0

(−1)(2p−m−�)/4 · M(Y ; n)
|D| 12

π
m
4 · |n|−m

4

	
(
m+sgn(n)�

4

) · y− �
4W sgn(n)�

4 , m4 − 1
2
(4π |n|y)e[nx],

where d1g is a suitably normalized Haar measure on SO(Y )R, α(0) is some constant deter-
mined by the residues of ζ±(s), and Wμ,ν(y) denotes the Whittaker function. Then, F (z) is
a Maass form of weight �/2 with respect to the congruence subgroup 	0(N ).

The above formula can be compared with Siegel’s calculation [26, Hilfssatz 4] of the
Fourier expansions of non-holomorphic modular forms. Our F (z) is essentially the same
as the modular form given by Siegel [26]. See Remark 4. The theorem above excludes the
case where bothm and p are even. Our second result states that if one ofm− p and p are
even, we can construct holomorphic modular forms fromM(Y ;±n).



31 Page 4 of 38 K. Sugiyama Res. Number Theory (2024) 10:31

Main result 2 (Theorem3)Letm ≥ 5. Assume thatm−p is even.Wedefineaholomorphic
function F (z) onH by

F (z) = (−1)
m−p
2 (2π )−

m
2 · 	

(m
2

) ∫

SO(Y )R/SO(Y )Z
d1g

+ |D|−1/2 ·
∞∑

n=1
M(Y ; n)e[nz].

Then, F (z) is a holomorphic modular form of weight m/2 with respect to 	0(N ). (In the
case that p is even, we can construct holomorphic modular forms from M(Y ;−n) (n =
1, 2, 3, . . . ).)

The theorem above is consistent with a result of Siegel that was published in a 1948
paper [25]. In this paper, Siegel calculated the action of certain differential operators
on indefinite theta series, and proved that in the case of det Y > 0, we can construct
holomorphic modular forms from indefinite theta series associated with Y .
Before closing Introduction, we give some remarks on related researches, future prob-

lems, and possible applications. Special values of Siegel’s zeta functions associated with
Y of signature (1, m − 1) appear in the dimension formula for automorphic forms on
orthogonal groups of signature (2, m) (cf. Ibukiyama [8]), and it is important to investi-
gate their arithmetic aspects. Ibukiyama [9] proved an explicit formula expressing Siegel
zeta functions (with m even) as linear combinations of products of two shifted Dirich-
let L-functions and certain elementary factors. His proof is given by direct calculations
using Siegel’s main theorem in [26] and not by converse theorems. Ibukiyama’s explicit
formula is quite general and includes the above-mentioned result of Maaß [13]. We also
mention the work [6] of Hafner-Walling, in which they carried out extensive calculations
to make Siegel’s formula more explicit in terms of standard Eisenstein series. This work is
also restricted to the case where m is even. It is worthwhile to investigate the case where
m is odd. Finally, in a good situation, the method of converse theorems can be used to
prove lifting theorems. In [29], a Shintani-Katok-Sarnak type correspondence is derived
from analytic properties of a certain prehomogeneous zeta function whose coefficients
involve periods ofMaass cusp forms. In [14],Maaß studied a generalization of Siegel’s zeta
functions, which can be regarded as prehomogeneous zeta functions whose coefficients
involve periods of automorphic forms on orthogonal groups. It is quite probable that our
method can be applied to these zeta functions, and some lifting theorems will be obtained.
We hope to discuss this topic elsewhere.
The present paper is organized as follows. In Sect. 1, we recall a Weil-type converse

theorem for Maass forms, and in Sect. 2, we define our prehomogeneous vector spaces
andgive the local functional equations. Section 3 is devoted todefineSiegel’s zeta functions
with congruence conditions, and analytic properties of Siegel’s zeta functions are proved
in Sect. 4. We prove our main theorems in Sects. 5 and 6.
Notation.We denote by Z,Q,R, andC the ring of integers, the field of rational numbers,
the field of real numbers, and the field of complex numbers, respectively. The set of
non-zero real numbers and the set of positive real numbers are denoted by R× and R+,
respectively. The set of positive integers and the set of non-negative integers are denoted
by Z>0 and Z≥0, respectively. The real part and the imaginary part of a complex number s
are denoted by	(s) and
(s), respectively. For complex numbersα, zwithα �= 0,αz always
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stands for the principal value, namely,αz = exp((log |α|+i arg α)z) with−π < arg α ≤ π .
We use e[x] to denote exp(2π ix). The quadratic residue symbol

( ∗
∗
)
has the samemeaning

as in Shimura [22, p. 442]. For ameromorphic function f (s) with a pole at s = α, we denote
its residue at s = α by Res

s=α
f (s).

1 AWeil-type converse theorem for Maass forms
In this section, we define Maass forms on the Poincaré upper half-plane H = {z ∈
C | 
(z) > 0} of integral and half-integral weight, and recall aWeil-type converse theorem
for Maass forms that is proved in [16]. We refer to Cohen-Strömberg [2] for an overview
of the theory of Maass forms. Let 	 = SL2(Z) be the modular group, and for a positive
integer N , we denote by 	0(N ) the congruence subgroup defined by

	0(N ) =
{(

a b
c d

)
∈ 	

∣∣∣∣∣ c ≡ 0 (mod N )
}
.

As usual, 	 acts onH by the linear fractional transformation

gz = az + b
cz + d

for g =
(
a b
c d

)
∈ 	.

We put j(γ , z) = cz + d, and define θ (z) and J (γ , z) by

θ (z) =
∞∑

n=−∞
exp(2π in2z), J (γ , z) = θ (γ z)

θ (z)
.

Then it is well-known that

J (γ , z) = ε−1
d ·

( c
d

)
· (cz + d)1/2 for γ =

(
a b
c d

)
∈ 	0(4),

where

εd =
⎧
⎨

⎩
1 (d ≡ 1 (mod 4)),

i (d ≡ 3 (mod 4)).
(1)

For an integer �, the hyperbolic Laplacian �/2 of weight �/2 onH is defined by

�/2 = −y2
(

∂2

∂x2
+ ∂2

∂y2

)
+ i�y

2

(
∂

∂x
+ i

∂

∂y

)
(z = x + iy ∈ H). (2)

Let χ be a Dirichlet character mod N . Then we use the same symbol χ to denote the
character of 	0(N ) defined by

χ (γ ) = χ (d) for γ =
(
a b
c d

)
∈ 	0(N ). (3)

Definition 1 (Maass forms) Let � ∈ Z, and N be a positive integer, with 4|N when � is
odd. A complex-valuedC∞-function F (z) onH is called aMaass form for	0(N ) of weight
�/2 with character χ , if the following three conditions are satisfied;

(i) for every γ ∈ 	0(N ),

F (γ z) =
⎧
⎨

⎩
χ (γ )j(γ , z)�/2 · F (z) (� is even)

χ (γ )J (γ , z)� · F (z) (� is odd)
,
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(ii) �/2F = � · F with some � ∈ C,
(iii) F is of moderate growth at every cusp, namely, for every A ∈ SL2(Z), there exist

positive constants C , K and ν depending on F and A such that

|F (Az)| · |j(A, z)|−�/2 < Cyν if y = 
(z) > K.

We call � the eigenvalue of F .

Let λ be a complex number with λ /∈ 1 − 1
2Z≥0. Let α = {α(n)}n∈Z\{0} and β =

{β(n)}n∈Z\{0} be complex sequences of polynomial growth. For α,β , we can define the
L-functions ξ±(α; s), ξ±(β ; s) and the completed L-functions �±(α; s),�±(β ; s) by

ξ±(α; s) =
∞∑

n=1

α(±n)
ns

, �±(α; s) = (2π )−s	(s)ξ±(α; s),

ξ±(β ; s) =
∞∑

n=1

β(±n)
ns

, �±(β ; s) = (2π )−s	(s)ξ±(β ; s).

In the following, for simplicity, we put

ξe(α; s) = ξ+(α; s) + ξ−(α; s), ξo(α; s) = ξ+(α; s) − ξ−(α; s).

Now we assume the following conditions [A1] – [A4]:

[A1] The L-functions ξ±(α; s), ξ±(β ; s) have meromorphic continuations to the whole
s-plane, and (s − 1)(s − 2 + 2λ)ξ±(α; s) and (s − 1)(s − 2 + 2λ)ξ±(α; s) are entire
functions, which are of finite order in any vertical strip.

Here a function f (s) on a vertical strip σ1 ≤ 	(s) ≤ σ2 (σ1, σ2 ∈ R, σ1 < σ2) is said to be
of finite order on the strip if there exist some positive constants A, B, ρ such that

|f (s)| < AeB|
(s)|ρ , σ1 ≤ 	(s) ≤ σ2.

[A2] The residues of ξ±(α; s) and ξ±(β ; s) at s = 1 satisfy

Res
s=1

ξ+(α; s) = Res
s=1

ξ−(α; s), Res
s=1

ξ+(β ; s) = Res
s=1

ξ−(β ; s).

[A3] The following functional equation holds:

γ (s)
(

�+(α; s)
�−(α; s)

)

= N 2−2λ−s · �(�) · γ (2 − 2λ − s)
(

�+(β ; 2 − 2λ − s)
�−(β ; 2 − 2λ − s)

)
,

where γ (s) and �(�) are defined by

γ (s) =
(
eπsi/2 e−πsi/2

e−πsi/2 eπsi/2

)
, �(�) =

(
0 i�

1 0

)
. (4)

[A4] If λ = q
2 (q ∈ Z≥0, q ≥ 4), then

ξ+(α;−k) + (−1)kξ−(α;−k) = 0 (k = 1, 2, . . . , q − 3).
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Under the assumptions [A1] – [A4], we define α(0), β(0), α(∞), β(∞) by

α(0) = −ξe(α; 0) (5)

α(∞) = N
2
Res
s=1

ξe(β ; s), (6)

β(0) = −ξe(β ; 0) (7)

β(∞) = i−�

2
Res
s=1

ξe(α; s), (8)

For an odd prime number r with (N, r) = 1 and a Dirichlet character ψ mod r, the
twisted L-functions ξ±(α,ψ ; s),�±(α,ψ ; s), ξ±(β ,ψ ; s),�±(β ,ψ ; s) are defined by

ξ±(α,ψ ; s) =
∞∑

n=1

α(±n)τψ (±n)
ns

, �±(α,ψ ; s) = (2π )−s	(s)ξ±(α,ψ ; s),

ξ±(β ,ψ ; s) =
∞∑

n=1

β(±n)τψ (±n)
ns

, �±(β ,ψ ; s) = (2π )−s	(s)ξ±(β ,ψ ; s),

where τψ (n) is the Gauss sum defined by

τψ (n) =
∑

m mod r
(m,r)=1

ψ(m)e2π imn/r . (9)

We put

τψ = τψ (1) =
∑

m mod r
(m,r)=1

ψ(m)e2π im/r

and denote by ψr,0 the principal character modulo r. Recall that the Gauss sums are
calculated as follows:

τψ (n) =
⎧
⎨

⎩
ψ(n)τψ (n �≡ 0 (mod r)),

0 (n ≡ 0 (mod r)),
if ψ �= ψr,0, (10)

τψr,0 (n) =
⎧
⎨

⎩
−1 (n �≡ 0 (mod r)),

r − 1 (n ≡ 0 (mod r)).
(11)

Let PN be a set of odd prime numbers not dividingN such that, for any positive integers
a, b coprime to each other, PN contains a prime number r of the form r = am + b for
some m ∈ Z>0. For an r ∈ PN , denote by Xr the set of all Dirichlet characters mod r
(including the principal character ψr,0). For ψ ∈ Xr , we define the Dirichlet character ψ∗

by

ψ∗(k) = ψ(k)
(
k
r

)�

. (12)

We put

C�,r =
⎧
⎨

⎩
1 (� is even),

ε�
r (� is odd).

(13)

(For the definition of εr , see (1).)
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In the following, we fix a Dirichlet character χ mod N that satisfies χ (−1) = i� (resp.
χ (−1) = 1) when � is even (resp. odd).
For an r ∈ PN and a ψ ∈ Xr , we consider the following conditions [A1]r,ψ – [A5]r,ψ on

ξ±(α,ψ ; s) and ξ±(β ,ψ∗; s).

