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Abstract

We prove that the Riemann zeta-function ζ (σ + it) has no zeros in the region
σ ≥ 1 − 1/(55.241(log|t|)2/3(log log|t|)1/3) for |t| ≥ 3. In addition, we improve the
constant in the classical zero-free region, showing that the zeta-function has no zeros in
the region σ ≥ 1 − 1/(5.558691 log|t|) for |t| ≥ 2. We also provide new bounds that
are useful for intermediate values of |t|. Combined, our results improve the largest
known zero-free region within the critical strip for 3 · 1012 ≤ |t| ≤ exp(64.1) and
|t| ≥ exp(1000).
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1 Introduction
Let ζ (s) denote the Riemann zeta-function, where s = σ + it is a complex variable. All
non-trivial zeros of ζ (s) lie in the critical strip with 0 < σ < 1. Determining regions
in the critical strip that are devoid of zeros of ζ (s) is of great interest in number theory.
Such regions take the shape σ ≥ 1 − 1/f (|t|) for some function f (t) tending to infinity
with t. The so-called classical zero-free region has f (t) = R0 log t, where R0 is a positive
constant. An asymptotically larger region, proved by Korobov [20] and Vinogradov [35],
has f (t) = R1(log t)2/3(log log t)1/3, for some constant R1 > 0.
Considerable effort has been made to make these results explicit, and we briefly recall

the sharpest zero-free regions known. For the Korobov–Vinogradov region, in 2000 Ford
[10] (see also [11] for minor corrections) established two explicit bounds, one holding for
essentially all t, and a larger one holding for sufficiently large t. In the former case, Ford
proved that there are no zeros of ζ (s) in the region

σ ≥ 1 − 1
57.54(log|t|)2/3(log log|t|)1/3 , |t| ≥ 3. (1.1)

In the latter case, Ford showed that there are no zeros when t is sufficiently large and

σ ≥ 1 − 1
49.13(log|t|)2/3(log log|t|)1/3 . (1.2)
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This was recently slightly improved by Nielsen [22], who showed that there are no zeros
with

σ ≥ 1 − 1
49.08(log|t|)2/3(log log|t|)1/3 (1.3)

for sufficiently large |t|. For the classical region, in 2015 the first two authors [21] proved
that the region

σ ≥ 1 − 1
5.573412 log|t| , |t| ≥ 2 (1.4)

is devoid of zeros of the zeta-function. This region is wider than that of (1.1) for all
|t| ≤ exp(10151.5).
We improve (1.1), (1.3) and (1.4) in this article. For the first of these, we establish the

following theorem.

Theorem 1.1 There are no zeros of ζ (σ + it) for |t| ≥ 3 and

σ ≥ 1 − 1
55.241(log|t|)2/3(log log|t|)1/3 . (1.5)

Our improvement in Theorem 1.1 over (1.1) is a result of several ingredients.

• We employ a trigonometric polynomial of large degree: this produces our largest
improvement.

• We optimize the choice of certain parameters to account for secondary error terms.
• We use improved intermediate zero-free regions to cover medium-sized t values

where the argument for the asymptotic region does not perform as well.
• We employ sharper explicit estimates on the growth of the zeta-function in the critical

strip.
• We use a new height up to which the Riemann hypothesis (RH) has been proved.

It appears substantially more difficult to improve the constant in the asymptotic region
(1.3). We identify three potential avenues of improvement: using a better smoothing
function, finding a more favorable trigonometric polynomial, and improving the constant
B inRichert’s bound—see (3.1). In [13] and [37], improvements related to thefirst approach
have been largely explored. In this work, we exploit the second method to produce the
following improvement.

Theorem 1.2 For sufficiently large |t|, there are no zeros of ζ (σ + it) with

σ ≥ 1 − 1
48.1588(log|t|)2/3(log log|t|)1/3 . (1.6)

We remark that Nielsen’s result (1.3) improved (1.2) by replacing a particular trigono-
metric polynomial that was used in Ford’s argument. Ford used a polynomial of degree
4, while Nielsen adopted one of degree 5 (see Sect. 3.3). We use polynomials of substan-
tially larger degree here for our improvements. Also, we mention that Khale [19] recently
established analogues of Theorems 1.1 and 1.2 for Dirichlet L-functions. While some of
the ingredients we employ in this article do not appear to be suitable for use with Dirichlet
L-functions, we note that the use of higher-degree trigonometric polynomials may lead
to some improvements in [19].
For the classical region, in [21] the inequality (1.4) was established by extending some

work of Kadiri [18] by constructing a more favorable trigonometric polynomial, by opti-
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mizing some analytic arguments, and by employing the verification of RH up to 3.06 ·1010
from [26]. It was also recorded in [21] that if RH were verified for |t| ≤ 3 · 1011, then the
constant in (1.7) could be replaced by 5.5666305, and this is now permissible due to the
verification performed in [28]. We take the opportunity here to record a further improve-
ment for the classical region, using two ideas. First, RH was verified for |t| ≤ 3 · 1012
in [28]. Second, in 2014, Jang and Kwon [16] derived another improvement to Kadiri’s
result by different means, involving the replacement of a particular smoothing function
employed in [18], and we incorporate this as well. We prove the following theorem.

Theorem 1.3 There are no zeros of ζ (σ + it) for |t| ≥ 2 and

σ ≥ 1 − 1
5.558691 log|t| . (1.7)

We remark that the region (1.7) is wider than that of (1.5) for |t| < exp(8928).
In order to obtain a good constant in Theorem 1.1, it is necessary to deduce another

zero-free region to cover medium-sized values of t, in addition to (1.7). By employing new
bounds on the growth rate of ζ (1/2 + it) given by Patel [23],1 we establish the following
theorem.

Theorem 1.4 (Intermediate zero-free region) There are no zeros of ζ (σ + it) for |t| ≥
exp(1000) and

σ > 1 − 0.05035
h(t)

+ 0.0349
h2(t)

,

where h(t) = 27
164 log|t| + 7.096.

We record one additional result of Ford: from [10, Thm. 3], we see that if t ≥ 1.88 · 1014
then ζ (σ + it) �= 0 for

σ ≥ 1 − 0.04962 − 0.0196
J (t)+1.15

J (t) + 0.685 + 0.155 log log t
, (1.8)

where J (t) = 1
6 log t+log log t+log 3. As is common in splicing explicit bounds in number

theory, we require intermediate results, such as (1.8). This is because some functions, such
as the h(t) in Theorem 1.4, are ultimately smaller (and hence better for our applications)
than others, such as the J (t) in (1.8).We also note that J (t) comes from taking the logarithm
of the right side of the bound |ζ (1/2 + it)| ≤ 3t1/6 log t (t ≥ 3) found in [4]. The leading
constant 3 in this bound has subsequently been reduced in [14,15,27], ultimately to 0.618
(for t ≥ 3); this can be substituted directly in (1.8) to obtain a sharper region.
By combining these results, we may summarize the largest known zero-free region for

the Riemann zeta-function within the critical strip for each height t. For |t| ≤ 3 · 1012, all
zeros are known to lie on the critical line. The region of Theorem 1.3 provides the best
known bound for 3 · 1012 < |t| ≤ exp(64.1), then for exp(64.1) < |t| ≤ exp(1000) the
expression (1.8) produces the widest region. (The first value changes to exp(46.1) when
we use 0.618 in place of 3 in the bound for |ζ (1/2 + it)|.) After this, for exp(1000) <

|t| ≤ exp(52242), Theorem 1.4 is best, and for |t| > exp(52242) the result of Theorem 1.1
produces the widest known region.

1Improved bounds recently appeared in the preprint [24].
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This article is organized in the followingmanner. Section2 lists some immediate applica-
tions of our results. Section 3 reviews some results we require from the literature. Section 4
contains a number of lemmas that we require for the proofs of our main theorems. Sec-
tion 5 contains the proof of Theorem 1.1. Section 6 describes the proof of Theorem 1.4,
and Sect. 7 has the proof of Theorem 1.2. Section 8 summarizes our computations for
determining the constants in Theorems 1.1 and 1.2. Section 9 describes the improvement
in the classical region for Theorem 1.3, and Sect. 10 suggests some potential future work.

2 Some immediate applications
One application of Theorem 1.1 concerns the existence of primes between successive
cubes. Dudek [7] used (1.1) to show that there exists a prime between n3 and (n + 1)3

for all n ≥ exp(exp(33.3)). This was subsequently improved by Cully-Hugill [5] to all n ≥
exp(exp(32.892)). By substituting Theorem 1.1 into [5, §4] and choosing α = 1/3+10−13,
we obtain the modest improvement n ≥ exp(exp(32.76)).
Another application is explicit bounds on the error termof the primenumber theorem—

see Johnston and Yang [17], who developed work of Platt and Trudgian [29] particularly
with reference to the Korobov–Vinogradov zero-free region. Other related recent works
such as [2,3,6,8] required explicit zero-free regions to obtain precise estimates.
As per Ford [9, p. 566], one can use Theorem 1.2 to improve on the error term in the

prime number theorem. From the work of Pintz [25], a zero-free region like that in (1.6)
with c in place of 48.1588 shows that

π (x) − li(x) � x exp{−d(log x)3/5(log log x)−1/5},
where

d =
(

56

22 · 34 · c3
)1/5

.