[A1]r,ψ ξ±(α,ψ ; s), ξ±(β ,ψ∗; s) have meromorphic continuations to the whole s-plane,
and (s−1)(s−2+2λ)ξ±(α,ψ ; s), (s−1)(s−2+2λ)ξ±(β ,ψ∗; s) are entire functions,
which are of finite order in any vertical strip.

[A2]r,ψ The residues of ξ±(α,ψ ; s) and ξ±(β ,ψ∗; s) satisfy

Res
s=1

ξ+(α,ψ ; s) = Res
s=1

ξ−(α,ψ ; s), Res
s=1

ξ+(β ,ψ∗; s) = Res
s=1

ξ−(β ,ψ∗; s).

[A3]r,ψ �±(α,ψ ; s) and �±(β ,ψ∗; s) satisfy the following functional equation:

γ (s)
(

�+(α,ψ ; s)
�−(α,ψ ; s)

)
= χ (r) · C�,r · ψ∗(−N ) · r2λ−2 · (Nr2)2−2λ−s

· �(�) · γ (2 − 2λ − s)
(

�+ (β ,ψ∗; 2 − 2λ − s)
�− (β ,ψ∗; 2 − 2λ − s)

)
,

where γ (s) and �(�) are the same as (4) in [A3].
[A4]r,ψ If λ = q

2 (q ∈ Z≥0, q ≥ 4), then

ξ+(α,ψ ;−k) + (−1)kξ−(α,ψ ;−k) = 0 (k = 1, 2, . . . , q − 3).

[A5]r,ψ The following four relations between residues and special values hold:

• ξe(α,ψ ; 0) = τψ (0)ξe(α; 0).
• χ (r) · ψ∗(−N ) · C�,r · r2λRes

s=1
ξ±(β ,ψ∗; s) = τψ (0)Res

s=1
ξ±(β ; s).

• ξe(β ,ψ∗; 0) = τψ∗ (0)ξe(β ; 0).
• Res

s=1
ξ±(α,ψ ; s) = χ (r) · ψ∗(−N ) · C�,r · r−2λ · τψ∗ (0) · Res

s=1
ξ±(α; s).

Lemma 1 (ConverseTheorem)Weassume that ξ±(α; s)and ξ±(β ; s) satisfy the conditions
[A1] – [A4], and define α(0),α(∞),β(0),β(∞) by (5), (6), (7), (8), respectively. We assume
furthermore that, for any r ∈ PN and ψ ∈ Xr, ξ±(α,ψ ; s) and ξ±(β ,ψ∗; s) satisfy the
conditions [A1]r,ψ – [A5]r,ψ . Define the functions Fα(z) and Gβ (z) on the upper half plane
H by

Fα(z) = α(∞) · yλ−�/4 + α(0) · i−�/2 · (2π )2
1−2λ	(2λ − 1)

	
(
λ + �

4
)
	
(
λ − �

4
) · y1−λ−�/4

+
∞∑

n=−∞
n �=0

α(n) · i
−�/2 · πλ · |n|λ−1

	
(
λ + sgn(n)�

4

) · y−�/4 W sgn(n)�
4 ,λ− 1

2
(4π |n|y) · e[nx], (14)

Gβ (z) = Nλβ(∞) · yλ−�/4 + N 1−λβ(0) · i−�/2 · (2π )2
1−2λ	(2λ − 1)

	
(
λ + �

4
)
	
(
λ − �

4
) · y1−λ−�/4

+ N 1−λ
∞∑

n=−∞
n �=0

β(n) · i
−�/2 · πλ · |n|λ−1

	
(
λ + sgn(n)�

4

) · y−�/4 W sgn(n)�
4 ,λ− 1

2
(4π |n|y) · e[nx].

(15)
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Here Wμ,ν(x) denotes the Whittaker function. Then Fα(z) (resp. Gβ (z)) gives a Maass form
for 	0(N ) of weight �

2 with character χ (resp. χN,�), and eigenvalue (λ − �/4)(1− λ − �/4),
where

χN,�(d) = χ (d)
(
N
d

)�

. (16)

Moreover, we have

Fα

(
− 1
Nz

)
(
√
Nz)−�/2 = Gβ (z).

Remark 1 In [16], we proved the converse theorem under a weaker condition λ /∈ 1
2 −

1
2Z≥0. In the present paper, since the case of λ = 1 will not be treated, we assume
λ /∈ 1 − 1

2Z≥0, which simplifies the description of the converse theorem.

2 Prehomogeneous vector spaces
Let Y be a non-degenerate half-integral symmetric matrix of degree m, and let p be
the number of positive eigenvalues of Y . Throughout the present paper, we assume that
m ≥ 5 and p(m − p) > 0. We denote by SO(Y ) the special orthogonal group of Y
defined by SO(Y ) = {g ∈ SLm(C) | t gYg = Y }. We define the representation ρ of
G = GL1(C) × SO(Y ) on V = C

m by

ρ(g̃)v = ρ(t, g)v = tgv (g̃ = (t, g) ∈ G, v ∈ V ).

Let P(v) be the quadratic form on V defined by

P(v) = Y [v] = tvYv, (17)

where we use Siegel’s notation. Then, for g̃ = (t, g) ∈ G and v ∈ V , we have

P(ρ(g̃)v) = χ (t, g)P(v), with χ (t, g) = t2, (18)

and V − S is a single ρ(G)-orbit, where S is the zero set of P:

S = {v ∈ V | P(v) = 0}.
That is, (G, ρ, V ) is a reductive regular prehomogeneous vector space. (We refer to [11,21]
for the basics of the theory of prehomogeneous vector spaces.) We identify the dual space
V ∗ ofV withV itself via the inner product 〈v, v∗〉 = tvv∗. Then the dual triplet (G, ρ∗, V ∗)
is given by

ρ∗(g̃)v∗ = ρ∗(t, g)v∗ = t−1 · t g−1v∗ (g̃ = (t, g) ∈ G, v ∈ V ∗).

We define the quadratic form P∗(v∗) on V ∗ by

P∗(v∗) = 1
4
Y−1[v∗] = 1

4
· tv∗ Y−1v∗. (19)

Then, for g̃ = (t, g) ∈ G, v∗ ∈ V ∗, we have

P∗(ρ∗(g̃)v∗) = χ∗(t, g)P∗(v∗), with χ∗(t, g) = t−2, (20)
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and V − S∗ is a single ρ∗(G)-oribit, where S∗ is the zero set of P∗:

S∗ = {v∗ ∈ V ∗ |P∗(v∗) = 0}.
For ε, η = ±, we put

Vε = {v ∈ VR | sgnP(v) = ε}, V ∗
η = {v∗ ∈ VR | sgnP∗(v∗) = η}.

We denote by dv = dv1 · · · dvm the Lebesgue measure on VR, and by S(VR) the space of
rapidly decreasing functions on VR. Then, for f, f ∗ ∈ S(VR) and ε, η = ±, we define the
local zeta functions �ε(f ; s) and �∗

η(f ∗; s) by

�ε(f ; s) =
∫

Vε

f (v)|P(v)|s−m
2 dv, �∗

η(f ∗; s) =
∫

V ∗
η

f ∗(v∗)|P∗(v∗)|s−m
2 dv∗. (21)

For 	(s) > m
2 , the integrals �ε(f ; s) and �∗

η(f ∗; s) converge absolutely, and as functions
of s, they can be continued analytically to the whole s-plane as meromorphic functions.
Further, we define the Fourier transform f̂ (v∗) of f ∈ S(VR) by

f̂ (v∗) =
∫

VR

f (v)e[〈v, v∗〉]dv.

The following lemma is due to Gelfand-Shilov [5]; a detailed proof is given in Kimura [11,
§ 4.2].

Lemma 2 (Local Functional Equation) Let p be the number of positive eigenvalues of Y ,
and put D = det(2Y ). Then the following functional equation holds:

(
�∗+ (̂f ; s)
�∗− (̂f ; s)

)
= 	

(
s + 1 − m

2

)
	(s)|D| 12 · 2−2s+m

2 · π−2s+m
2 −1

×
(
sin π

( p
2 − s

)
sin πp

2
sin π (m−p)

2 sin π
(
m−p
2 − s

)
)(

�+
(
f ; m2 − s

)

�−
(
f ; m2 − s

)
)
.

In the rest of this section, we investigate singular distributions whose supports are
contained in the real points SR of S; these distributions play an important role in the
calculation of residues of Siegel’s zeta functions. We decompose SR as

SR = S1,R ∪ S2,R, S1,R = {v ∈ VR | P(v) = 0, v �= 0}, S2,R = {0}.
A measure on SR that is SO(Y )R-invariant is constructed as follows. Since P(v) is a non-
degenerate quadratic forms, we have

S1,R =
m⋃

i=1
Ui, Ui =

{
v ∈ S1,R

∣∣∣∣
∂

∂vi
P(v) �= 0

}
.

For i = 1, . . . , m, we define an (m − 1)-dimensional differential form ωi on Ui by

ωi = (−1)i−1
(

∂

∂vi
P(v)

)−1
dv1 ∧ · · · ∧ dvi−1 ∧ dvi+1 ∧ · · · ∧ dvm. (22)

It is easy to see that there exists an (m − 1)-dimensional differential form ω on SR that
satisfies

ω|Ui = ωi (i = 1, . . . , m)



K. Sugiyama Res. Number Theory (2024) 10:31 Page 11 of 38 31

and

dP(v) ∧ ω = dv (= dv1 ∧ · · · ∧ dvm).

Since P(gv) = P(v) for g ∈ SO(Y )R, we have

dv = dP(v) ∧ ω(v) = dP(v) ∧ ω(gv).

Further, ω(tv) = tm−2ω(v) for t > 0. Now let |ω(v)|∞ denote the measure on S1,R defined
by ω. Then we have

|ω(ρ(t, g)v)|∞ = |χ (t, g)|m2 −1 · |ω(v)|∞ (23)

for g ∈ SO(Y )R and t > 0. Similary, for the zero set S∗ of P∗, we decompose the real
points S∗

R
as

S∗
R

= S∗
1,R ∪ S∗

2,R, S∗
1,R = {v∗ ∈ VR | P∗(v∗) = 0, v∗ �= 0}, S∗

2,R = {0}.
The same argument as above ensures the existence of an (m− 1)-dimensional differential
form ω∗ on S∗

1,R such that the restriction of ω∗ on

U∗
i =

{
v∗ ∈ S∗

1,R

∣∣∣∣
∂

∂v∗
i
P∗(v∗) �= 0

}
(i = 1, . . . , m)

is given by

ω∗|U∗
i

= (−1)i−1
(

∂

∂v∗
i
P∗(v∗)

)−1
dv∗

1 ∧ · · · ∧ dv∗
i−1 ∧ dv∗

i+1 ∧ · · · ∧ dv∗
m.

We have

|ω∗(ρ∗(t, g)v∗)|∞ = |χ (t, g)|1−m
2 · |ω∗(v∗)|∞ (24)

for g ∈ SO(Y )R and t > 0, where |ω∗|∞ denotes the measure on S∗
1,R defined by ω∗. We

refer to [5, Chap. III] for further details on the measures |ω|∞, |ω∗|∞. Then we have the
following

Lemma 3 (1) If f ∈ C∞
0 (VR − SR), then we have

∫

S∗
1,R

f̂ (v∗)|ω∗(v∗)|∞ = 	
(m
2

− 1
)

|D| 12 · 22−m
2 · π1−m

2

×
(
sin

π

2
(m − p) sin

πp
2

)
⎛

⎜⎜⎝

∫

V+
f (v)|P(v)|1−m

2 dv
∫

V−
f (v)|P(v)|1−m

2 dv

⎞

⎟⎟⎠ .

(2) If f̂ ∈ C∞
0 (VR − S∗

R
), then we have

∫

S1,R
f (v)|ω(v)|∞ = 	

(m
2

− 1
)

|D|− 1
2 · 22−m

2 · π1−m
2

×
(
sin

π

2
(m − p) sin

πp
2

)
⎛

⎜⎜⎝

∫

V ∗+
f̂ (v∗)|P∗(v∗)|1−m

2 dv∗
∫

V ∗−
f̂ (v∗)|P∗(v∗)|1−m

2 dv∗

⎞

⎟⎟⎠ .
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This is stated,without proof, on p. 156 of Sato-Shintani [21] where Siegel’s zeta function
is picked up as an example of their theory. Since the details cannot be found in other
literature, we give a proof of the lemma for convenience of readers.

Proof For f ∈ C∞
0 (VR − SR), we consider the integral

∫

S∗
1,R

f̂ (v∗)|ω∗(v∗)|∞.

We may replace S∗
1,R by S∗

R
= {v∗ ∈ VR |P∗(v∗) = 0}, since S∗

2,R = {0} has measure 0 in
S∗
R
. From the identity (19) (or the first formula on p. 257) in Gelfand-Shilov [5, Chap III,

§2.2], we have
∫

S∗
R

f̂ (v∗)|ω∗(v∗)|∞ = Res
s=0

∫

P∗(v∗)>0
P∗(v∗)s−1 · f̂ (v∗)dv∗.

By the shift s �→ s − m
2 , we have

∫

S∗
R

f̂ (v∗)|ω∗(v∗)|∞ = Res
s=m

2

∫

V ∗+
P∗(v∗)s−

m
2 −1 · f̂ (v∗)dv∗

= lim
s→+m

2

(
s − m

2

)
�∗+

(
f̂ ; s − 1

)
.

It then follows from the local functional equation (Lemma 2) that

lim
s→+m

2

(
s − m

2

)
�∗+

(
f̂ ; s − 1

)
= lim

s→+m
2

(
s − m

2

)

	
(
s − m

2

)
	(s − 1)|D| 12 · 2−2s+m

2 +2 · π−2s+m
2 +1

×
(
sin π

(p
2
−s+1

)
sin

πp
2

)
⎛

⎜⎜⎝

∫

V+
f (v)|P(v)|1−sdv

∫

V−
f (v)|P(v)|1−sdv

⎞

⎟⎟⎠

= 	
(m
2

− 1
)

|D| 12 · 22−m
2 · π1−m

2

×
(
sin

π

2
(m − p) sin

πp
2

)
⎛

⎜⎜⎝

∫

V+
f (v)|P(v)|1−m

2 dv
∫

V−
f (v)|P(v)|1−m

2 dv

⎞

⎟⎟⎠ ,

which proves the first assertion of Lemma 3. The second assertion can be proved in a
similar fashion. ��

3 Siegel’s zeta functions with congruence conditions
In this section, followig Sato-Shintani [21], we define Siegel’s zeta functions associated
with (G, ρ, V ), and give their integral representations. Moreover, we calculate the singular
parts of the zeta integrals. For this calculation, we also refer to Kimura [11]. Furthermore,
following Sato [20], we slightly generalize Siegel’s zeta functions with using Schwartz-
Bruhat functions on Q

m in order to treat the twisted zeta functions simultaneously. Let
dx be the measure on GLm(R) defined by

dx = | det x|−m
∏

1≤i,j≤m
dxij for x = (xij) ∈ GLm(R),
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and dλ the measure on the space Symm(R) of symmetric matrices of degreem defined by

dλ = | det λ|−m+1
2

∏

1≤i≤j≤m
dλij for λ = (λij) ∈ Symm(R).

Then we normalize a Haar measure d1g on the Lie group SO(Y )R in such a way that the
integration formula

∫

GLm(R)
F (x)dx =

∫

SO(Y )R\GLm(R)
dλ(t ẋY ẋ)

∫

SO(Y )R
F (gẋ)d1g (25)

holds for all integrable functions F (x) ∈ L1(GLm(R)). Further, let dt be the Lebesgue
measure on R and put

d×t = 2dt
t

. (26)

By (18), |P(v)|−m
2 dv is anR+×SO(Y )R-invariantmeasure onVε and the isotropy subgroup

SO(Y )v = {g ∈ SO(Y ) | gv = v}
at v ∈ V −S is a reductive algebraic group. Hence, for v ∈ Vε , there exists a Haar measure
dμv on SO(Y )v,R such that the integration formula

∫ ∞

0
d×t

∫

SO(Y )R
H (t, g)d1g

=
∫ ∞

0

∫

SO(Y )R/SO(Y )v,R
|P(ρ(t, ġ)v)|−m

2 d(ρ(t, ġ)v)
∫

SO(Y )v,R
H (t, ġh)dμv(h) (27)

holds for all integrable functions H (t, g) ∈ L1(GR). Similarly, for v∗ ∈ V ∗
η , we write

SO(Y )v∗ ,R = {g ∈ SO(Y )R | t g−1v∗ = v∗}
and fix a Haar measure dμ∗

v∗ on SO(Y )v∗ ,R such that the integration formula
∫ ∞

0
d×t

∫

SO(Y )R
H (t, g)d1g

=
∫ ∞

0

∫

SO(Y )R/SO(Y )v∗ ,R
|P∗(ρ∗(t, ġ)v∗)|−m

2 d(ρ∗(t, ġ)v∗)
∫

SO(Y )v∗ ,R
H (t, ġh)dμ∗

v∗ (h)

(28)

holds for all integrable functions H (t, g) ∈ L1(GR).
We call a function φ : VQ → C a Schwartz-Bruhat function if the following two

conditions are satisfied:

(1) there exists a positive integerM such that φ(v) = 0 for v /∈ 1
MVZ, and

(2) there exists a positive integer N such that if v, w ∈ VQ satisfy v − w ∈ NVZ. then
φ(v) = φ(w).

The totality of Schwartz-functions on VQ is denoted by S(VQ). We define the Fourier
transform φ̂ ∈ S(VQ) of a Schwartz-Bruhat function φ ∈ S(VQ) by

φ̂(v∗) = 1
[VZ : rVZ]

∑

v∈VQ/rVZ

φ(v)e[−〈v, v∗〉], (29)
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where r is a sufficiently large positive integer such that the value φ(v)e[−〈v, v∗〉] depends
only on the residue class v mod rVZ. Though r is not unique, the value φ̂(v∗) does not
depend on the choice of r. The following lemma is essentially an adelic version of Poisson
summation formula.

Lemma 4 (Poisson summation formula) For φ ∈ S(VQ) and f ∈ S(VR),
∑

v∗∈VQ

φ̂(v∗ )̂f (v∗) =
∑

v∈VQ

φ(v)f (v).

For g̃ = (t, g) ∈ GR = R
× × SO(Y )R, we put fg̃ (v) = f (ρ(t, g)v) = f (tgv). Since

f̂g̃(v∗)=
∫

VR

f (tgv)e[〈v, v∗〉]dv=|t|−m
∫

VR

f (v)e[〈t−1g−1v, v∗〉]dv=|t|−m · f̂ (ρ∗(t, g)v∗),

we have the following

Lemma 5 For g̃ = (t, g) ∈ GR, φ ∈ S(VQ), f ∈ S(VR),

|t|−m
∑

v∗∈VQ

φ̂(v∗ )̂f (ρ∗(t, g)v∗) =
∑

v∈VQ

φ(v)f (ρ(t, g)v).

In the following, we assume that φ ∈ S(VQ) is SO(Y )Z-invariant. That is, φ is assumed
to satisfy

φ(γ v) = φ(v) for v ∈ VQ, γ ∈ SO(Y )Z. (30)

Then we define the zeta integral Z(f,φ; s) by

Z(f,φ; s) =
∫ ∞

0
d×t

∫

SO(Y )R/SO(Y )Z
|χ (t, g)|s

∑

v∈VQ−SQ

φ(v)f (ρ(t, g)v)d1g. (31)

Since VQ − SQ can be decomposed as

VQ − SQ =
⋃

ε=±

⋃

v∈SO(Y )Z\Vε∩VQ

⋃

γ∈SO(Y )Z/SO(Y )v,Z

γ v,

we have, by a formal calculation,

Z(f,φ; s)

=
∑

ε=±

∑

v∈SO(Y )Z\Vε∩VQ

∫ ∞

0
d×t

∫

SO(Y )R/SO(Y )Z
|χ (t, g)|s

×
∑

γ∈SO(Y )Z/SO(Y )v,Z

φ(γ v)f (ρ(t, g)γ v)d1g

(30)=
∑

ε=±

∑

v∈SO(Y )Z\Vε∩VQ

φ(v)
∫ ∞

0
d×t

∫

SO(Y )R/SO(Y )v,Z
|χ (t, g)|sf (ρ(t, g)v)d1g,

and further, by applying (27) to

H (t, g) = |χ (t, g)|s · f (ρ(t, g)v) = |P(ρ(t, g)v)|s
|P(v)|s · f (ρ(t, g)v),
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we have

Z(f,φ; s) =
∑

ε=±

∑

v∈SO(Y )Z\Vε∩VQ

φ(v)
∫ ∞

0
d×t

×
∫

SO(Y )R/SO(Y )v,R

|P(ρ(t, ġ)v)|s
|P(v)|s · f (ρ(t, ġ)v)|P(ρ(t, ġ)v|−m

2 d(ρ(t, ġ)v)

×
∫

SO(Y )v,R/SOv,Z

dμv(h).

In the following, for v ∈ VQ − SQ, we put

μ(v) =
∫

SO(Y )v,R/SOv,Z

dμv(h). (32)

Since it is assumed that m ≥ 5, the generic isotropy subgroup SO(Y )v is a semisimple
algebraic group, and thuswehaveμ(v) < +∞. (cf. [11, p. 184].)We further putρ(t, ġ)v = x
in the right hand side above. Then, since R+ × SO(Y )R/SO(Y )v,R ∼= Vε , we have

Z(f,φ; s) =
∑

ε=±

⎧
⎨

⎩
∑

v∈SO(Y )Z\Vε∩VQ

φ(v)μ(v)
|P(v)|s

⎫
⎬

⎭

∫

Vε

f (x)|P(x)|s−m
2 dx. (33)

The Dirichlet series

ζε(φ; s) =
∑

v∈SO(Y )Z\Vε∩VQ

φ(v)μ(v)
|P(v)|s

converges absolutely for 	(s) > m
2 , as will be explained in Remark 2 shortly. Hence the

interchange of summation and integration, which leads to (33), can be justified under this
condition. Similary, for f ∗ ∈ S(VR) and φ∗ ∈ S(VQ) that satisfies

φ∗(tγ −1v∗) = φ∗(v∗) for v∗ ∈ VQ, γ ∈ SO(Y )Z, (34)

we define the zeta ingegral Z∗(f ∗,φ∗; s) by

Z∗(f ∗,φ∗; s) =
∫ ∞

0
d×t

∫

SO(Y )R/SO(Y )Z
|χ∗(t, g)|s

∑

v∗∈VQ−S∗
Q

φ∗(v∗)f ∗(ρ∗(t, g)v∗)d1g.

(35)

Furthermore, for v∗ ∈ VQ − S∗
Q
, we put

μ∗(v∗) =
∫

SO(Y )v∗ ,R/SOv∗ ,Z
dμ∗

v∗ (h), (36)

where dμ∗
v∗ is the Haar measure on SO(Y )v∗ ,R defined by (28).
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Definition 2 (Siegel’s zeta functions with congruence conditions) Let ε, η = ± and
assume that φ,φ∗ ∈ S(VQ) satisfy (30), (34), respectively. Then we define ζε(φ; s) and
ζ ∗
η (φ∗; s) by

ζε(φ; s) =
∑

v∈SO(Y )Z\Vε∩VQ

φ(v)μ(v)
|P(v)|s (37)

ζ ∗
η (φ∗; s) =

∑

v∗∈SO(Y )Z\V ∗
η ∩VQ

φ∗(v∗)μ∗(v∗)
|P∗(v∗)|s . (38)

We can summarize our argument as the following

Lemma 6 (Integral representations of the zeta functions) Let f, f ∗ ∈ S(VR) and assume
that φ,φ∗ ∈ S(VQ) are SO(Y )Z-invariant. For 	(s) > m

2 , we have

Z(f,φ; s) =
∑

ε=±
ζε(φ; s)�ε(f ; s),

Z∗(f ∗,φ∗; s) =
∑

η=±
ζ ∗
η (φ∗; s)�∗

η(f ∗; s).

Remark 2 (1) The original Siegel’s zeta functions are obtained by letting φ = φ0, where
φ0 is the characteristic function chVZ

of VZ. To apply Weil-type converse theorems,
we need to examine the case where φ(v) = ψ(P(v))φ0(v) with Dirichlet character ψ .
Since each φ(v) is a linear combination of characteristic functions of subsets of the
form a + NVZ (a ∈ VQ, N ∈ Z≥1), we call ζε(φ; s), ζ ∗

η (φ∗; s) Siegel’s zeta functions
with congruence conditions.