With c = 48.1588 from Theorem 1.2, we obtain d ≥ 0.2123, improving on the current
best value of 0.2098.

3 Preliminaries
To assist in our argument we review the following results from the literature.

3.1 Bounds on ζ(s) near the 1-line

The underlying philosophy in furnishing zero-free regions is to estimate ζ (s) in a region
close to the line σ = 1. Richert’s theorem [31] (see also [33, p. 135]), accomplishes this by
proving that there exist positive constants A and B for which

|ζ (σ + it)| ≤ A|t|B(1−σ )3/2 (log|t|)2/3, |t| ≥ 3,
1
2

≤ σ ≤ 1. (3.1)

Ford [9] obtains a relatively small value of B while maintaining a completely explicit value
ofA: in (3.1) one can takeA = 76.2 and B = 4.45.We remark in passing that the advances
made in [30] may be applied to Ford’s paper [9], and should lead to a slight reduction in
the value of B in (3.1).
We also require bounds on ζ (s) slightly to the right of σ = 1. A result recorded in

Bastien and Rogalski [1], originally due to O. Ramaré, states that for σ > 1, we have

ζ (σ ) ≤ eγ (σ−1)

σ − 1
, (3.2)
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where γ is Euler’s constant. Using the Maclaurin series for ex one sees that the approxi-
mation in (3.2) is very good.

3.2 Bounds on ζ(s) on the half-line

We recall the recent sub-Weyl bound due to Patel [23]: for |t| ≥ 3, we have

|ζ ( 12 + it)| ≤ 307.098|t|27/164 . (3.3)

This is required in the proof of Theorem 1.4 in Sect. 6.

3.3 Trigonometric polynomials

For any K ≥ 2, let

PK (x) =
K∑

k=0
bk cos(kx)

where bk are constants such that bk ≥ 0, b1 > b0 and PK (x) ≥ 0 for all real x. We refer to
PK (x) as a K th degree non-negative trigonometric polynomial. Choosing a favorable PK
plays an integral part in determining the size of the zero-free region: see [21] for a detailed
history of this problem.
In [10], Ford employed the degree 4 polynomial

P4(x) = (0.225 + cos x)2(0.9 + cos x)2, (3.4)

while Nielsen [22] adopted the degree 5 function

P5(x) = (1 + cos x)(0.1974476 . . . + cos x)2(0.8652559 . . . + cos x)2. (3.5)

We employ simulated annealing in a large-scale search to determine favorable trigono-
metric polynomials of higher degree: see Sect. 8.
We utilize two polynomials in this article. Theorem 1.1 relies on a polynomial P40(x)

with degree 40 having

b0 = 1, b1 = 1.74600190914994, b =
40∑
k=1

bk = 3.56453965437134, (3.6)

while Theorem 1.2 employs a polynomial P46(x) with degree 46 where

b0 = 1, b1 = 1.74708744081848, b =
46∑
k=1

bk = 3.57440943022073. (3.7)

We show the full polynomials in Tables 1 and 2 in Sect. 8, and provide details there on the
process used to find these polynomials as well as a justification that they are non-negative.

3.4 Estimates of the zero-counting function

Wealso require bounds on the error termof estimates ofN (T ), the number of zeros of ζ (s)
with 0 ≤ t < T . For largeT , the current best known explicit result is due to Hasanalizade,
Shen and Wong [12, Cor. 1.2], who proved that∣∣∣∣N (T ) − T

2π
log

T
2πe

∣∣∣∣ ≤ 0.1038 log T + 0.2573 log log T + 9.3675 (3.8)

for allT ≥ e. The bound in (3.8) can be improved in the region where RH is known to hold
[28], and for some intermediate values of T as well using [27]. Nevertheless, the bound
in (3.8) is the best available at present for T ≥ 10410. While that bound could be reduced
using (3.3), it suffices for our purposes.
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4 Required lemmas
Before proceeding to the proof of Theorem 1.1 in the next section, we review some useful
lemmas. Throughout, let

L1 = L1(t) = log(Kt + 1), L2 = L2(t) = log log(Kt + 1),

whereK is the degree of the trigonometric polynomial under consideration. Let b0, b1 and
b be as in (3.6) or (3.7). In addition, assume throughout that (3.1) holds. Unless otherwise
stated, our results will remain valid for allA, B > 0 for which (3.1) holds. Since ζ (s) = ζ (s),
it suffices to consider only t > 0 throughout.
As in Ford [10], the main tool used to pass from upper bounds on ζ (s) to a zero-free

region is the “zero-detector”, which expresses −� ζ ′
ζ
(s) as an integral involving ζ (s) over

two vertical lines on either side of σ = 1 (plus a small error term). Concretely, we have
the following lemma.

Lemma 4.1 (Zero-detector for ζ ) Let s = 1 + it with t �= 0 and let ρ run through the
non-trivial zeros of ζ (z). For all η > 0, except for a set of Lebesgue measure 0, we have

−�ζ ′

ζ
(s) = 1

4η

∫ ∞

−∞
log|ζ (s − η + 2ηiu

π
)| − log|ζ (s + η + 2ηiu

π
)|

cosh2 u
du

+ π

2η
∑

|�(s−ρ)|≤η

� cot
(

π (ρ − s)
2η

)
,

where in the sum each zero is counted with multiplicity.

Proof Follows from using the function ζ (z) and z0 = s in [10, Lemma 2.2]. 	

We remark that the sum on the right side of the corresponding expression in [10,

Lemma 2.2] is somewhat more complicated, to account for poles of the function. In our
application, the only pole is at z = 1, and because s = 1+ it, any contribution in the sum
from this pole is 0. We also remark that the precise nature of the exceptional set for η is
described in [10].
As is common practice, instead of working directly with Lemma 4.1, we consider a

“mollified” version, presented in Lemma 4.2. The choice of the smoothing function f sig-
nificantly influences the eventual zero-free region constant. As in Ford [10], we base our
choice of f on Lemma 7.5 of Heath-Brown [13]. Jang and Kwon [16] obtained improve-
ments for the classical zero-free region by choosing a different mollifier described by
Xylouris in [37], however we find that such a choice of f did not produce significant
improvements here for the Korobov–Vinogradov zero-free region.
We construct the smoothing function the same way as Ford [10], which we briefly

review here for completeness. Given a qualifying trigonometric polynomial P(x) =∑K
k=0 bk cos(kx), let θ = θ (b0, b1) be the unique solution to the equation

sin2 θ = b1
b0

(1 − θ cot θ ) , 0 < θ <
π

2
. (4.1)

For the choice of b0, b1 in (3.6), we compute

θ = 1.13331020636698 . . . (4.2)

and for (3.7) we find

θ = 1.13269369969232 . . . .
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Define

g(u) :=
⎧⎨
⎩
(cos(u tan θ ) − cos θ ) sec2 θ , |u| ≤ θ cot θ ,

0, otherwise,

w(u) := (g ∗ g)(u) =
∫ ∞

−∞
g(t)g(u − t) dt,

where, in particular,

w(0) = (θ tan θ + 3θ cot θ − 3) sec2 θ . (4.3)

We then choose the smoothing function to be

f (u) := λeλuw(λu) (4.4)

where λ is a positive parameter to be fixed later. Note that f (u) ≥ 0 since g(u) ≥ 0.
We will primarily require properties about the Laplace transform of this smoothing

function. Let

F (z) :=
∫ ∞

0
e−zuf (u) du

denote the Laplace transform of f (u), and similarly let W (z) be the Laplace transform of
w(u). The function W (z) has a closed formula, given in Ford [10],2 which we state here
for convenience:

W (z) = w(0)
z

+ W0(z),

W0(z) :=
c0
(
c2
[
(z + 1)2e−2θ (cot θ )z + z2 − 1

]
− c1z − c3z3

)
z2(z2 + tan2 θ )2

, (4.5)

where

c0 := 1
sin θ cos3 θ

, c1 := (θ − sin θ cos θ ) tan4 θ ,

c2 := tan3 θ sin2 θ , c3 := (θ − sin θ cos θ ) tan2 θ .

In particular, via a direct substitution, we have

W ′(0) = csc θ (3(4θ2 − 5) + θ (15 − 4θ2) cot θ ) − 3θ sec θ

3 sin θ
. (4.6)

This will be useful later in the proof of Lemma 6.1. Meanwhile, for R ≥ 3, and using (4.5),
we have

|W0(z)| ≤ H (R)
|z|3 , �z ≥ −1, |z| ≥ R,

where

H (R) := c0(
1 − tan2 θ

R2

)2
{
c2
(R + 1)2

R3
(
e2θ cot θ + 1

)+ c1
R2 + c3

}
.

This allows us to bound F0(z) := F (z) − f (0)/z, via the identity

F (z) = W
( z

λ
− 1
)
,

2The expressions forW0(z), c1 and c3 differ from those in [10], since they account for an error, which was corrected in
[11].
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which is a consequence of (4.4). We obtain, as per Ford,

|F0(z)| ≤ C5(R)
λf (0)
|z|2 , �z ≥ 0, |z| ≥ (R + 1)λ,

where

C5(R) := H (R)(R + 1)2

R3w(0)
+ 1 + 1

R
. (4.7)

The motivation for bounding |F0(z)| is shown in the next lemma.