(2) The absolute convergence of Siegel’s zeta functions is not at all obvious, though
Siegel wrote just “Die Konvergents der Reihe entnimmt man der Reduktiontheorie”.
A detailed proof of the convergence can be found in Tamagawa [30]. It also follows
from the general theory of prehomogeneous vector spaces (Saito [18], F. Sato [19]).

(3) We can write ζ±(φ; s) as

ζ±(φ; s) =
∑

r∈Q>0

M(P,φ;±r)
rs

with

M(P,φ;±r) :=
∑

v∈SO(Y )Z\V±∩supp(φ)
P(v)=±r

φ(v)μ(v).

Since φ(v) = 0 for v /∈ 1
LVZ with some integer L, we see that that the sum in the

definition ofM(P,φ;±r) is a finite sum (cf. Kimura [11, p.184]). In the case of φ = φ0,
we have supp(φ0) = VZ and P(v) ∈ Z \ {0} for v ∈ V± ∩VZ. For n = 1, 2, . . . , we put

M(P;±n) =
∑

v∈SO(Y )Z\V±∩VZ

P(v)=±n

μ(v). (39)

Siegel calledM(P; n) the measures of representation (Darstellungsmaß). We have

ζ±(φ0; s) =
∞∑

n=1

M(P;±n)
ns

.
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To investigate analytic properties of the zeta integrals, we define measures on isotropy
subgroups at singular points.We fix an arbitrary point v of S1,R. Recall that in the previous
section, we have defined an SO(Y )R-invariantmeasure |ω|∞ on S1,R ∼= SO(Y )R/SO(Y )v,R.
We can normalize a measure dσv on the isotropy subgroup SO(Y )v,R in such a way that
the integration formula

∫

SO(Y )R
ψ(g)d1g =

∫

SO(Y )R/SO(Y )v,R
|ω(ġv)|∞

∫

SO(Y )v,R
ψ(ġh)dσv(h) (40)

holds for all integrable functions ψ(g) ∈ L1(SO(Y )R). Similarly, for v∗ ∈ S∗
1,R, we take a

measure dσ ∗
v∗ on the isotropy subgroup SO(Y )v∗ ,R such that the integration formula

∫

SO(Y )R
ψ(g)d1g =

∫

SO(Y )R/SO(Y )v∗ ,R
|ω∗(t ġ−1v∗)|∞

∫

SO(Y )v∗ ,R
ψ(ġh)dσ ∗

v∗ (h) (41)

holds for all integrable functions ψ(g) ∈ L1(SO(Y )R). Now we put

Z+(f,φ; s) =
∫ ∞

1
d×t

∫

SO(Y )R/SO(Y )Z
|χ (t, g)|s

∑

v∈VQ−SQ

φ(v)f (ρ(t, g)v)d1g,

Z−(f,φ; s) =
∫ 1

0
d×t

∫

SO(Y )R/SO(Y )Z
|χ (t, g)|s

∑

v∈VQ−SQ

φ(v)f (ρ(t, g)v)d1g,

Z∗+(f ∗,φ∗; s) =
∫ 1

0
d×t

∫

SO(Y )R/SO(Y )Z
|χ∗(t, g)|s

∑

v∗∈VQ−S∗
Q

φ∗(v∗)f ∗(ρ∗(t, g)v∗)d1g,

Z∗−(f ∗,φ∗; s) =
∫ ∞

1
d×t

∫

SO(Y )R/SO(Y )Z
|χ∗(t, g)|s

∑

v∗∈VQ−S∗
Q

φ∗(v∗)f ∗(ρ∗(t, g)v∗)d1g.

It is obvious that

Z(f,φ; s) = Z+(f,φ; s) + Z−(f,φ; s), Z∗(f ∗,φ∗; s) = Z∗+(f ∗,φ∗; s) + Z∗−(f ∗,φ∗; s).

The four integrals above converges absolutely for 	(s) > m
2 , and further, two integrals

Z+(f,φ; s) andZ∗+(f ∗,φ∗; s) are absolutely convergent for any s ∈ C and define entire func-
tions of s. Let us calculate Z−(f,φ; s) formally by using Lemma 5, the Poisson summation
formula; the interchange of integral and summation will be justified later in Remark 3.
Since χ (t, g) = χ∗(t, g)−1 = t2, it follows from Lemma 5 that

Z−(f,φ; s) =
∫ 1

0
d×t

∫

SO(Y )R/SO(Y )Z
|χ (t, g)|s

×
⎧
⎨

⎩|t|−m
∑

v∗∈VQ

φ̂(v∗ )̂f (ρ∗(t, g)v∗) −
∑

v∈SQ
φ(v)f (ρ(t, g)v)

⎫
⎬

⎭ d1g

=
∫ 1

0
d×t

∫

SO(Y )R/SO(Y )Z
|χ∗(t, g)|m2 −s

∑

v∗∈VQ−S∗
Q

φ̂(v∗ )̂f (ρ∗(t, g)v∗)d1g

+
∫ 1

0
t2s−md×t

∫

SO(Y )R/SO(Y )Z

∑

v∗∈S∗
Q

φ̂(v∗ )̂f (ρ∗(t, g)v∗)d1g

−
∫ 1

0
t2sd×t

∫

SO(Y )R/SO(Y )Z

∑

v∈SQ
φ(v)f (ρ(t, g)v)d1g.
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The first term of the most right hand side is
∫ 1

0
d×t

∫

SO(Y )R/SO(Y )Z
|χ∗(t, g)|m2 −s

∑

v∗∈VQ−S∗
Q

φ̂(v∗ )̂f (ρ∗(t, g)v∗)d1g=Z∗+
(
f̂ , φ̂;

m
2

−s
)
.

Using (40) and (41), we calculate the second and third terms following the method of
Sato-Shintani [21, Theorem 2]. Put

S1,Q = {v ∈ VQ | P(v) = 0, v �= 0}, S∗
1,Q = {v∗ ∈ VQ | P∗(v∗) = 0, v∗ �= 0}

By the interchange of summation and integration, the third term above becomes

∫ 1

0
t2sd×t

∫

SO(Y )R/SO(Y )Z

∑

v∈SQ
φ(v)f (ρ(t, g)v)d1g

=
∑

v∈SO(Y )Z\S1,Q
φ(v)

∫ 1

0
t2sd×t

∫

SO(Y )R/SO(Y )v,Z
f (ρ(t, g)v)d1g

+ φ(0)f (0)
∫ 1

0
t2sd×t

∫

SO(Y )R/SO(Y )Z
d1g. (42)

By applying (40) to ψ(g) = f (ρ(t, g)v) = f (tgv), we have

∫

SO(Y )R/SO(Y )v,Z
f (ρ(t, g)v)d1g=

∫

SO(Y )R/SO(Y )v,R
|ω(ġv)|∞

×
∫

SO(Y )v,R/SO(Y )v,Z
f (tġhv)dσv(h)

=
∫

S1,R
f (tz)|ω(z)|∞

∫

SO(Y )v,R/SO(Y )v,Z
dσv(h)

= t2−m
∫

S1,R
f (z)|ω(z)|∞

∫

SO(Y )v,R/SO(Y )v,Z
dσv(h).

Here we have used (23) in the third equality. Hence the integral (42) is calculated as

∫ 1

0
t2sd×t

∫

SO(Y )R/SO(Y )Z

∑

v∈SQ
φ(v)f (ρ(t, g)v)d1g

=
∑

v∈SO(Y )Z\S1,Q
φ(v)

∫ 1

0
t2s+2−m 2dt

t

∫

S1,R
f (z)|ω(z)|∞

∫

SO(Y )v,R/SO(Y )v,Z
dσv(h)

+ φ(0)f (0)
∫ 1

0
t2s

2dt
t

∫

SO(Y )R/SO(Y )Z
d1g

= 1
s + 1 − m

2

∫

S1,R
f (z)|ω(z)|∞

∑

v∈SO(Y )Z\S1,Q
φ(v)

∫

SO(Y )v,R/SO(Y )v,Z
dσv(h)

+ φ(0)f (0)
s

∫

SO(Y )R/SO(Y )Z
d1g.
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Similarly, by term-by-term integration, we have

∫ 1

0
t2s−md×t

∫

SO(Y )R/SO(Y )Z

∑

v∗∈S∗
Q

φ̂(v∗ )̂f (ρ∗(t, g)v∗)d1g

=
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)
∫ 1

0
t2s−md×t

∫

SO(Y )R/SO(Y )v∗ ,Z
f̂ (ρ∗(t, g)v∗)d1g

+ φ̂(0)̂f (0)
∫ 1

0
t2s−md×t

∫

SO(Y )R/SO(Y )Z
d1g, (43)

and by using (24) and (41), we obtain

∫

SO(Y )R/SO(Y )v∗ ,Z
f̂ (ρ∗(t, g)v∗)d1g

=
∫

SO(Y )R/SO(Y )v∗ ,R
f̂ (t−1 · t ġ−1v∗)|ω∗(t ġ−1v∗)|∞

∫

SO(Y )v∗ ,R/SO(Y )v∗ ,Z
dσ ∗

v∗ (h)

=
∫

S∗
1,R

f̂ (t−1z∗)|ω∗(z∗)|∞
∫

SO(Y )v∗ ,R/SO(Y )v∗ ,Z
dσ ∗

v∗ (h)

= tm−2
∫

S∗
1,R

f̂ (z∗)|ω∗(z∗)|∞
∫

SO(Y )v∗ ,R/SO(Y )v∗ ,Z
dσ ∗

v∗ (h).

Hence we see that

∫ 1

0
t2s−md×t

∫

SO(Y )R/SO(Y )Z

∑

v∗∈S∗
Q

φ̂(v∗ )̂f (ρ∗(t, g)v∗)d1g

= 1
s − 1

∫

S∗
1,R

f̂ (z∗)|ω∗(z∗)|∞
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)
∫

SO(Y )v∗ ,R/SO(Y )v∗ ,Z
dσ ∗

v∗ (h)

+ φ̂(0)̂f (0)
s − m

2

∫

SO(Y )R/SO(Y )Z
d1g

Now we put

σ (v) :=
∫

SO(Y )v,R/SO(Y )v,Z
dσv(h), (44)

σ ∗(v∗) :=
∫

SO(Y )v∗ ,R/SO(Y )v∗ ,Z
dσ ∗

v∗ (h). (45)

Then we have the first assertion of the following lemma; the second assertion can be
proved similarly as the first assertion, and then the third assertion follows immediately
from the first and second assertions.
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Lemma 7 (1) For 	(s) > m
2 , we have

Z(f,φ; s) = Z+(f,φ; s) + Z∗+
(
f̂ , φ̂;

m
2

− s
)

+ 1
s − 1

∫

S∗
1,R

f̂ (z∗)|ω∗(z∗)|∞
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗)

+ φ̂(0)̂f (0)
s − m

2

∫

SO(Y )R/SO(Y )Z
d1g

− 1
s + 1 − m

2

∫

S1,R
f (z)|ω(z)|∞

∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v)

− φ(0)f (0)
s

∫

SO(Y )R/SO(Y )Z
d1g.

(2) For 	(s) > m
2 , we have

Z∗ (̂f , φ̂; s) = Z∗+ (̂f , φ̂; s) + Z+
(
f,φ,

m
2

− s
)

+ 1
s − 1

∫

S1,R
f (z)|ω(z)|∞

∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v)

+ φ(0)f (0)
s − m

2

∫

SO(Y )R/SO(Y )Z
d1g

− 1
s + 1 − m

2

∫

S∗
1,R

f̂ (z∗)|ω∗(z∗)|∞
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗)

− φ̂(0)̂f (0)
s

∫

SO(Y )R/SO(Y )Z
d1g.

(3) As functions of s, the integrals Z(f,φ, s) and Z∗ (̂f , φ̂; s) can be continued analytically
to the whole s-plane, and satisfy the following functional equation:

Z∗ (̂f , φ̂; s) = Z
(
f,φ;

m
2

− s
)
.

Remark 3 In [10], Igusa studied the so-called admissible representations related to the
Siegel-Weil formula [33]. According to his classification, our prehomogeneous vector
space (GL1(C)× SO(Y ),Cm) gives an admissible representation ifm ≥ 5, and this implies
that the integrals

∫

SO(Y )R/SO(Y )Z

∑

v∈VQ

φ(v)f (gv)d1g,
∫

SO(Y )R/SO(Y )Z

∑

v∗∈VQ

φ∗(v∗)f ∗(t g−1v∗)d1g

are absolutely convergent for all Schwartz-Bruhat functions f, f ∗ ∈ S(VR) and φ,φ∗ ∈
S(VQ). Hence the integrals

∫

SO(Y )R/SO(Y )Z

∑

v∈S1,Q
φ(v)f (gv)d1g =

∫

S1,R
f (z)|ω(z)|∞

∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v),

∫

SO(Y )R/SO(Y )Z

∑

v∗∈S∗
1,Q

φ̂(v∗ )̂f (t g−1v∗)d1g=
∫

S∗
1,R

f̂ (z∗)|ω∗(z∗)|∞
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗),

which appear in Lemma 7, are absolutely convergent, and the interchange of integral and
summation can be justified by Fubini’s theorem.
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4 Analytic properties of Siegel’s zeta functions
Theorem 1 Assume that φ ∈ S(VQ) is SO(Y )Z-invariant.

(1) The zeta functions ζε(φ; s) and ζ ∗
η (̂φ; s) have analytic continuations of s in C, and the

zeta functions multiplied by (s − 1)(s − m
2 ) are entire functions of s of finite order in

any vertical strip.
(2) Th zeta functions ζε(φ; s) and ζ ∗

η (̂φ; s) satisfy the following functional equation:

(
ζ+
(
φ; m2 − s

)

ζ−
(
φ; m2 − s

)
)

= 	
(
s + 1 − m

2

)
	(s)|D| 12 · 2−2s+m

2 · π−2s+m
2 −1

×
(
sin π

( p
2 − s

)
sin π (m−p)

2
sin πp

2 sin π
(
m−p
2 − s

)
)(

ζ ∗+ (̂φ; s)
ζ ∗− (̂φ; s)

)
. (46)

(3) The residues of ζε(φ; s), ζ ∗
η (̂φ; s) at s = 1 and s = m

2 are given by

Res
s=m

2
ζε(φ; s) = φ̂(0)

∫

SO(Y )R/SO(Y )Z
d1g, (47)

Res
s=m

2
ζ ∗
η (̂φ; s) = φ(0)

∫

SO(Y )R/SO(Y )Z
d1g, (48)

Res
s=1

ζε(φ; s) = 	
(m
2

− 1
)

|D| 12 · 22−m
2 · π1−m

2
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗)

×

⎧
⎪⎨

⎪⎩

sin
π

2
(m − p) (ε = +)

sin
πp
2

(ε = −)
, (49)

Res
s=1

ζ ∗
η (̂φ; s) = 	

(m
2

− 1
)

|D|− 1
2 · 22−m

2 · π1−m
2

∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v)

×

⎧
⎪⎨

⎪⎩

sin
π

2
(m − p) (η = +)

sin
πp
2

(η = −)
. (50)

(3) The following relations hold:

ζ+
(
φ;

m
2

− 1
)

+ ζ−
(
φ;

m
2

− 1
)

= −
∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v), (51)

ζ ∗+
(
φ̂ ;

m
2

− 1
)

+ ζ ∗−
(
φ̂ ;

m
2

− 1
)

= −
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗). (52)

Proof Let f ∈ C∞
0 (VR) in Lemma 7 (1). Then we see that

Z(f,φ; s) = Z+(f,φ; s) + Z∗+
(
f̂ , φ̂;

m
2

− s
)

+ 1
s − 1

∫

S∗
1,R

f̂ (z∗)|ω∗(z∗)|∞
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗)

+ φ̂(0)̂f (0)
s − m

2

∫

SO(Y )R/SO(Y )Z
d1g,
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and thus the integral Z(f,φ; s) can be continued to a meromorphic function on the whole
C, and (s − 1)(s − m

2 )Z(f,φ; s) is an entire function of s. Further, for any s ∈ C, we take
fε ∈ C∞

0 (Vε) such that �ε(f ; s) �= 0. Then Lemma 6 implies that

ζε(φ; s) = Z(φ, fε ; s)
�ε(f ; s)

,

and hence ζε(φ; s) also can be continued to a meromorphic function on the whole C, and
(s − 1)(s − m

2 )ζε(φ; s) is an entire function of s. The analytic continuation of ζ ∗
η (̂φ; s) can

be proved in a similar fashion. Further, one can prove the boundedness of ζε(φ; s) and
ζ ∗
η (̂φ; s) in the same method as in Ueno [32, § 4]. By Lemma 6 and Lemma 7 (3), we have

(
�∗+ (̂f ; s) �∗− (̂f ; s)

)(ζ ∗+ (̂φ; s)
ζ ∗− (̂φ; s)

)
= (�+

(
f ; m2 − s

)
�−

(
f ; m2 − s

))
(

ζ+
(
φ; m2 − s

)

ζ−
(
φ; m2 − s

)
)
,

and by Lemma 2, we have
(
�∗+ (̂f ; s) �∗− (̂f ; s)

)
= (�+

(
f ; m2 − s

)
�−

(
f ; m2 − s

)) · tA(s),
where A(s) is given by

A(s)=	
(
s+1−m

2

)
	(s)|D| 12 · 2−2s+m

2 · π−2s+m
2 −1

(
sin π

( p
2 − s

)
sin πp

2
sin π (m−p)

2 sin π
(
m−p
2 − s

)
)
.

This implies that the vector
(

ζ+
(
φ; m2 − s

)

ζ−
(
φ; m2 − s

)
)

− tA(s)
(

ζ ∗+ (̂φ; s)
ζ ∗− (̂φ; s)

)
(53)

is orthogonal to the vector
(
�+

(
f ; m2 − s

)
�−

(
f ; m2 − s

))

for arbitrary f ∈ S(VR). For any s ∈ C, there exists an fε ∈ C∞
0 (Vε) such that�ε(f ; m2 −s) �=

0, and hence (53) is the zero vector. This proves the functional equation (46). Next we
calculate the residues. For the simple pole at s = m

2 , we have

Res
s=m

2
Z(φ, f ; s) = φ̂(0)̂f (0) ·

∫

SO(Y )R/SO(Y )Z
d1g

by Lemma 7 (1). For f ∈ C∞
0 (Vε), Lemma 6 implies Z(φ, f ; s) = ζε(φ; s) · �ε (f ; s), and

�ε

(
f ; m2

)
is meaningful:

�ε

(
f ; m2

) = lim
s→m

2

∫

Vε

f (x)|P(x)|s−m
2 dx =

∫

VR

f (x)dx = f̂ (0).

Hence we have

Res
s=m

2
ζε(φ; s) = φ̂(0)

∫

SO(Y )R/SO(Y )Z
d1g,

and similarly

Res
s=m

2
ζ ∗
η (̂φ; s) = φ(0)

∫

SO(Y )R/SO(Y )Z
d1g.

By Lemma 7 (1), it is easy to pick up the residue of Z(f,φ; s) at the simple pole s = 1, and
together with Lemma 6, it implies that for f ∈ C∞

0 (Vε),

Res
s=1

ζε(φ; s) · �ε (f ; 1) =
∫

S∗
1,R

f̂ (z∗)|ω∗(z∗)|∞
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗).
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Here the value �ε (f ; 1) is meaningful, and

�ε (f ; 1) = lim
s→1

∫

Vε

f (x)|P(x)|s−m
2 dx =

∫

Vε

f (x)|P(x)|1−m
2 dx.

Furthermore, by Lemma 3 (1), we have
∫

S∗
1,R

f̂ (v∗)|ω∗(v∗)|∞ = 	
(m
2

− 1
)

|D| 12 · 22−m
2 · π1−m

2

×

⎧
⎪⎪⎨

⎪⎪⎩

sin
π

2
(m − p)

∫

V+
f (v)|P(v)|1−m

2 dv (f ∈ C∞
0 (V+)

sin
πp
2

∫

V−
f (v)|P(v)|1−m

2 dv (f ∈ C∞
0 (V−)

,

and hence we obtain the residue formula (49). Similarly, the residue formula (50) can be
proved with Lemma 3 (2); the detail is omitted. To prove the relation (51), we let s = 1 in
the functiona equation (46):

	
(
s + 1 − m

2

)−1 (
ζ+
(
φ;

m
2

− s
)

+ ζ−
(
φ;

m
2

− s
))

= 	(s)|D| 12 · 2−2s+m
2 · π−2s+m

2 −1

×
(
sin π

( p
2 − s

)+ sin πp
2 sin π (m−p)

2 + sin π
(
m−p
2 − s

))(ζ ∗+ (̂φ; s)
ζ ∗− (̂φ; s)

)
.

Since
(
sin π

(p
2

− s
)

+ sin
πp
2

) ∣∣∣∣
s=1

= 0,
(
sin

π (m − p)
2

+ sin π

(
m − p

2
− s
)) ∣∣∣∣

s=1
=0,

we have

lim
s→1

	
(
s + 1 − m

2

)−1 (
ζ+
(
φ;

m
2

− s
)

+ ζ−
(
φ;

m
2

− s
))

= |D| 12 · 2−2+m
2 · π−3+m

2

×
(

d
ds sin π

( p
2 − s

) ∣∣∣∣
s=1

d
ds sin π

(
m−p
2 − s

) ∣∣∣∣
s=1

)⎛

⎝
Res
s=1

ζ ∗+ (̂φ; s)

Res
s=1

ζ ∗− (̂φ; s)

⎞

⎠ .

By using (50) and

d
ds

sin π
(p
2

− s
) ∣∣∣∣

s=1
= −π cosπ

(p
2

− 1
)

= π cos
πp
2
,

d
ds

sin π

(
m − p

2
− s
) ∣∣∣∣

s=1
= −π cosπ

(
m − p

2
− 1
)

= π cos
π (m − p)

2
,

we see that

lim
s→1

	
(
s + 1 − m

2

)−1 (
ζ+
(
φ;

m
2

− s
)

+ ζ−
(
φ;

m
2

− s
))

= 	
(m
2

− 1
)

· π−2
∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v) ·

(
π cos πp

2 π cos π (m−p)
2

)(sin π (m−p)
2

sin πp
2

)

= −	
(m
2

− 1
)
sin π

(m
2

− 1
)

· π−1 ·
∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v).
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Since

lim
s→1

	
(
s + 1 − m

2

)−1 = 	
(m
2

− 1
)
sin π

(m
2

− 1
)

· π−1,

we obtain the desired relation

ζ+
(
φ;

m
2

− 1
)

+ ζ−
(
φ;

m
2

− 1
)

= −
∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v).

Finally, let s = m
2 − 1 in the functional equation (46). We have

−Res
s=1

(
ζ+ (φ; s)
ζ− (φ; s)

)
= Res

s=0
	(s) · 	

(m
2

− 1
)

|D| 12 · 2−m
2 +2 · π−m

2 +1

×
(
sin π

( p
2 − m

2 + 1
)

sin π (m−p)
2

sin πp
2 sin π

(− p
2 + 1

)
)(

ζ ∗+
(
φ̂; m2 − 1

)

ζ ∗−
(
φ̂; m2 − 1

)
)
,

and by using (49), we obtain

ζ ∗+
(
φ̂ ;

m
2

− 1
)

+ ζ ∗−
(
φ̂ ;

m
2

− 1
)

= −
∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗).

��

Let N be the level of 2Y . By definition, N is the smallest positive integer such that
N (2Y )−1 is an even matrix (a matrix whose entries are integers and even along the diag-
onal). We normalize the zeta functions ζε(φ; s), ζ ∗

η (̂φ; s) as follows:

ζ̃ε(φ; s) = |D|− 1
2 · e π i

4 (2p−m) · ζε

(
φ; s + m

2
− 1
)
, (54)

ζ̃ ∗
η (̂φ; s) = N−s · ζ ∗

η

(
φ̂; s + m

2
− 1
)
. (55)

Lemma 8 The normalized zeta functions ζ̃ε(φ; s), ζ̃ ∗
η (̂φ; s) satisfy the following functional

equation:

(2π )−s	(s)γ (s)
(

ζ̃+(φ; s)
ζ̃−(φ; s)

)

= N 2−m
2 −s · (2π )−(2−m

2 −s)	
(
2 − m

2
− s
)

× �(2p − m)γ
(
2 − m

2
− s
)(ζ̃ ∗+

(
φ̂; 2 − m

2 − s
)

ζ̃ ∗−
(
φ̂; 2 − m

2 − s
)
)
, (56)

where γ (s) and �(�) are matrices defined by (4).