Lemma 4.2 Let f be a non-negative, compactly supported real function with a continuous
derivative and an absolutely convergent Laplace transform F (z) for �z > 0, where

F (z) :=
∫ ∞

0
f (t)e−zt dt,

and write F0(z) := F (z) − f (0)
z . Suppose further that for 0 < η ≤ 3/2 we have

|F0(z)| ≤ D
|z|2 ∀ �z ≥ 0, |z| ≥ η,

for some absolute constant D. If s = 1 + it with t ≥ 1000, then

�
∑
n≥1

�(n)f (log n)
ns

≤ −
∑

|1+it−ρ|≤η

�
{
F (s − ρ) + f (0)

(
π

2η
cot
(

π (s − ρ)
2η

)
− 1

s − ρ

)}

+ f (0)
4η

{∫ ∞

−∞
log|ζ (s − η + 2ηui

π
)|

cosh2 u
du −

∫ ∞

−∞
log|ζ (s + η + 2ηui

π
)|

cosh2 u
du
}

+ D

⎧⎨
⎩1.8 + log t

3
+

∑
|s−ρ|≥η

1
|s − ρ|2

⎫⎬
⎭

(4.8)

and
∑
n≥1

�(n)f (log n)
n

≤ F (0) + 1.8D.

Proof This follows by combining [10, Lemma 4.5] with [10, Lemma 4.6]. 	

We remark that some negligible improvements are possible if one takes t ≥ t0 for some
t0 > 1000. These do not affect our final results, given the number of decimal places to
which they are stated.
We seek to determine an upper bound on linear combinations of the right side of

(4.8). We briefly outline our approach, which follows Ford [10], while incorporating some
improvements from Sect. 3. The first integral,∫ ∞

−∞
log|ζ (s − η + 2ηui

π
)|

cosh2 u
du,

is taken on a vertical line inside the critical strip, and it can be bounded using Lemma 4.3
below and (3.1). This term is by far the most significant, and highlights the sensitivity of
the resulting zero-free region to the constants A and B appearing in (3.1). The contour
of the second integral lies outside the critical strip, and for this we employ Ford’s trick of
combining log|ζ (·)| terms, combined with (3.2). This term is the subject of Lemma 4.4.
Next, the sum∑

|s−ρ|≥η

1
|s − ρ|2
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is bounded with the aid of N (t, v), the number of zeros ρ with |1 + it − ρ| ≤ v. This is
discussed in Lemmas 4.5 and 4.6. In Lemma 4.7, we combine all these results with the
trigonometric polynomial (3.6) to establish an inequality involving the real and imaginary
parts of a zero.

Lemma 4.3 (Ford [10]) Suppose that, for fixed 1
2 ≤ σ < 1 and t ≥ 3, we have

|ζ (σ + iτ )| ≤ XtY logZ t, ∀ 1 ≤ |τ | ≤ t,

where X, Y, Z are positive constants and Y + Z > 0.1. If 0 < a ≤ 1
2 , t ≥ 100 and

1
2 ≤ σ ≤ 1 − t−1, then

1
2

∫ ∞

−∞
log|ζ (σ + it + iau)|

cosh2 u
du ≤ logX + Y log t + Z log log t.

Proof See [10, Lemma 3.4]. 	


Lemma 4.4 Let K > 1 and bj be the coefficients of a non-negative trigonometric polyno-
mial of degree K . Furthermore let t1, t2 ∈ R and η > 0. Then

∫ ∞

−∞
1

cosh2 u

K∑
j=1

bj log|ζ (1 + η + ijt1 + iut2)| du ≥ −2b0 log ζ (1 + η).

Proof This is an immediate generalization of [10, Lemma 5.1] to degree K polynomials.
	


Lemma 4.5 If 0 < η ≤ 1/4, t ≥ 100, and (3.1) holds for some A > 1 and B > 0, then

N (t, η) ≤ 1.3478η3/2B log t + 0.479 + logA − log η + 2
3 log log t

1.879
.

Proof Same as in [10, Lemma 4.2].3 Using η in place of R in Ford’s treatment, we replace
the second inequality in (4.1) of [10] with

1
|ζ (s + 2.5η + iv)| ≤ ζ (1 + 3.1421η) ≤ e3.1421γ η

3.1421η

for real v, where the last inequality follows from (3.2). Hence, since η ≤ 1/4,

log
(
e3.1421γ η

3.1421η

)
= 3.1421γ η − log η − log 3.1421 ≤ − log η − 0.6914.

The constant to replace the 0.49 appearing in [10, Lemma 4.2] is then

1
0.3758

(
1

3.1421
− 0.6914

5

)
≤ 0.479, (4.10)

and the result immediately follows from this. 	


3We take this opportunity to correct a minor oversight in the corresponding statement in [10]. There, in our notation
the hypothesis required 0 < η ≤ 1/4, and then the inequality

ζ (σ ) ≤ 0.6 + 1
σ − 1

, 1 < σ ≤ 1.06 (4.9)

from [10, Lemma 3.1] was used with σ = 1 + 3.1421η, so here one should require 0 < η ≤ 0.019 . . . instead. This
does not affect subsequent work: this lemma was employed in the proof of [9, Thm. 2] where η was restricted by
0 < η ≤ 0.01. In our treatment, we retain the condition 0 < η ≤ 1/4, and opt to achieve a result of similar strength by
using (3.2) in place of (4.9).
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Lemma 4.6 Suppose 0 < η ≤ 1/4, t ≥ 10000, and (3.1) holds for some A > 1 and B > 0.
Then

∑
|1+it−ρ|≥η

1
|1 + it − ρ|2 ≤

[
5.409 + 5.392B

(
1√
η

− 2
)]

log t + 206.7

+ 1
η2

{
logA − log η + 2

3 log log t
1.879

+ 0.213 − N (t, η)
}
.

Proof We proceed in the same manner as [10, Lemma 4.3], except we use (3.8) in place
of a classical inequality of Rosser [32]. In addition, we propagate the new constant (4.10)
in the bound for N (t, η) through to this bound, where we obtain

0.479 − 1
2(1.879)

≤ 0.213.

	

Equipped with these lemmas, we are now prepared to form an inequality involving the

real and imaginary parts of a zero ρ = β + it.

Lemma 4.7 Let 0 < η ≤ 1/4 and R ≥ 3 be constants, and suppose (3.1) holds for some
A > 1 and B > 0. Suppose β + it is a zero satisfying t ≥ 10000 and 1 − β ≤ η/2. Further,
suppose that there are no zeros in the rectangle

1 − λ < �s ≤ 1, t − 1 ≤ �s ≤ Kt + 1,

where λ is a constant satisfying 0 < λ ≤ min
{
1 − β , η/(R + 1)

}
. If b0, b1 and b are

constants associated with a degree K non-negative trigonometric polynomial, then

1
λ

(
cos2 θ − W ′(0)b1

w(0)b0

(
1 − β

λ
− 1
))

≤ 0.087π2 b1
b0

1 − β

η2

+ 1
2η

{
b
b0

(
2
3
L2 + Bη3/2L1 + logA

)
+ log ζ (1 + η)

}

+ C5(R)
b
b0

λ

{
L1
3

+
[
5.409 + 5.392B

(
1√
η

− 2
)]

L1 + 209.1

+ 1
η2

[
log(A/η) + 2

3L2
1.879

+ 0.213
]}

,

with C5(R), w(0) and W ′(0) are defined in (4.7), (4.3) and (4.6) respectively.

Proof We follow the argument of [10, Lemma 7.1], using our Lemma 4.6 instead of [10,
Lemma 4.3], using Lemma 4.4 in place of [10, Lemma 5.1], and using the trigonometric
polynomial (3.6) instead of (3.4). 	

To form an explicit zero-free region for ζ (s), we apply Lemma 4.7 with η as a fixed

function of t. The rate at which η → 0 as t → ∞ determines the shape and width of the
zero-free region. We choose, as in [10],

η(t) := E
(

L2
BL1

)2/3
(4.11)

for some constant E > 0. Ultimately, we take

E := 1.8821259
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in order to attain the constant of 55.241 appearing in Theorem 1.1. This choice replaces
that of

E =
(
4
3

(
1 + b0

b

))2/3
, (4.12)

appearing in Ford [10], where b0 and b are constants from the trigonometric polynomial
in (3.6). Ford’s choice minimizes the asymptotic zero-free region constant, whereas we
choose E to minimize the zero-free region constant holding for all t ≥ 3. The difference
between our choices reflects the presence of a secondary error term that decreases as E
increases, and which is significant for small values of t.

5 Proof of Theorem 1.1
We divide our argument into four sections depending on the size of t. Throughout, we
take

A = 76.2, B = 4.45

in (3.1) as permitted by [9, Theorem 1], and let

ν(t) := 1
55.241(log t)2/3(log log t)1/3

.