Proof Let s �→ 1 − s in the functional equation (46):

(
ζ+
(
φ; s + m

2 − 1
)

ζ−
(
φ; s + m

2 − 1
)
)

= 	
(
2 − m

2
− s
)

	(1 − s)|D| 12 · 22s+m
2 −2 · π2s+m

2 −3

×
(
sin π

(
s + p

2 − 1
)

sin π (m−p)
2

sin πp
2 sin π

(
s + m−p

2 − 1
)
)(

ζ ∗+ (̂φ; 1 − s)
ζ ∗− (̂φ; 1 − s)

)
. (57)
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By (54), (55) and 	(1 − s) = π

	(s) sin πs
, we see that this relation can be written as

(2π )−s	(s)
(

ζ̃+(φ; s)
ζ̃−(φ; s)

)
= N 2−m

2 −s · (2π )−(2−m
2 −s)	

(
2 − m

2
− s
)

× e
π i
4 (2p−m)

sin πs

(
sin π

(
s + p

2 − 1
)

sin π (m−p)
2

sin πp
2 sin π

(
s + m−p

2 − 1
)
)

×
(

ζ̃ ∗+
(
φ̂; 2 − m

2 − s
)

ζ̃ ∗−
(
φ̂; 2 − m

2 − s
)
)
.

An elementary calculation with det γ (s) = 2i sin πs shows that

e
π i
4 (2p−m)

sin πs

(
sin π

(
s + p

2 − 1
)

sin π (m−p)
2

sin πp
2 sin π

(
s+m−p

2 −1
)
)

=γ (s)−1 · �(2p − m)γ
(
2−m

2
−s
)
,

which completes the proof of the lemma. ��
The functional equation (56) is quite the same as the functional equation of the condi-

tion [A3] in Sect. 1 with m
2 = 2λ, � ≡ 2p − m (mod 4). Hence it is reasonable to expect

that our converse theorem (Lemma 1) can apply to the normalized zeta functions ζ̃ε(φ; s),
ζ̃ ∗
η (̂φ; s) to obtain Maass forms. The following lemma is indispensable for the application.

Lemma 9 (1) If m is odd, then we have

ζ̃+(φ;−k) + (−1)k · ζ̃−(φ;−k) = 0

for k = 1, 2, 3, . . . .
(2) Assume that m is even and p is odd. Let q = m

2 . Then we have

ζ̃+(φ;−k) + (−1)k · ζ̃−(φ;−k) = 0

for k = 1, 2, . . . , q − 2.

Proof By a little calculation, we obtain
(

ζ ∗+
(
φ̂ ; 1 − s

)

ζ ∗−
(
φ̂ ; 1 − s

)
)

= 	(s)	
(
s + m

2
− 1
)

|D|− 1
2 · 2−2s−m

2 +2 · π−2s−m
2 +1

×
(
sin π

(
s + m−p

2

)
sin π (m−p)

2
sin πp

2 sin π
(
s + p

2
)

)(
ζ+
(
φ; s + m

2 − 1
)

ζ−
(
φ; s + m

2 − 1
)
)
. (58)

Let us consider the values of both sides at s = −k (k ∈ Z>0). On the left hand side,
ζ ∗
η

(
φ̂ ; 1 − s

)
is holomorphic at s = −k except whenm is even and k = m

2 −1 = q−1. On
the right hand side, if m is odd, then 	(s)	

(
s + m

2 − 1
)
has a simple pole at s = −k (k ∈

Z>0), and if m is even, then 	(s)	
(
s + m

2 − 1
) = 	(s)	(s + q − 1) has a simple pole at

s = −k (1 ≤ k ≤ q− 2). We assume that 1 ≤ k ≤ q− 2 in the case of evenm. Then, since
	(s)	

(
s + m

2 − 1
)
has a simple pole at s = −k , we see that

(
sin π

(
s + m−p

2

)
· ζ+

(
φ; s + m

2 − 1
)+ sin π (m−p)

2 · ζ−
(
φ; s + m

2 − 1
)

sin πp
2 · ζ+

(
φ; s + m

2 − 1
)+ sin π

(
s + p

2
) · ζ−

(
φ; s + m

2 − 1
)

)

=
(
sin π

(
s + m−p

2

)
· ζ̃+(φ; s) + sin π (m−p)

2 · ζ̃−(φ; s)
sin πp

2 · ζ̃+(φ; s) + sin π
(
s + p

2
) · ζ̃−(φ; s)

)



31 Page 26 of 38 K. Sugiyama Res. Number Theory (2024) 10:31

becomes the zero vector at s = −k . Since sin π (−k) = 0, cosπ (−k) = (−1)k , we have

(−1)k sin
π (m − p)

2
· ζ̃+(φ;−k) + sin

π (m − p)
2

· ζ̃−(φ;−k) = 0,

sin
πp
2

· ζ̃+(φ;−k) + (−1)k sin
πp
2

· ζ̃−(φ;−k) = 0.

Ifm is odd, then either p orm − p is odd, and thus we have

ζ̃+(φ;−k) + (−1)k · ζ̃−(φ;−k) = 0.

In the case of evenm, if p is odd, then the relation above should hold. In the case that both
of p andm − p are even, this argument can not apply since sin πp

2 = sin π (m−p)
2 = 0. ��

The following lemma follows immediately from the relations (51) and (52).

Lemma 10 We have the following relations:

− (̃ζ+(φ; 0) + ζ̃−(φ; 0)
) = |D|− 1

2 · e π i
4 (2p−m) ·

∑

v∈SO(Y )Z\S1,Q
φ(v)σ (v), (59)

− (̃ζ ∗+ (̂φ ; 0) + ζ̃ ∗− (̂φ ; 0)
) =

∑

v∗∈SO(Y )Z\S∗
1,Q

φ̂(v∗)σ ∗(v∗). (60)

In the rest of this section, we discuss the invariance of volumes with respect to scalar
multiplications.

Lemma 11 (1) For v ∈ VQ − SQ, v∗ ∈ VQ − S∗
Q
, we define the volumes μ(v) and μ∗(v∗)

by (32) and (36), respectively. For r > 0, we have

μ(rv) = μ(v), μ∗(rv∗) = μ∗(v∗).

(2) For v ∈ S1,Q, v∗ ∈ S∗
1,Q, we define the volumes σ (v) and σ ∗(v∗) by (44) and (45),

respectively. For r > 0, we have

σ (rv) = r2−m · σ (v), σ ∗(rv∗) = r2−m · σ ∗(v∗).

Proof (1) We prove the second formula μ∗(rv∗) = μ∗(v∗), which will be used later. Let
F ∈ C∞

0 (V ∗
η ). Then, by (28) and (36), we have

∫ ∞

0
d×t

∫

SO(Y )R/SO(Y )v∗ ,Z
F (ρ∗(t, g)v∗)d1g

=
∫

V ∗
η

F (x∗)|P∗(x∗)|−m
2 dx∗

∫

SO(Y )v∗ ,R/SO(Y )v∗ ,Z
dμ∗

v∗ (h)

= μ∗(v∗) ·
∫

V ∗
η

F (x∗)|P∗(x∗)|−m
2 dx∗.

By the substitution v∗ �→ rv∗, we have
∫∞
0 d×t

∫
SO(Y )R/SO(Y )rv∗ ,Z F (ρ

∗(t, g) · rv∗)d1g = μ∗(rv∗) · ∫V ∗
η
F (x∗)|P∗(x∗)|−m

2 dx∗.
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Put Fr(v∗) := F (rv∗). Since SO(Y )rv∗ = SO(Y )v∗ , we have
∫ ∞

0
d×t

∫

SO(Y )R/SO(Y )rv∗ ,Z
F (ρ∗(t, g) · rv∗)d1g =

∫ ∞

0
d×t

∫

SO(Y )R/SO(Y )v∗ ,Z
Fr (ρ∗(t, g)v∗)d1g

= μ∗(v∗) ·
∫

V ∗
η

Fr (x∗)|P∗(x∗)|−m
2 dx∗

= μ∗(v∗) ·
∫

V ∗
η

F (rx∗)|P∗(x∗)|− m
2 dx∗

= μ∗(v∗) ·
∫

V ∗
η

F (x∗) |P∗(r−1x∗)|−m
2 d(r−1x∗)︸ ︷︷ ︸

=|P∗(x∗)|− m
2 dx∗

= μ∗(v∗) ·
∫

V ∗
η

F (x∗)|P∗(x∗)|− m
2 dx∗.

This proves μ∗(rv∗) = μ∗(v∗). The first formula can be proved similarly.
(2) Let us show that σ (rv) = r2−m · σ (v). Take an f ∈ S(VR) and put ψ(g) = f (gv). By

using (40), we have
∫

SO(Y )R/SO(Y )v,Z
f (gv)d1g =

∫

SO(Y )R/SO(Y )v,R
f (gv)|ω(ġv)|∞

∫

SO(Y )v,R/SO(Y )v,Z
dσv(h)

= σ (v) ·
∫

S1,R
f (z)|ω(z)|∞.

By the substitution v �→ rv, we have
∫

SO(Y )R/SO(Y )rv,Z
f (grv)d1g = σ (rv) ·

∫

S1,R
f (z)|ω(z)|∞.

Put fr(v) := f (rv). Since SO(Y )rv = SO(Y )v , we have
∫

SO(Y )R/SO(Y )rv,Z
f (grv)d1g =

∫

SO(Y )R/SO(Y )v,Z
fr(gv)d1g

= σ (v) ·
∫

S1,R
fr(z)|ω(z)|∞

= σ (v) ·
∫

S1,R
f (rz)|ω(z)|∞

= σ (v) ·
∫

S1,R
f (z)|ω(r−1z)|∞

= σ (v) ·
∫

S1,R
f (z)r−(m−2)|ω(z)|∞

= r2−m · σ (v) ·
∫

S1,R
f (z)|ω(z)|∞,

where we have used (23) on the fifth equality. This proves σ (rv) = r2−m ·σ (v). The second
formula can be proved in a similar fashion. ��

5 Themain theorem
To prove the functional equation of twisted zeta functions, we quote a result of Stark [28].
Let Y be a non-degenerate half-integral symmetric matrix of degreem. Let D = det(2Y )
and N be the level of 2Y . We define a half-integral symmetric matrix Ŷ by

Ŷ = 1
4
NY−1.
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We define the quadratic form P(v) on V by P(v) = Y [v] = tvYv, and the quadratic form
P̂(v∗) on V ∗ by

P̂(v∗) = Ŷ [v∗] = NP∗(v∗), (61)

where P∗ is defined by (19). For this P̂, we define the measureM∗ (̂P; n) of representation
by

M∗ (̂P;±n) =
∑

v∗∈SO(Y )Z\V ∗±∩VZ

P̂(v∗)=±n

μ∗(v∗). (62)

For an odd prime r with (r, N ) = 1 and a Dirichlet character ψ of modulus r, we define
the function φψ ,P(v) on VQ by

φψ ,P(v) = τψ (P(v)) · φ0(v),

where τψ (P(v)) is the Gauss sum defined by (9), and φ0(v) is the characteristic function of
Z
m. It is easy to see that φψ ,P(v) is a Schwartz-Bruhat function on VQ. We define a field K

by

K =
⎧
⎨

⎩
Q(
√
(−1)m/2D) (m ≡ 0 (mod 2))

Q(
√
2|D|) (m ≡ 1 (mod 2))

,

and χK be the Kronecker symbol associated toK . (IfK = Q, we regard χK as the principal
character.) Furthermore, we define a Dirichlet character ψ∗ mod r by

ψ∗(k) = ψ(k)
(
k
r

)m
,

and put

C2p−m,r =
⎧
⎨

⎩
1 (m ≡ 0 (mod 2))

ε
2p−m
r (m ≡ 1 (mod 2))

as (13). Then the following lemma follows from Stark [28, Lemmas 5 and 6].

Lemma 12 Let φ̂ψ ,P(v∗) be the Fourier transform of φψ ,P defined by (29). Then the support
of φ̂ψ ,P(v∗) is contained in r−1

Z
m, and for v∗ ∈ Z

m, we have

φ̂ψ ,P(r−1v∗) = r−m/2χK (r) · C2p−m,r · ψ∗(−N ) · τψ∗ (̂P(v∗)).

Let φ = φ0 in the normalized zeta function ζ̃±(φ; s) of (54). For v ∈ Vε ∩ VZ, we have
P(v) = εn for some n = 1, 2, 3, . . . , and hence ζ̃±(φ0; s) can be transformed as

ζ̃±(φ0; s) = |D|− 1
2 · e π i

4 (2p−m) · ζ±
(
φ0; s + m

2
− 1
)

= |D|− 1
2 · e π i

4 (2p−m) ·
∑

v∈SO(Y )Z\V±∩VZ

μ(v)
|P(v)|s+m

2 −1

= |D|− 1
2 · e π i

4 (2p−m) ·
∞∑

n=1

⎧
⎪⎪⎨

⎪⎪⎩

∑

v∈SO(Y )Z\V±∩VZ

P(v)=±n

μ(v)

⎫
⎪⎪⎬

⎪⎪⎭
n−s−m

2 −1

=
∞∑

n=1

a(±n)
ns

,
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where a(±n) (n = 1, 2, 3, . . . ) is defined by

a(±n) = |D|− 1
2 · e π i

4 (2p−m) · n1−m
2

∑

v∈SO(Y )Z\V±∩VZ

P(v)=±n

μ(v)

= |D|− 1
2 · e π i

4 (2p−m) · n1−m
2 · M(P;±n), (63)

where M(P; n) is the measure of representation defined as (39). Further, by plugging
φψ ,P(v) = τψ (P(v)) · φ0(v) in (54), we have

ζ̃±(φψ ,P ; s) = |D|− 1
2 · e π i

4 (2p−m) ·
∑

v∈SO(Y )Z\V±∩VZ

τψ (P(v))μ(v)
|P(v)|s+m

2 −1

=
∞∑

n=1

τψ (±n)a(±n)
ns

.

On the other hand, let φ = φ0 in the normalized zeta function ζ̃ ∗
η (̂φ; s) of (55). Since

φ̂0 = φ0, we have

ζ̃ ∗±(φ̂0; s) = N−s · ζ ∗±
(
φ0; s + m

2
− 1
)

= N−s ·
∑

v∗∈SO(Y )Z\V ∗±∩VZ

μ∗(v∗)
|P∗(v∗)|s+m

2 −1

= N
m
2 −1 ·

∑

v∗∈SO(Y )Z\V ∗±∩VZ

μ∗(v∗)
|NP∗(v∗)|s+m

2 −1 .

By the definition (61), we have P̂(v∗) = NP∗(v∗) ∈ Z \ {0} for v∗ ∈ V ∗± ∩ VZ and hence

ζ̃ ∗±(φ̂0; s) = N
m
2 −1 ·

∞∑

n=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

v∗∈SO(Y )Z\V ∗±∩VZ

P̂(v∗)=±n

μ∗(v∗)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
n−s−m

2 −1

=
∞∑

n=1

b(±n)
ns

,

where b(±n) (n = 1, 2, 3, . . . ) is defined by

b(±n) =
( n
N

)1−m
2 ∑

v∗∈SO(Y )Z\V ∗±∩VZ

P̂(v∗)=±n

μ∗(v∗) =
( n
N

)1−m
2 · M∗ (̂P;±n), (64)
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where M∗ (̂P; n) is defined as (62). Finally, let φ = φψ ,P(v) = τψ (P(v)) · φ0(v) in (55). It
then follows from Lemmas 11 (1) and 12, and also P̂(r−1v∗) = r−2 · P̂(v∗) that

ζ̃ ∗
η (φ̂ψ ,P ; s) = N

m
2 −1 ·

∑

v∗∈SO(Y )Z\V ∗±∩VZ

φ̂ψ ,P(r−1v∗)μ∗(r−1v∗)
|NP∗(r−1v∗)|s+m

2 −1

= N
m
2 −1 · r−m/2χK (r) · C2p−m,r · ψ∗(−N )

· r2(s+m
2 −1) ·

∑

v∗∈SO(Y )Z\V ∗±∩VZ

τψ∗ (̂P(v∗))μ∗(v∗)
|̂P(v∗)|s+m

2 −1

= r2s+
m
2 −2χK (r) · C2p−m,r · ψ∗(−N ) ·

∞∑

n=1

τψ∗ (±n)b(±n)
ns

.

We thus obtain the first assertion of the following

Lemma 13 For n = 1, 2, 3, . . . , we define a(±n) and b(±n) by (63) and (64) respectively,
and let

ζ±(a; s) =
∞∑

n=1

a(±n)
ns

, ζ±(a,ψ ; s) =
∞∑

n=1

τψ (±n)a(±n)
ns

,

ζ±(b; s) =
∞∑

n=1

b(±n)
ns

, ζ±(b,ψ∗; s) =
∞∑

n=1

τψ∗ (±n)b(±n)
ns

.

(1) We have

ζ̃±(φ0; s) = ζ±(a; s),
ζ̃±(φψ ,P ; s) = ζ±(a,ψ ; s),

ζ̃ ∗
η (φ̂0; s) = ζ±(b; s),

ζ̃ ∗
η (φ̂ψ ,P ; s) = r2s+

m
2 −2χK (r) · C2p−m,r · ψ∗(−N ) · ζ±(b,ψ∗; s).

(2) On residues and special values of zeta functions, the following four relations hold:

ζ+(a,ψ ; 0) + ζ−(a,ψ ; 0) = τψ (0) · (ζ+(a; 0) + ζ−(a; 0)) , (65)

r
m
2 · χK (r) · C2p−m,r · ψ∗(−N ) · Res

s=1
ζ±(b,ψ∗; s) = τψ (0) Res

s=1
ζ±(b; s), (66)

ζ+(b,ψ∗; 0) + ζ−(b,ψ∗; 0) = τψ∗ (0) · (ζ+(b; 0) + ζ−(b ; 0)) , (67)

Res
s=1

ζ±(a,ψ ; s) = r−m
2 · χK (r) · C2p−m,r · ψ∗(−N ) · Res

s=1
ζ±(a; s). (68)

(3) Assume that at least one of m or p is an odd integer. Let λ = m
4 and take an inte-

ger � with � ≡ 2p − m (mod 4). Then ζ±(a; s) and ζ±(b; s) satisfy the assumptions
[A1]–[A4] of Sect. 1, and further, ζ±(a,ψ ; s) and ζ±(b,ψ∗; s) satisfy the assumptions
[A1]r,ψ–[A5]r,ψ of Sect. 1.

Proof (2) By letting φ = φ0 in (59), we have

− (ζ+(a; 0) + ζ−(a; 0)) = |D|− 1
2 · e π i

4 (2p−m) ·
∑

v∈SO(Y )Z\S1,Z
σ (v), (69)
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and by letting φ = φψ ,P in (59), we have

− (ζ+(a,ψ ; 0) + ζ−(a,ψ ; 0)) = |D|− 1
2 · e π i

4 (2p−m) · τψ (0)
∑

v∈SO(Y )Z\S1,Z
σ (v)

= −τψ (0) · (ζ+(a; 0) + ζ−(a; 0)) ,

which proves (65). By (55) and Theorem 1 (3), we have

Res
s=1

ζ±(b; s) = Res
s=1

ζ̃ ∗±(φ̂0; s)

= Res
s=1

(
N−s · ζ ∗±

(
φ̂0; s + m

2
− 1
))

= N−1 · Res
s=m

2
ζ ∗±(φ̂0; s)

= N−1
∫

SO(Y )R/SO(Y )Z
d1g,

and we thus obtain

Res
s=1

ζ±(b; s) = N−1
∫

SO(Y )R/SO(Y )Z
d1g. (70)

Let us consider the residues at s = 1 of the both sides of

ζ̃ ∗±(φ̂ψ ,P ; s) = r2s+
m
2 −2χK (r) · C2p−m,r · ψ∗(−N ) · ζ±(b,ψ∗; s).

The residue at s = 1 of the left hand side is

Res
s=1

ζ̃ ∗±(φ̂ψ ,P ; s) = N−1 · φψ ,P(0)
∫

SO(Y )R/SO(Y )Z
d1g = τψ (0) Res

s=1
ζ±(b; s),

and that of the right hand side is

Res
s=1

{
r2s+

m
2 −2χK (r) · C2p−m,r · ψ∗(−N ) · ζ±(b,ψ∗; s)

}

= r
m
2 · χK (r) · C2p−m,r · ψ∗(−N ) · Res

s=1
ζ±(b,ψ∗; s),

by which we obtain (66). Next let φ = φ0 in the relation (60). Then we have

− (ζ+(b; 0) + ζ−(b ; 0)) =
∑

v∗∈SO(Y )Z\S∗
1,Z

σ ∗(v∗). (71)

By letting φ = φψ ,P in (60) and using Lemmas 12 and 11 (2), we have

− r
m
2 −2χK (r) · C2p−m,r · ψ∗(−N ) · (ζ+(b,ψ∗; 0) + ζ−(b,ψ∗; 0)

)

=
∑

v∗∈SO(Y )Z\S∗
1,Z

φ̂ψ ,P(r−1v∗) σ ∗(r−1v∗)︸ ︷︷ ︸
=rm−2·σ ∗(v∗)

= r−m
2 χK (r) · C2p−m,r · ψ∗(−N ) · τψ∗ (0) · rm−2

∑

v∗∈SO(Y )Z\S∗
1,Z

σ ∗(v∗)

= −r
m
2 −2χK (r) · C2p−m,r · ψ∗(−N ) · τψ∗ (0) (ζ+(b; 0) + ζ−(b ; 0)) ,

and this proves

ζ+(b,ψ∗; 0) + ζ−(b,ψ∗; 0) = τψ∗ (0) · (ζ+(b; 0) + ζ−(b ; 0)) ,
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which is the relation (67). By (54) and Theorem 1 (3), we have

Res
s=1

ζ±(a; s) = Res
s=1

ζ̃±(φ0; s)

= Res
s=1

(
|D|− 1

2 · e π i
4 (2p−m) · ζ±

(
φ0; s + m

2
− 1
))

= |D|− 1
2 · e π i

4 (2p−m) · Res
s=m

2
ζ± (φ0; s)

= |D|− 1
2 · e π i

4 (2p−m)
∫

SO(Y )R/SO(Y )Z
d1g,

and we thus obtain

Res
s=1

ζ±(a; s) = |D|− 1
2 · e π i

4 (2p−m)
∫

SO(Y )R/SO(Y )Z
d1g. (72)

Furthermore, it follows from Lemma 12 that the residue of ζ±(a,ψ ; s) = ζ̃±(φψ ,P ; s) at
s = 1 is given by

Res
s=1

ζ±(a,ψ ; s)=|D|− 1
2 · e π i

4 (2p−m) · φ̂ψ ,P(0)
∫

SO(Y )R/SO(Y )Z
d1g

=|D|− 1
2 · e π i

4 (2p−m) · r−m
2 χK (r) · C2p−m,r · ψ∗(−N )

∫

SO(Y )R/SO(Y )Z
d1g

=r−m
2 χK (r) · C2p−m,r · ψ∗(−N ) · Res

s=1
ζ±(a; s),

by which we obtain the relation (68).
(3) By Theorem 1 (1), (3), we see that our zeta functions satisfy the assumptions [A1],
[A1]r,ψ , [A2], and [A2]r,ψ . The functional equationof [A3] is nothingbut the equation (56)
with φ = φ0. Let φ = φψ ,P in (56); then the first assertion of the lemma implies that

(2π )−s	(s)γ (s)
(

ζ+(a,ψ ; s)
ζ−(a,ψ ; s)

)

= χK (r) · C2p−m,r · ψ∗(−N ) · r m
2 −2 · (Nr2)2−m

2 −s

· (2π )−(2−m
2 −s)	

(
2 − m

2
− s
)

· �(2p − m)γ
(
2 − m

2
− s
)(ζ+

(
b,ψ∗; 2 − m

2 − s
)

ζ−
(
b,ψ∗; 2 − m

2 − s
)
)
,

which shows that the functional equation of [A3]r,ψ holds. Lemma 9 implies that our
zeta functions satisfy the assumptions [A4] and [A4]r,ψ . Finally, the compatibility condi-
tion [A5]r,ψ on residues and special values follows from (65), (66), (67) and (68). ��
In general, SO(Y )Z\S1,Z is always an infinite set, since for v ∈ S1,Z, any twoof v, 2v, 3v, . . .

can not lie in the same SO(Y )Z-orbit. However, as is seen in the following lemma that is
taken from [11, pp.188–189], the number of SO(Y )Z-orbits in primitive vectors in S1,Z
and S∗

1,Z is finite.