First, for 3 ≤ t ≤ H := 3 · 1012, we use the rigorous verification of RH up to height
H in [28]. Next, for H ≤ t < exp(8928), the desired result follows immediately from
Theorem 1.3, since

1
5.558691 log t

≥ ν(t), H ≤ t < exp(8928).

For exp(8928) ≤ t < exp(52238), we use Theorem 1.4, combined with the observation
that

0.05035
h(t)

− 0.0349
h2(t)

> ν(t)

for this range of t, where h(t) is defined in Theorem 1.4. The proof for t ≥ exp(52238)
forms the main part of our argument. For convenience, let

T0 := exp(52238), M1 := 0.048976.

Define the function

Z(β , t) := (1 − β)B2/3(log t)2/3(log log t)1/3 (5.1)

and let

M := inf
ζ (β+it)=0

t≥T0

Z(β , t). (5.2)

IfM ≥ M1, then we are done, since if β + it is a zero with t ≥ T0, then

M1 ≤ M ≤ (1 − β)B2/3(log t)2/3(log log t)1/3

and B2/3/M1 < 55.241. Assume for a contradiction that

M < M1. (5.3)

We will show that this implies M ≥ M1. Under assumption (5.3), there is a zero β + it
such that t ≥ T0 and for which Z(β , t) is arbitrarily close toM. In particular, we may take
a zero satisfying

M ≤ Z(β , t) ≤ M(1 + δ), δ := min
{
10−100

log T0
,
M1 − M

2M

}
. (5.4)
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Note in particular that Z(β , t) < M1. Next, let

λ := λ(t) = M
B2/3L12/3L21/3

.

There are no zeros of ζ (s) in the rectangular region
1 − λ < �s ≤ 1, t − 1 ≤ �s ≤ Kt + 1. (5.5)

This is because if a zero β ′ + it ′ exists in that region, then log t ′ ≤ L1(t ′) and log log t ′ ≤
L2(t ′), so

1 − β ′ < λ(t ′) ≤ M
B2/3(log t ′)2/3(log log t ′)1/3

,

i.e., Z(β ′, t ′) < M and t ′ ≥ t − 1 ≥ T0 − 1. However, if t ′ ∈ [T0 − 1, T0) then by
Theorem 1.4,

1 − β ′ ≥ 0.05035
h(t ′)

− 0.0349
h2(t ′)

≥ 0.05035
h(T0)

− 0.0349
h2(T0)

>
M1

B2/3(log(T0 − 1))2/3(log log(T0 − 1))1/3
≥ M1

B2/3(log t ′)2/3(log log t ′)1/3
so that Z(β ′, t ′) ≥ M1 > M, a contradiction. Note that the third inequality is verified by a
numerical computation. On the other hand if t ′ ∈ [T0, Kt+1], then by (5.2) we also arrive
at a contradiction. Thus any zero β + it must satisfy

λ ≤ 1 − β , (5.6)
thereby proving claim (5.5).
Next, we choose η = EB−2/3(L2/L1)2/3, as in (4.11), with E = 1.8821259. This choice

gives, for all t ≥ T0,

λ ≤ M1

B2/3L2/31 L1/32
= η · M1

EL2
<

η

417.48
, (5.7)

where the last inequality follows from K = 40 and t ≥ T0. Furthermore, using Z(β , t) <

M1 we have that for all t ≥ T0,

1 − β <
M1

B2/3(log t)2/3(log log t)1/3
<

EL2/32

417.48B2/3L2/31
<

η

2
, (5.8)

Finally, by substituting the values of E, T0 and K , we have

η ≤ E
B2/3

(
L2(T0)
L1(T0)

)2/3
<

1
4
. (5.9)

Collecting (5.5), (5.6), (5.7), (5.8) and (5.9), we see that all of the requirements of
Lemma 4.7 are met with R = 416. Substituting b0 = 1, b1 = 1.74600190914994,
b = 3.56453965437134, K = 40 (from (3.6)) into Lemma 4.7 and computing numeri-
cally the values of w(0) andW ′(0), we obtain

1
λ

[
0.17949 − 0.20466

(
1 − β

λ
− 1
)]

≤ 1.5T1 + T2 + C5(R)
b
b0

T3, (5.10)

where

T1 := 1 − β

η2
,

T2 := 1
2η

[
b
b0

(
2
3
L2 + Bη3/2L1 + logA

)
+ log ζ (1 + η)

]
,

T3 := λ

[
L1
3

+
[
5.409 + 5.392B

(
1√
η

− 2
)]

L1 + 209.1

+ 1
η2

{
logA − log η + 2

3L2
1.879

+ 0.213
}]

.
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We proceed by bounding each of the terms T1, T2 and T3. First, using (5.1) we find

T1 = Z(β , t)
B2/3(log t)2/3(log log t)1/3

· B
4/3

E2

(
L1
L2

)4/3

≤ M1B2/3

E2 ·
(
L1
L2

)2/3
·
(

L1
log t

)2/3 1
L2/32 (log log t)1/3

≤ κ1
M1B2/3

E2

(
L1
L2

)2/3
,

(5.11)

where, since t ≥ T0,

κ1 =
(
L1(T0)
L2(T0)

)2/3
· 1
(log T0)2/3(log log T0)1/3

.

Next, using (3.2) and (5.9), we have

log ζ (1 + η) ≤ γ η − log η ≤ 2
3
L2 + 2

3
log

B
L2

− log E + κ2E
B2/3 ,

where

κ2 := γ

(
L2(T0)
BL1(T0)

)2/3
.

Hence

T2 ≤ 1
2η

[
b
b0

(
2
3
L2 + Bη3/2L1 + logA

)
+ 2

3
L2 + 2

3
log

B
L2

− log E + κ2E
B2/3

]

=
[
1
3E

(
b
b0

+ 1
)

+ bE1/2

2b0

]
B2/3L2/31 L1/32

+ 1
2E

[
b
b0

logA + 2
3
log

B
L2

− log E + κ2E
B2/3

]
B2/3 L

2/3
1

L2/32
.

(5.12)

Next, substituting the definition of η, and using λ ≤ ηM1/(EL2) from (5.7), we obtain

T3 ≤ M1

B2/3L2/31 L1/32

[(
κ3 + 5.392B4/3

E1/2

(
L1
L2

)1/3
− 10.784B

)
L1

+ 1
E2

(
BL1
L2

)4/3
{
logA + 4

3L2 + 2
3 log

B
L2 − log E

1.879
+ 0.213

}]

= M1

(
BL1
L2

)2/3
[
5.392
E1/2 + 4

5.637E2 + κ3 − 10.784B
B4/3

(
L2
L1

)1/3

+ 1
E2L2

{
logA + 2

3 log
B
L2 − log E

1.879
+ 0.213

}]
,

(5.13)

where, since t ≥ T0 and L1(T0) > log(KT0), we may take

κ3 = 1
3

+ 5.409 + 209.1
logK + log T0

.

Last, we have
1 − β

λ
− 1 ≤ (1 + δ)

(
L1
log t

)2/3 ( L2
log log t

)1/3
− 1

<

(
1 + 10−100

log T0

)
L1
log t

− 1 ≤ κ4
log T0

,
(5.14)

where, since t ≥ T0,

κ4 := 10−100
(
1 + log(K + T−1

0 )
log T0

)
+ log(K + T−1

0 ).



11 Page 14 of 27 M. J. Mossinghoff et al. Res. Number Theory (2024) 10:11

Combining (5.10), (5.12), (5.13), (5.11) and (5.14), we conclude

1
λ

(
0.17949 − 0.20466κ4

log T0

)
≤ 1

λ

[
0.17949 − 0.20466

(
1 − β

λ
− 1
)]

≤ 1.5T1 + T2 + C5(R)
b
b0

T3

≤ 1.5κ1M1B2/3

E2

(
L1
L2

)2/3
+
[
1
3E

(
b
b0

+ 1
)

+ bE1/2

2b0

]
(BL1)2/3L1/32

+ 1
2E

[
b
b0

logA + 2
3
log

B
L2

− log E + κ2E
B2/3

](
BL1
L2

)2/3

+ C5(R)
b
b0

M1

(
BL1
L2

)2/3
[
5.392
E1/2 + 4

5.637E2 + κ3 − 10.784B
B4/3

(
L2
L1

)1/3

+ 1
E2L2

{
logA + 2

3 log
B
L2 − log E

1.879
+ 0.213

}]
.

At this point we substitute the values A = 76.2, B = 4.45, K = 40, b0 = 1, b =
3.56453965437134, M1 = 0.048976, E = 1.8821259 and R = 416, and using (4.2) and
(4.7) to compute C5(R), we obtain

1
λ

(
0.17949 − 0.755

log T0

)
≤ (BL1)2/3L1/32 [3.25351 + Y (t)]

where

Y (t) := 4.940431
L2

+ 0.136899
L22

− 1.031863
L1/31 L2/32

− 0.177104 log L2
L2

− 0.0179076 log L2
L22

.

(5.15)

A short Mathematica computation is used to verify that Y (t) is decreasing for t ≥ T0.4

Therefore, Y (t) ≤ Y (T0) < 0.4110503. However, from the definition of λ together with
t ≥ T0, we have

M = λB2/3L12/3L21/3 ≥ 0.17949 − 0.755/ log T0
3.25351 + Y (t)

≥ 0.17949 − 0.755/52238
3.25351 + 0.4110503

> 0.04897601 > M1,
(5.16)

hence we have arrived at the desired contradiction.

6 Proof of Theorem 1.4
The proof of this theorem is similar to that of Theorem 1.1. Instead of bounding ζ (s) on
σ = 1 ± η(t), we use upper bounds on ζ (s) on the lines σ = 1/2 and σ = 3/2, i.e., η is
fixed at 1/2. The main disadvantage of this new scheme is that the best known bounds
of ζ (1/2 + it) are of order tθ+ε for some fixed θ > 0, which means that the resulting
zero-free region will only have width O(1/ log t). Nevertheless, the resulting zero-free
region has a better asymptotic constant than (1.4), so we use this result to cover the range
exp(8928) ≤ t ≤ exp(52238).

4Our monotonicity argument is used to overcome a small issue in Ford’s [10] treatment (after corrections in [11]). In
(8.9), the following inequality was used:

0.04893
L2

(
logA + 2

3
log

B
L2

)
≤ 0.0048 logA + 0.0031 log

B
L2

, t ≥ exp(30000).

This should be reversed if t is sufficiently large, as both sides of the inequality are negative.
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Throughout this section, let us define

J (t) := 27
164

log t + log 307.098. (6.1)

This is the logarithmof the sub-Weyl bound in (3.3). First, we require the following lemma,
which corresponds to Lemma 4.7 for this zero-free region.

Lemma 6.1 Suppose ζ (β + it) = 0 where t ≥ exp(1000) and β ≥ 1 − 1712−1. Let b, b0
and K be defined in (3.6). Suppose there exists λ ∈ (0, 1 − β] such that there are no zeros
in the rectangle

1 − λ < �s ≤ 1, t − 1 ≤ �s ≤ Kt + 1.

Then

1
λ

(
0.17949 − 0.20466

(
1 − β

λ
− 1
))

≤ 5.746(1 − β) + b
b0

J (Kt + 1) + 0.851

+ 1.0146λ
b
b0

(3.5691L1 + 5.316L2 + 18.439),

where J (t) is defined in (6.1).

Proof We largely follow the argument of [10, Lemma 9.2]. The main changes are to
replace Ford’s definition of J (t) with (6.1), use a better trigonometric polynomial, increase
the height from which the zero-free region takes effect (to improve its constants) and
more carefully bound some secondary terms that arise.
Let R := 1

2(1−β) − 1 ≥ 855. Using the trigonometric polynomial (3.6), and with C5(R)
as defined in (4.7), we have C5(R) ≤ 1.0146. Suppose that |z| ≥ (R + 1)λ. By the lemma’s
assumptions, this implies |z| ≥ 1/2 and hence, as in Sect. 4,

|F0(z)| ≤ C5(R)
λf (0)
|z|2 ≤ 1.0146λf (0)

|z|2 , �z ≥ 0, |z| ≥ (R + 1)λ.

Therefore the conditions of Lemma 4.2 are satisfied with D = 1.0146λf (0) and η = 1/2.
Hence for �s = 1 and �s ≥ 1000 we have

�
∑
n≥1

�(n)f (log n)
ns

≤ −
∑

|s−ρ|≤ 1
2

�
{
F (s − ρ) + f (0)

(
π cot (π (s − ρ)) − 1

s − ρ

)}

+ f (0)
2

∫ ∞

−∞
log|ζ (s − 1

2 + ui
π
)| − log|ζ (s + 1

2 + ui
π
)|

cosh2 u
du

+ D

⎧⎪⎨
⎪⎩1.8 + log t

3
+

∑
|s−ρ|≥ 1

2

1
|s − ρ|2

⎫⎪⎬
⎪⎭

(6.2)

and
∞∑
n=1

�(n)f (log n)
n

≤ F (0) + 1.8D.

We sum (6.2) for s = 1 + ijt for 0 ≤ j ≤ K , and using log(jt) ≤ L1 and the sub-Weyl
bound (3.3) on the line σ = 1/2, along with the fact that J (t) is increasing, we find

0 ≤
∞∑
n=1

�(n)
n

f (log n)PK (t log n) = �
K∑
j=0

bj
∞∑
n=1

�(n)
n1+ijt f (log n)
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≤ −�
K∑
j=0

bj
∑

|1+ijt−ρ|≤ 1
2

{
F (1 + ijt − ρ) + f (0)

(
π cot(π (1 + ijt − ρ)) − 1

1 + ijt − ρ

)}

+ bf (0)J (Kt + 1) − 1
2

K∑
j=1

bj
∫ ∞

−∞
log|ζ ( 32 + ijt + ui

π
)|

cosh2 u
du + b0F (0)

+ D

⎧⎪⎨
⎪⎩b
(
1.8 + L1

3

)
+ 1.8b0 +

K∑
j=1

bj
∑

|1+ijt−ρ|≥ 1
2

1
|1 + ijt − ρ|2

⎫⎪⎬
⎪⎭ , (6.3)

where PK (x) is any degree K non-negative trigonometric polynomial as defined in § 3.3.
Note that thefirst inequality abovedepends on thenon-negativity of f , which is guaranteed
by (4.4) and the fact that w(u) is an autoconvolution.
We now seek an upper bound for the right side of (6.3), following largely the same

arguments as Ford. First, as in the proof of [10, Thm. 3], we have

−1
2

∫ ∞

−∞
1

cosh2 u

K∑
j=1

bj log
∣∣∣∣ζ
(
3
2

+ ijt + iu
π

)∣∣∣∣ du ≤ 0.851b0.

Note that this bound relies on special properties of ζ (s) on the line σ = 3/2, and is sharper
than what Lemma 4.4 implies. Next, by [10, eq. (9.2)], we have

K∑
j=1

bj
∑

|1+ijt−ρ|≥ 1
2

1
|1 + ijt − ρ|2

≤
K∑
j=1

bj
[
3.2357 log(jt) + 5.316 log log(jt) + 16.134 − 4N

(
jt,

1
2

)]

≤ b [3.2357L1 + 5.316L2 + 16.134] − 4
K∑
j=1

bjN
(
jt,

1
2

)
.

(6.4)

In [10, eq. (7.7) of Lemma 7.1 and eq. (9.5)] it is established, via the maximum modulus
principle, that if �z ≥ πλ and |1 + ijt − ρ| ≤ 1

2 , then

− �
{
F (1 + ijt − ρ) + f (0)

(
π cot(π (1 + ijt − ρ)) − 1

1 + ijt − ρ

)}
≤ cπ2λf (0), (6.5)

where

c := 4
π2 + π (1 − β)H (R)

w(0)(π
2 − π (1 − β))2

.

We use (6.5) for j �= 1. If j = 1, then 1 + ijt − ρ = 1 − β and cot x − x−1 ≥ −0.3334x for
0 < x ≤ π (1 − β), so

− �
{
F (1 + it − ρ) + f (0)

(
π cot(π (1 + it − ρ)) − 1

1 + it − ρ

)}

≤ F (1 − β) − 0.3334π2f (0)(1 − β).
(6.6)

Combining (6.5) and (6.6), and noting that cπ2λf (0)b1N (t, 12 ) ≥ 0, we find

− �
K∑
j=0

bj
∑

|1+ijt−ρ|≤ 1
2

{
F (1 + ijt − ρ) + f (0)

(
π cot(π (1 + ijt − ρ)) − 1

1 + ijt − ρ

)}

≤ −b1
[
F (1 − β) − 0.3334π2f (0)(1 − β)

]+ cπ2λf (0)
K∑
j=0

bjN
(
jt,

1
2

)
.

(6.7)
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Substituting (6.4), (6.5) and (6.7) into (6.3), we obtain

0 ≤ −b1
[
F (1 − β) − 0.3334π2f (0)(1 − β)

]+ (cπ2λf (0) − 4D
) K∑
j=1

bjN
(
jt,

1
2

)

+ f (0) [bJ (Kt + 1) + 0.851b0] + b0F (0)

+ D
{
b
(
1.8 + L1

3
+ 3.2357L1 + 5.316L2 + 16.134

)
+ 1.8b0

}
.

(6.8)

However, from the definition of D and combined with the estimates H (R) ≤ 134.87,
w(0) ≥ 5.64531, we have

cπ2λf (0) − 4D =
[
4 + π (1 − β)H (R)

w(0)(β − 1
2 )2

− 4.0584
]

λf (0) ≤ 0, (6.9)

so we may drop the sum in (6.8). Furthermore,

b0F (0) − b1F (1 − β) = b0W (−1) − b1W
(
1 − β

λ
− 1
)

= b1
(
W (0) − W

(
1 − β

λ
− 1
))

− (b1W (0) − b0W (−1))

= b1
(
W (0) − W

(
1 − β

λ
− 1
))

− b0f (0) cos2 θ

λ
. (6.10)

Note thatW (z) is decreasing, since

W ′(z) = d
dz

∫ ∞

0
e−zuw(u) du =

∫ ∞

0

d
dz

e−zuw(u) du = −
∫ ∞

0
ue−zuw(u) du < 0,

and similarly W ′(z) is increasing. Hence by the mean-value theorem, for some 0 < ξ <

(1 − β)/λ − 1 we have

W (0) − W
(
1 − β

λ
− 1
)

=
(
1 − 1 − β

λ

)
W ′(ξ )

≤
(
1 − 1 − β

λ

)
W ′(0)

≤ 0.6617195
(
1 − β

λ
− 1
)
,

(6.11)

where the last inequality follows from (4.6). Substituting (6.9), (6.10) and (6.11) into (6.8),
we obtain the desired result. 	