Lemma 14 (1) We call a vector v = (v1, . . . , vm) ∈ VZ primitive if the greatest common
divisor of v1, . . . , vm is 1. Then

{v ∈ SO(Y )Z\S1,Z ; v is primitive}
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is a finite set. Let a1, . . . , ah be a complete system of representatives of this set. Then
we have

∑

v∈SO(Y )Z\S1,Z
σ (v) = ζ (m − 2)

h∑

i=1
σ (ai).

(2) Let b1, . . . , bk be a complete system of the finite set

{v∗ ∈ SO(Y )Z\S∗
1,Z ; v∗ is primitive}.

Then we have

∑

v∈SO(Y )Z\S∗
1,Z

σ ∗(v∗) = ζ (m − 2)
k∑

i=1
σ ∗(bi).

Now we are in a position to state

Theorem 2 Assume that at least one of m or p is an odd integer. Take an integer � with
� ≡ 2p − m (mod 4). Define C∞-functions F (z) and G(z) onH by

F (z) = y(m−�)/4 ·
∫

SO(Y )R/SO(Y )Z
d1g

+(−1)(2p−m−�)/4ζ (m − 2)
h∑

i=1

σ (ai)
|D| 12

· (2π )2
1−m

2 	
(m
2 − 1

)

	
(m+�

4
)
	
(m−�

4
) · y1−(m+�)/4

+
∞∑

n=−∞
n �=0

(−1)(2p−m−�)/4 · M(P; n)
|D| 12

π
m
4 · |n|−m

4

	
(
m+sgn(n)�

4

) · y− �
4W sgn(n)�

4 , m4 − 1
2
(4π |n|y)e[nx],

G(z) = N
m
4 · |D|− 1

2 e
π i
4 (2p−m) · y(m−�)/4 ·

∫

SO(Y )R/SO(Y )Z
d1g

+i−
�
2N 1−m

4 ζ (m − 2)
k∑

i=1
σ ∗(bi)

(2π )21−m
2 	(m2 − 1)

	
(m+�

4
)
	
(m−�

4
) · y1−(m+�)/4

+i−
�
2

∞∑

n=−∞
n �=0

( |n|
N

)−m
4
M∗ (̂P; n) π

m
4

	
(
m+sgn(n)�

4

) · y− �
4W sgn(n)�

4 , m4 − 1
2
(4π |n|y)e[nx].

Then, F (z) (resp. G(z)) is aMaass form for 	0(N ) of weight �/2with eigenvalue (m−�)(4−
m − �)/16 and character χK (resp. χKN ). Here we denote by χK and χKN the Kronecker
characters associated to the fields

K =
⎧
⎨

⎩
Q(
√
(−1)m/2D) (m ≡ 0 (mod 2))

Q(
√
2|D|) (m ≡ 1 (mod 2))

,

and

KN =
⎧
⎨

⎩
Q(
√
(−1)m/2D) (m ≡ 0 (mod 2))

Q(
√
2|D|N ) (m ≡ 1 (mod 2))

,

respectively. Further we have

F
(

− 1
Nz

)
(
√
Nz)−�/2 = G(z).

Proof We apply the converse theorem (Lemma 1) to the normalized zeta func-
tions ζ±(a; s) and ζ±(b; s) of Lemma 13. It remains to calculate the constant terms
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a(0), a(∞), b(0), b(∞) along with the definitions (5), (6), (7), (8). First, by (69) and
Lemma 14 (1), we have

a(0) = − (ζ+(a; 0) + ζ−(a; 0))

= |D|− 1
2 · e π i

4 (2p−m) · ζ (m − 2)
h∑

i=1
σ (ai).

Second, by (70), we have

a(∞) = N
2

(
Res
s=1

ζ+(b; s) + Res
s=1

ζ−(b; s)
)

=
∫

SO(Y )R/SO(Y )Z
d1g.

Third, by (71) and Lemma 14 (2), we have

b(0) = − (ζ+(b; 0) + ζ−(b; 0))

= ζ (m − 2)
k∑

i=1
σ ∗(bi).

Finally, by (72), we have

b(∞) = i−�

2

(
Res
s=1

ζ+(a; s) + Res
s=1

ζ−(a; s)
)

= i−� · |D|− 1
2 e

π i
4 (2p−m)

∫

SO(Y )R/SO(Y )Z
d1g

= |D|− 1
2 e−

π i
4 (2p−m)

∫

SO(Y )R/SO(Y )Z
d1g.

��

Remark 4 One can verify that our M(P; n) is identical to M(S, a, t) (a = 0), which is
defined as the formula (14) of Siegel [26]. Moreover, up to a power of y, our F (z) coincides
with the integral

∫
F fa(z,P)dv (a = 0) of the indefinite theta series fa(z,P) over some

fundamental domain F . See Siegel [26, Hilfssatz 4], [27] for the detail. We also note that
Funke [4] calculated the Mellin transform of some indefinite theta series and obtained
Siegel’s zeta functions associated with ternary zero forms.

6 Holomorphic modular forms arising from Siegel’s zeta functions
Under some conditions, the γ -matrix in Siegel’s functional equation (46) can be an upper
or lower triangular matrix. In such a case, we obtain a single functional equation. More
precisely,
• Assume that the number of negative eigenvalues of Y is even; that is, m − p is an even
integer. Then the first row of (46) is of the following form:

ζ+
(
φ;

m
2

− s
)

= 	
(
s + 1 − m

2

)
	(s)|D| 12 · 2−2s+m

2 · π−2s+m
2 −1

× sin π
(p
2

− s
)

ζ ∗+ (̂φ; s).
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This suggests that ζ+(φ; s) and ζ ∗+(φ; s) satisfy the functional equation of Hecke type.
•Assume that the number of positive eigenvalues of Y is even; that is, p is an even integer.
Then the second row of (46) is of the following form:

ζ−
(
φ;

m
2

− s
)

= 	
(
s+1−m

2

)
	(s)|D| 12 · 2−2s+m

2 · π−2s+m
2 −1

× sin π

(
m − p

2
− s
)

ζ ∗− (̂φ; s).

This suggests that ζ−(φ; s) and ζ ∗−(φ; s) satisfy the functional equation of Hecke type.
In the following, we assume that m − p is even; if p is even, we replace P with −P. We

introduce Dirichlet series L(M; s) and L(M∗; s) as follows:

L(M; s) =
∞∑

n=1

a(n)
ns

with a(n) := |D|−1/2 · M(P; n), (73)

L(M∗; s) =
∞∑

n=1

b(n)
ns

with b(n) := (−1)
m−2p

4 · N m
4 · M∗ (̂P; n). (74)

Further, we put

�N (s;M) =
(

2π√
N

)−s
· 	(s) · L(M; s),

�N (s;M∗) =
(

2π√
N

)−s
· 	(s) · L(M∗; s),

and

a(0) = (−1)
m−p
2 (2π )−

m
2 · 	

(m
2

) ∫

SO(Y )R/SO(Y )Z
d1g, (75)

b(0) = i−
m
2 · (2π )−m

2 · 	
(m
2

)
N

m
4 |D|−1/2

∫

SO(Y )R/SO(Y )Z
d1g. (76)

Then Theorem 1 implies that the following lemma holds:

Lemma 15 Assume that m − p is even. Both �N (s;M) and �N (s;M∗) can be continued
analytically to the whole s-plane, satisfy the functional equation

�N (s;M) = i
m
2 �N

(m
2

− s;M∗) ,

and the function

�N (s;M) + a(0)
s

+ i
m
2 · b(0)
m
2 − s

is holomorphic on the whole s-plane and bounded on any vertical strip.

Let r be an odd prime with (N, r) = 1. We denote by ϕ = ( ∗
r
)
the Dirichlet character

defined by the quadratic residue symbol. For a primitive Dirichlet character ψ mod r, we
define Dirichlet series L(M; s,ψ) and L(M∗; s,ψ) by
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L(M; s,ψ) =
∞∑

n=1

ψ(n)a(n)
ns

,

L(M∗; s,ψ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r
∞∑

n=1

b(rn)
(rn)s

−
∞∑

n=1

b(n)
ns

ifm is odd and ψ = ϕ =
(∗
r

)
,

∞∑

n=1

ψ(n)b(n)
ns

otherwise,

where a(n) and b(n) are defined by (73) and (74), respectively. Furthermore, we set

�N (s;M,ψ) =
(

2π
r
√
N

)−s
· 	(s) · L(M; s,ψ),

�N (s;M∗,ψ) =
(

2π
r
√
N

)−s
· 	(s) · L(M∗; s,ψ).

Then, by using Lemma 12, the formulas (10) and (11), we can prove the following

Lemma 16 Assume that m − p is even.

(1) In the case of even m, for any primitive Dirichlet characterψ mod r,�N (s;M,ψ) can
be holomorphically continued to the whole s-plane, bounded on any vertical strip,
and satisfies the following functional equation

�N (s;M,ψ) = i
m
2 Cψ�N

(m
2

− s;M∗,ψ
)

with the constant

Cψ = χK (r)ψ(−N )τψ/τψ .

(2) In the case of odd m, for any primitive Dirichlet character ψ mod r with ψ �= ϕ =( ∗
r
)
,�N (s;M,ψ) can be holomorphically continued to the whole s-plane, bounded on

any vertical strip, and satisfies the following functional equation

�N (s;M,ψ) = i
m
2 C (1)

ψ �N
(m
2

− s;M∗,ψϕ
)

with the constant

C (1)
ψ =

(−1
m

)m−1
2 · χK (r)

(
N
r

)
ψ(−N )ε−1

r τψϕ/τψ .

(3) In the case that m is odd and ψ = ϕ = ( ∗
r
)
,

�N (s;M,ψ) + C (2)
ψ

(r1/2 − r−1/2)b(0)
m
2 − s

can be holomorphically continued to the whole s-plane, bounded on any vertical strip,
and satisfies the following functional equation

�N (s;M,ϕ) = i
m
2 C (2)

ψ �N
(m
2

− s;M∗,ϕ
)

with the constant

C (2)
ψ =

(−1
m

)m−1
2 · χK (r).
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These lemmas show thatWeil’s converse theorems for holomorphicmodular forms can
apply to L(M; s) and L(M∗; s).We refer toMiyake [15, Theorem 4.3.15] forWeil’s converse
theorem for the case of integral weight. For the case of half-integral weight, Shimura [22]
stated a similar converse theorem. Although the details were not given in [22], the proof
is roughly identical to the case of integral weight, and can be found in Bruinier [1]. We
therefore obtain the following

Theorem 3 Assume that m − p is even. We define holomorphic functions F (z) and G(z)
onH by

F (z) = (−1)
m−p
2 (2π )−

m
2 · 	

(m
2

) ∫

SO(Y )R/SO(Y )Z
d1g

+ |D|−1/2 ·
∞∑

n=1
M(P; n)e[nz],

G(z) = i−
m
2 · (2π )−m

2 · 	
(m
2

)
N

m
4 |D|−1/2

∫

SO(Y )R/SO(Y )Z
d1g

+ (−1)
m−2p

4 · N m
4 ·

∞∑

n=1
M∗ (̂P; n)e[nz].

Then, F (z) (resp. G(z)) is a holomorphic modular form for 	0(N ) of weight m/2 with
character χK (resp. χKN ). Further we have

F
(

− 1
Nz

)
(
√
Nz)−m/2 = G(z).

Remark 5 If p is even, we can prove the same assertion forM(P;−n). Theorem 2 excludes
the case where both m and p are even, but Theorem 3 shows that both ζ+ and ζ− corre-
spond to holomorphic modular forms in this case.
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