We now proceed to the proof of Theorem 1.4. Let J (t) be as defined in (6.1), and assume
throughout that t ≥ t0 := exp(1000). Observe that

J (Kt + 1) − J (t) = 27
164

log
(
Kt + 1

t

)
≤ 0.60732.

We will show that if ζ (β + it) = 0 then 1 − β > c(t)(0.05035 − 0.0349c(t)), where

c(t) := 1
J (t) + 1.3686

.

Define Y (β , t) implicitly via the equation

1 − β = 0.05035 − 0.0349c(t)
J (t) + Y (β , t)

. (6.12)
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As t → ∞, we have Y (β , t) → −∞, andM := maxt≥t0 Y (β , t) is well-defined and finite.
If M ≤ 1.3686 then we are done, so assume that M > 1.3686, i.e., that there exists a
zero ρ = β + it such that Y (β , t) = M > 1.3686. We pursue a contradiction argument as
before. By our assumption, there is a rectangular region nearρ that is zero-free, specifically
ζ (s) �= 0 for all s satisfying

1 − λ < �s ≤ 1 and t − 1 ≤ �s ≤ Kt + 1,

with

λ = 0.05035 − 0.0349c(t)
J (Kt + 1) + M

.

Combining this with the definition of Y (β , t), we obtain
1 − β

λ
− 1 = J (Kt + 1) + M

J (t) + M
− 1 = J (Kt + 1) − J (t)

J (t) + M
≤ 0.60732

J (t) + M
.

Applying Lemma 6.1, we obtain

J (Kt + 1) + M = 0.05035 − 0.0349c(t)
λ

≤ b0
b
1
λ

(
0.17949 − 0.20466

(
0.60732
J (t) + M

))

≤ 5.746
b0
b
(1 − β) + J (Kt + 1) + 0.851

b0
b

+ 1.0146λ(3.5691L1 + 5.316L2 + 18.439),
and hence, substituting the values of b0 and b, and using (6.12) with Y (β , t) > 1.3686, we
obtain

M ≤ 1.612(1 − β) + 0.23875 + 1.0146λ (3.5691L1 + 5.316L2 + 18.439)

≤ 0.23875 + c(t)(0.05035 − 0.0349c(t))(34.384 + 3.6227 log t + 5.3958 log log t).

Now for t ≥ t0 = exp(1000), we have
34.384 + 3.6227 log t + 5.3958 log log t

≤ 3.69436 log t ≤ 22.4399(J (t) + 1.3686) = 22.4399
c(t)

,

henceM ≤ 0.23875+ 22.4399(0.05035− 0.0349c(t)) ≤ 1.3686. This achieves our desired
contradiction. To complete the proof, we simply note that

J (t) + 1.3686 ≤ h(t),

where h(t) is defined in the statement of Theorem 1.4.

7 Proof of Theorem 1.2
LetY (t) be as defined in (6.12) and letY1(t) := 0.755/ log t. Observe that the contradiction
argument in the proof of Theorem 1.1 relies on the inequality

M1 ≤ min
t≥T0

⎧⎨
⎩

cos2 θ − Y1(T0)
1
3E

(
b
b0 + 1

)
+ bE1/2

2b0 + Y (t)

⎫⎬
⎭ (7.1)

which is simply (5.16) once the right side is evaluated with specific choices of θ , E, b and
b0. Note in particular that Y1(t), Y (t) → 0 as t → ∞. If we choose E as in (4.12), then
(7.1) is satisfied for any

M1 < cos2 θ

(
4
3

)2/3 b0
b

(
1 + b0

b

)−1/3
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so long as we take T0 sufficiently large. Also, as in [10, §1], by appealing to zero-density
theorems, the number of zeros of ζ (s) in the rectangle 3/4 ≤ �s ≤ 1, T0 − 1 ≤ �s ≤ T0
is O(T 1−δ

0 ) for some δ > 0, so for sufficiently large T0, most such rectangles are free of
zeros. Therefore, following the argument in Sect. 5, there are no zeros in the region

σ > 1 − M1B−2/3

(log|t|)2/3(log log|t|)1/3 , |t| ≥ T0

for sufficiently large T0. Using the polynomial P46(x) with values shown in (3.7), we con-
clude by noting that

cos2 θ

(
4
3

)2/3 b0
b

(
1 + b0

b

)−1/3
B−2/3 ≥ 0.05617776B−2/3 > (48.1588)−1. (7.2)

Remark The value of 0.05617776 improves on 0.05507 appearing in [10] and 0.055127
appearing in [22].

8 Computations
The work of Ford [10] relied in part on the selection of a trigonometric polynomial PK (x)
with certain properties. Recall that

PK (x) =
K∑

k=0
bk cos(kx),

and we require that each bk ≥ 0, that b1 > b0, and that PK (x) ≥ 0 for all real x. Any such
polynomial gives rise to an asymptotic zero-free region of the Riemann zeta-function
having the form

σ ≥ 1 − 1
R2(log|t|)2/3(log log|t|)1/3

when |t| is sufficiently large, and a value for the constant R2 can be computed using the
polynomial. Let θ be the unique solution in (0,π/2) to

b0 sin2 θ = b1(1 − θ cot θ ), (8.1)

and as in (3.6) and (3.7) let

b =
K∑

k=1
bk = PK (0) − b0.

Using (7.2) we may take

R2 = 1
cos2 θ

(
3
4

)2/3 b
b0

(
1 + b0

b

)1/3
B2/3. (8.2)

In [10] and [22] respectively, the polynomials (3.4) and (3.5)with degreesK = 4 and 5were
used. Here we employ a heuristic optimization technique to determine good polynomials
PK (x) with K > 4 that produce an improved constant R2.
As in [21], we apply the technique of simulated annealing to find favorable trigonometric

polynomials PK (x) having the required properties. Simulated annealing is a randomized
algorithm forminimizing a cost functionC over a configuration space S. In general terms,
from a given state s0 ∈ S one selects another state s1 (typically s1 is near s0 in some
sense), and then computes the change in the cost function when moving to the new state:
�C = C(s1)−C(s0). If�C < 0, that is, if the change reduced the value of the cost function,
then one keeps the change, and sets s0 to the value of s1. On the other hand, if �C > 0,
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so the cost function is worse at s1, then one accepts the new state as the new current state
only with a particular probability. This probability depends on a real parameter T known
the temperature. The threshold for accepting a worse state decays exponentially with�C ,
but the decay is gentler whenT is larger: the threshold value is exp(−�C/T ). This process
is repeated many times, with the parameter T gradually decreasing, culminating with a
number of trials where the temperature is effectively 0, so a simple greedy descent. This
optimization procedure is inspired by the physical process of annealing in metallurgy,
which involves heating and slowly cooling a material to improve its crystalline structure.
See [34] for more information on this method and its mathematical properties.
In some optimization problems, simple gradient descent or greedy descent suffices to

determine a good value for the cost function, but if this function achieves many non-
optimal local minima over the configuration space, then something more complicated is
required to allow a search to escape one local minimum and find a better configuration.
Simulated annealing is well-suited for such problems, since its stochastic feature allows
greater exploration of the configuration space.We chose thismethod for the optimization
problem over trigonometric polynomials that we require here, since the landscape of our
cost function is quite complicated over the underlying space.
Supposewe have selected a degreeK .Wemust guarantee that any candidate polynomial

PK (x) has the property that PK (x) ≥ 0 for all real x. For this, instead of manipulating the
coefficients bk of PK (x) directly, we maintain a list of coefficients c0 = 1, c1, c2, …, cK . We
set

g(x) =
K∑

k=0
ckeikx

and let

PK (x) = |g(x)|2∑K
j=0 c2j

.

Thus, b0 = 1 and for k > 0 the coefficient bk is the kth autocorrelation of the sequence
of coefficients ck , suitably scaled:

bk = 2
∑K−k

j=0 cjcj+k∑K
j=0 c2j

.

With this construction, we are assured that PK (x) ≥ 0 for all x.
Given K and a positive real number H , our procedure begins by setting c0 = 1 and

selecting each ck with 1 ≤ k ≤ K uniformly at random from the interval [0, H ], and
then it computes the associated coefficients bk . Then PK (x) ≥ 0 and each bk ≥ 0 by
construction, and we need only check if b1 > b0. If this does not hold we simply pick a
new list of values ck and restart. We typically find a qualifying polynomial in short order,
and we compute its associated value R2 using (8.2). We then employ simulated annealing
to search for better polynomials from this starting point.
In this process, we maintain a current maximum step size S and temperature T . Given

these values, we perform an adjustment to our current polynomial for a certain number of
iterationsN . In each iteration, we select a positive integer k < K at random, and a random
real value s ∈ [−S, S], then add s to ck and perform theO(K ) operations required to update
the bk values. If any bk < 0, or if b1 ≤ b0, then we reject this adjustment and return ck
to its prior value. Otherwise, we compute the value R2 for the adjusted polynomial, using
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Fig. 1 The trigonometric polynomials employed in the proofs of Theorems 1.1 and 1.2 respectively, plotted
over [π/2,π ]

Newton’s method to determine θ in (8.1). If the new value is smaller than our prior value,
then we keep this adjustment and move to the next iteration. If the new value is larger
than our prior value, then we keep the adjustment with probability exp(−�R2/T ), where
�R2 denotes the change in the value of R2, otherwise we reject it and return ck to its
prior value. For a fixed value of S, our method executes N iterations for each value of
a decreasing sequence of temperature values T , culminating with the effective selection
T = 0, so where only improvements to R2 are allowed. We repeat this for several values
of S, which decay exponentially.
We implemented this procedure in C++, and used it to search for favorable polynomials

with degree from K = 10 to K = 72. In each case we typically selected H ∈ [100, 200],
step values S decreasing gradually from 50 or 60 and slowly decreasing to approximately
2, using about twelve temperature values T , and selecting N near 8000. We found many
polynomials with R2 < 48.18, and our best polynomial has degree 46 and is recorded in
Table 1. It produces

R2 = 48.1587921551117,

which we employ in the statement of Theorem 1.2. Figure 1b shows a plot of this polyno-
mial over the interval [π/2,π ].
For the result in Theorem 1.1, we employed two similar procedures. First, we amended

the objective function to compute a value R1 in the zero-free region for all |t| ≥ 3.
However, each iteration of this computation was much slower, so our computations here
were limited. Indeed, we restricted our searches to degrees K ≤ 28 in this case due to
the greater computational complexities. Second, we used the objective function for the
asymptotic constant, and reset our parameters to allow the step size to decrease more
rapidly while greatly increasing the number of iterations N per round (taking N between
105 and 106), as well as the number of total number searches performed per degree
selection. This allowed for a much larger search, and we tested degrees K ≤ 55 with this
strategy. Each search recordedpolynomials optimized for the asymptotic constantR2, then
these polynomials were tested to determine their R1 value for Theorem 1.1. One degree 40
polynomial found with this procedure had an asymptotic constant of R2 ≈ 48.162, which
is inferior to the polynomial displayed in Table 1, but it had the best value for R1. We used
this polynomial as our initial state in a further annealing procedure that optimized for R1
to determine an additional small improvement. Our final polynomial is listed in Table 2.
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Table1 P46(x) =∑46
k=0 bk cos(kx) = |∑46

k=0 cke
ikx |2/∑46

k=0 c
2
k , with b =∑46

k=1 bk

k ck bk k ck bk

0 1 1 24 49282.888742825 0.000127104592072581

1 338.377844758599 1.74708744081848 25 −72469.9665724928 1.74058423843506 · 10−7

2 −219.537480547081 1.14338015090023 26 −80343.7855839228 6.156980223188 · 10−9

3 −736.781312848966 0.521864216745001 27 130557.454262211 7.4923012998548 · 10−5

4 914.902037465737 0.132187571762225 28 456655.665589724 6.29610657045172 · 10−5

5 1915.78694475716 1.44250682908725 · 10−7 29 686366.255781866 4.51492091998615 · 10−7

6 −1310.28600595906 4.69075278525482 · 10−9 30 690091.748824027 1.76696516341167 · 10−8

7 −3389.853917904 0.0141904926848435 31 504386.928024044 3.57616762286565 · 10−5

8 1732.46060916218 0.00859097729886965 32 256781.756010027 2.9356535048273 · 10−5

9 6943.01235038993 5.05758761820625 · 10−7 33 60405.4597040306 2.6547976338407 · 10−7

10 −278.171504957099 4.42284301054098 · 10−10 34 −37039.4291423529 7.39578841754684 · 10−7

11 −11594.9052445657 0.00262452919575262 35 −49829.9664619879 1.5703528751761 · 10−5

12 −4279.8222109347 0.0018969952017721 36 −22696.5925525196 1.16349907747152 · 10−5

13 14539.7736361703 4.69472495111911 · 10−10 37 1689.57285600626 1.01423339047177 · 10−7

14 11710.3298598379 2.18058618368512 · 10−7 38 9780.98700327532 1.71248131672039 · 10−6

15 −18824.0950949349 0.000818384876659817 39 10336.0633101459 7.84636117271159 · 10−6

16 −33323.9900467912 0.000639651965532567 40 9993.04428459519 5.93829512034697 · 10−6

17 −663.769351563045 3.11262094946825 · 10−8 41 9558.78229646887 9.47232309558493 · 10−7

18 34162.7992046244 7.74994211145798 · 10−7 42 7861.68784142526 4.84440446543232 · 10−8

19 7425.01374396162 0.000329183630974004 43 6657.72906076572 9.72548049252508 · 10−7

20 −56820.1949038606 0.000268358318561904 44 4736.89926522741 8.45180184576162 · 10−7

21 −60583.1989268389 4.43747297378809 · 10−7 45 2233.04706685592 2.25111200007826 · 10−7

22 27278.3371854473 1.87358718910571 · 10−7 46 504.683217557847 6.56678999833493 · 10−10

23 101206.908417904 0.000151428354073652 b = 3.57440943022073

This polynomial P40(x) produced the value R1 = 55.241 used for Theorem 1.1. Figure 1a
displays a plot of this polynomial over [π/2,π ].
It is likely that better polynomials exist in these optimization problems, but perhaps not

much better, given the diminishing returns we witnessed in our searches. It seems likely
at least that finding better polynomials would require substantially more computation if
simulated annealing is employed. For example, whilewe performed searches using degrees
as large as K = 72, the configuration space at the higher degrees is so large that it was
difficult to explore extensively without more computations.
We remark that all numerical values in Tables 1 and 2 are rounded at fifteen significant

digits.

9 The classical zero-free region
In 2005, Kadiri [18] established the value R0 = 5.69693 in the classical zero-free region of
the Riemann zeta-function by means of a clever iterative procedure. This method relied
in part on a particular smoothing function f (z) having certain properties: it was required
that f ∈ C2[0, 1], with compact support, and having a Laplace transform F (z) that is
non-negative on the positive real axis. Kadiri noted that Heath-Brown’s work on Linnik’s
theorem [13] developed four families of such functions, and that these were well-adapted
for application to the problem of the classical zero-free region. We denote these four
families of functions by f (i)η,λ,θ (t). Each is defined by

f (i)η,λ,θ (t) = ηh(i)λ,θ (ηt)
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Table2 P40(x) =∑40
k=0 bk cos(kx) = |∑40

k=0 cke
ikx |2/∑40

k=0 c
2
k , with b =∑40

k=1 bk

k ck bk k ck bk

0 1 1 21 14616.1664568754 4.66702819061453 · 10−7

1 8.70590487645377 1.74600190914994 22 15112.6306248979 8.88183754657211 · 10−7

2 253.542513581082 1.14055431833244 23 3281.48150931095 6.61799442215331 · 10−5

3 538.912985014916 0.518966962914028 24 −9858.76392710328 3.70153227317542 · 10−5

4 1421.76588050758 0.130885859164882 25 −11913.1717506499 6.2332255794641 · 10−8

5 3062.1230018832 8.86418531143308 · 10−8 26 −2607.30174667086 3.29243016002061 · 10−5

6 5755.1498181548 1.79787121328335 · 10−6 27 6649.42849986177 4.89938220699415 · 10−5

7 9653.05616924715 0.0137716529944408 28 6689.88754688983 1.50988491954013 · 10−5

8 14967.239037407 0.00825900683475376 29 193.678093993709 1.13051732969427 · 10−7

9 21237.398416925 4.91544374578637 · 10−6 30 −3912.86637215382 2.11823533257304 · 10−5

10 27168.5781338032 2.20263007866541 · 10−6 31 −2318.83016640653 2.13859401551174 · 10−5

11 31408.8257398599 0.00243120523137902 32 911.79644433382 1.55071932288034 · 10−6

12 32409.0713030987 0.00172926530269636 33 1499.03441911128 1.51812185041036 · 10−6

13 28642.8233658012 1.35500078722447 · 10−6 34 159.800369623307 1.67615806595912 · 10−5

14 19217.7742754807 2.20879127662495 · 10−6 35 −551.30680615611 1.60031224178442 · 10−5

15 6084.93971979693 0.00069712400164774 36 −146.185445028008 3.94634065729451 · 10−6

16 −6971.7133423118 0.000530583559753362 37 160.626530894317 4.08859029078879 · 10−7

17 −16051.2777747034 6.3973072524226 · 10−7 38 9.7531801403406 1.77819241241605 · 10−6

18 −17900.8974008674 5.37323136636712 · 10−7 39 −46.7104974975636 5.06885733758335 · 10−8

19 −10944.9022767045 0.000234320877800568 40 23.9407317021713 7.50406436813653 · 10−9

20 2745.65474520683 0.000177364641910045 b = 3.56453965437134

for 1 ≤ i ≤ 4, where λ > 0, θ , and η are real parameters, and h(i)λ,θ (u) are certain functions.
Kadiri employed the fourth of these, where

h(4)λ,θ (u) = λ sec2 θ

{
λ sec2 θ

( −θ

λ tan θ
− u

2

)
cos(λu tan θ ) − 2θ

tan θ
− λu

− sin(2θ + λu tan θ )
sin 2θ

+ 2
(
1 + sin(θ + λu tan θ )

sin θ

)}
,

(9.1)

and one requires π/2 < θ < π . Kadiri set λ = 1 and selected θ = 1.848 in her analysis.
In 2014, Jang and Kwon [16] applied all four families of functions f (i)η,λ,θ (u) inherited

from Heath-Brown’s list to this problem, and optimized over λ and θ in each case. They
found that some of Heath-Brown’s other functions performed slightly better than (9.1),
and obtained a better value for R0. Most of their improvement was due to the use of a
larger height T0 for which RH had been verified: they used T0 = 3.06 · 1010 while Kadiri
employed the best value known at the time, approximately 3.3·109.However, investigation
of other auxiliary functions allowed them to reduce their R0 value further. They found
that the four functions h(i)λ,θ (u) produced in turn 5.68372, 5.68483, 5.68484, and 5.68486
with the new T0 value, so among these their best result arose from h(1)λ,θ , which is defined
by

h(1)λ,θ (u) = λ sec2 θ

{
λ sec2 θ

(
θ

λ tan θ
− u

2

)
cos(λu tan θ ) + 2θ

tan θ
− λu

+ sin(2θ − λu tan θ )
sin 2θ

− 2
(
1 + sin(θ − λu tan θ )

sin θ

)}
,

(9.2)

and one requires 0 < θ < π/2. Jang and Kwon chose λ = 1.03669 and θ = 1.13537,
selecting these values in concert with their choice of a non-negative trigonometric poly-
nomial, in order to optimize the constant with this function using Kadiri’s method. As in
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[18], Jang andKwon selected a favorable non-negative trigonometric polynomial of degree
4. Jang and Kwon also employed a function h(5) from Xylouris [36], which out-performed
h(1)λ,θ just slightly, producing R0 = 5.68371. This was the final value established in [16].
Independent of [16], in 2015 the first two authors [21] determined an improved value

for the constant R0 in the classical region by amending Kadiri’s method in different ways,
and showed that R0 = 5.573412 is permissible. A small part of that improvement arose
by employing the larger value for T0 = 3.06 · 1010. Most of the gain resulted from two
other changes: optimizing over a particular error term, and investigating admissible non-
negative trigonometric polynomials of larger degree. A polynomial of degree 16 was con-
structed there by using simulated annealing with an appropriate objective function, and
the constant R0 = 5.574312 was computed using h(4)1,θ as in [18], with an appropriate value
of θ .
We take the opportunity here to combine the ideas from [16] and [21], together with the

recent work [29] establishing RH to the height T0 = 3 · 1012, to record an improved value
for the constant R0 in the classical zero-free region of the zeta-function. We employ the
admissible non-negative trigonometric polynomial of degree 16 from [21, Table 5], the
auxiliary function h(1)λ,θ (u) from (9.2), and the new value forT0.We setλ = 1 since adjusting
this value did not produce any further gains of significance, and choose θ = 1.13489. We
follow the method detailed in [21], with the following adjustments owing to the use of
(9.2) rather than (9.1):

• Since θ is now restricted to (0,π/2), we set d1(θ ) = 2θ cot θ .
• We now have g1(θ ) = h(1)1,θ (0) = (θ tan θ + 3θ cot θ − 3) sec2 θ .
• We use the inequality ey ≤ 1+ y+ y2/2+ y3/3.47, which is valid for d1(θ ) ≤ 1.89355,

so for 0 ≤ θ ≤ 1.13544. In [21], the value 3.45 was used in place of 3.47.
• For the iteration, we use r = 5 for our lower bound on the constant we aim to achieve,

as in [21], but now set the initial upper bound to R0 = 5.573412.
• We verify that the error term C(η) as defined in [18, §2.4] satisfies C(η) ≤ 0 over the

interval [0, 1/(5 log(3 · 1012)], and that the function K (w) from the same source with
θ = 1.13489 is increasing on [0, 1], as required by the method.

We refer the reader to [21] for full details on the method. Using this strategy, after seven
iterations we compute the value R0 = 5.5586904517 and establish Theorem 1.3. The
successive values of R0 determined after each iteration are displayed in Table 3, together
with the values of other parameters that arise during the calculation—we include these to
mirror the data shown in [21, Table 3].
We remark that with h(4)1,θ in place of h(1)1,θ we produced a slightly larger constant with

the method, R0 = 5.5608403, so swapping the smoothing function in this way allowed us
to reduce the value of R0 by approximately an additional 2.15 · 10−3. This is about twice
the marginal gain reported in [16] for the same swap of auxiliary functions. We did not
investigate the function of Xylouris, as this had a very small marginal benefit in [16].
Finally, using this method, and again employing h(1)1,θ (u) with θ = 1.13489 and using

the same degree 16 trigonometric polynomial, we computed the value for R0 that would
be achieved by this method if RH were verified up to height T0 in the future, for several
values of T0 ≤ 1015. These values are exhibited in Table 4.
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Table 3 Values of parameters from [21] in successive iterations when T0 = 3 · 1012, using r = 5 and
θ = 1.13489

R0 η0 · 103 η1 · 103 κ δ r

5.5734120 6.259945 0.7565797 0.4410554 0.61994498 5.5603156

5.5603156 6.261572 0.7581420 0.4410415 0.61994923 5.5588702

5.5588702 6.261752 0.7583148 0.4410400 0.61994971 5.5587103

5.5587103 6.261772 0.7583339 0.4410399 0.61994976 5.5586927

5.5586927 6.261774 0.7583360 0.4410398 0.61994976 5.5586907

5.5586907 6.261775 0.7583362 0.4410398 0.61994976 5.5586905

5.5586905 6.261775 0.7583363 0.4410398 0.61994976 5.5586905

All values are rounded at the last recorded decimal place

Table 4 Allowable values for the constant R0 in the classical zero-free region if RH were to be
verified to height T0
T0 R0

1013 5.5559836

3 · 1013 5.5536904

1014 5.5513505

3 · 1014 5.5493579

1015 5.5473149

All values are rounded up at the last recorded decimal place

10 Future work
The approach taken in the proof of Theorem 1.1 may be summarized as follows. If a zero-
free region σ ≥ 1−ν(t) can be established over a small finite region, say for t ∈ [T0−1, T0),
then under appropriate conditions the same zero-free region holds for all t ≥ T0. This
suggests an inductive argumentmay be used—given a sequence of suitable functions ν1(t),
ν2(t), …, νN (t), we may use the zero-free region σ ≥ 1 − νj(t) to show that there are no
zeros in a small finite region, which then implies the next zero-free region σ ≥ 1−νj+1(t),
and so on. If in addition the first zero-free region can be established unconditionally,
this produces a method of iteratively constructing a zero-free region as a union of small
zero-free regions.
One possible choice for νj(t) is given by

νj(t) := 1
rj(log t)φj (log log t)1−φj

, t ≥ T (j)
0 ,

for some φj > 2/3, which can be easily established by choosing

η = E
B2/3

(
L2
L1

)φj

in place of (4.11), then following the rest of the proof of Theorem 1.1. If rj is small enough,
then the resulting zero-free region will be sharper than Theorem 1.1 over some finite
interval t ∈ [T (j)

1 , T (j)
2 ]. By combiningmultiple such results, we create an envelope of zero-

free regions whose union covers the interval [3, T0] for some large T0. We then use the
same argument as Theorem 1.1 to cover the range [T0,∞). In particular, this allows us to
take T0 much larger than is otherwise possible, which reduces the size of R1, the zero-free
region constant.
To attain a non-trivial result via this method, we need to take rj small enough that

νj(T
(j)
0 ) > νj−1(T

(j)
0 − 1), so there is a small region

T0 − 1 ≤ t ≤ T0, νj(t) ≤ σ ≤ νj−1(t), (10.1)
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in which zeros may exist, hence invalidating the inductive argument. Therefore, if we
have tools to exclude the possibility of zeros in small, finite regions at known locations
within the critical strip, immediate improvements to Theorem 1.1 are possible. By judi-
ciously choosing φj , we find that using 355 such regions suffice to improve the constant of
Theorem 1.1 to 52.74, provided that no zeros exist in regions of the form (10.1) for each
j. Conventional arguments, such as raw computation or zero-density estimates, are cur-
rently insufficient to completely exclude zeros in these regions due to their large height,
ranging from t ≈ exp(40000) to t ≈ exp(5 ·107). However, if a newmethodwas developed
to exclude zeros in small finite regions, then immediate improvements to Theorem 1.1
are possible.
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