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Abstract

In this paper we study the absolute convergence of general multiple Dirichlet series
defined by
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where g; (1 < j < r) are arithmetic functions. In particular we completely determine the
region of absolute convergence under certain conditions on the arithmetic functions.
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1 Introduction
For any integer r > 1, the multiple zeta function (Euler—Riemann—Zagier type) of depth
r is defined by
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(1)

where s; (1 < i < r) are complex variables. Throughout the article, we denote R(s;) = o;.
It is well known (see Theorem 3, [4]) that the series (1) is absolutely convergent in the
region {(s1,s2,...,8,) € C" : 0, + 0,1+ -+ 0,—; > i+ 1for0 <i <r—1}. For
r = 1, it is nothing but the Riemann zeta function. So multiple zeta function of depth r
is multi-variable generalization of Riemann zeta function. Zhao [5] and Akiyama et al. [1]
independently have shown that ¢,(sy, s2, . . ., $r) can be extended meromorphically to the
whole C".

One can consider the generalization of the series defined in (1) in the following manner
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where a; (1 < j < r) are arithmetic functions. For each j, if a;j(m) = 1, Vm € N, then
D, ((5)); (@) = &r(s1,82 -, 8r).

The first question that one can ask, is to find the region of absolute convergence of the
multiple Dirichlet series defined in (2). In this context we have the following result.

oo aj(m)
m=1 S

Theorem 1 Foreachj(1 < j < r), let ¢;(s) = be absolutely convergent for
N(s) > aj > 0. Then the multiple Dirichlet series defined in (2) is absolutely convergent in
theregion Uy .= {(s1, 82, -..,87) € C" : op+0,_14+ - -+0r—; > ay+o,_1+- - +o,—; for 0 <

i<r—1}

The series defined in (2) is already considered by Matsumoto and Tanigawa in [3],
where they have mentioned that this series is absolutely convergent in the trivial region
{(s1,82,...,8) € C" : 0, > a; for 1 < i < r}. Since their primary goal was to study
the meromorphic continuation, so there is no need to start with exact region of absolute

convergence.

Remark 1 In Proposition 3.1 of [2], Matsumoto et al. have given a region of absolute
convergence for certain double Dirichlet series that region is equal to U, for » = 2 in the
Theorem 1.

In the following theorem we give the necessary and sufficient conditions for the series
(2) to converge absolutely under certain conditions on the arithmetic functions.

Theorem 2 For each j(1 < j < r), let the arithmetic function a;(m) and the positive
a;j(m)
mS

real number o; satisfy the following conditions e ;> | has abscissa of absolute
convergence aj, ® ), . |aj(m)| > t% for everyt > 1. Then we have that the series defined
in (2) is absolutely convergent at (s1, sy, . .., sy) € C" ifand only ifo, +0r_1+-- -+ 0p—; >

or+or_1+--Fo_jfor0<i<r—1
As an application of Theorem 2, we have the following result.

Corollary 1 The region of absolute convergence of the series defined in (1) is
{(s1,s2..,8)€C o +0r_1 4+ For—i>i+1for0<i<r—1}

Remark 2 In Proposition 2.1 of [6], Zhao et al. have derived the necessary and suffi-
cient conditions for absolute convergence of certain generalized multiple zeta functions.
Corollary 1 is also followed from this proposition.

It is well known that if the Dirichlet series ) ,~_; %

converges for all s such that R (s) > N(sp). In the following theorem we prove an analogues

converges at s = so, then this series

result for general multiple Dirichlet series in case of absolute convergence.

Theorem 3 For the arithmetic functions aj(m) (1 < j < r), let the series defined in (2)
be absolutely convergent at (s}, s,, ...,s,) € C". Then the series converges absolutely at
each (s1,82, ...,8:) € C" such that o, + 0,1+ ---+0,; > 0/ +0,_ +---+0,_, for
0<i<r—1 wherel(s;) =o/forl <i<r.

2 Preliminaries
In this section we give some lemmas which are necessary ingredients to prove Theorem 2.
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Lemmal Forn > 1ando € R, we have
Yoo 1M < oo ifandonly if y o, n+"rzl))‘a < 00,

Proof The lemma easily follows from the fact that

1 1 1
it me K —=<K e for each m € N and for any fixed n > 1.
n+m m n—+m

m}

Lemma 2 For the positive real number o, let the arithmeitc function a(m) satisfies
Y m<s la(m)| > t* forevery t > 1. Then "7, |“(m)| diverges.

Proof Using Abel summation formula, we have

510 _ (5 _+a/ (men)

m<t m=<t m=<x

This implies that )~ _, latm| 5, & log ¢ and hence Yoo |“(m)| diverges. m

mot

Lemma 3 Let the arithmetic function a(m) and positive real number « satisfy the following

conditions
o« > (m) has abscissa of absolute convergence o,
o D m<t |a(:ng| > tY for every t > 1. Then for 0 > o and n > 1, we have
[ee) la(m)|

m=1 (nkm)® >0 w-a

Proof Using Abel summation formula, we have

la(m)] 1 1
> T = (Z |a(m)|> s +o~/1 > la(m)| ot ©

m=x m=x m=t
Since Y ., “V(nyf) has abscissa of absolute convergence «, it is well known that
> m<x la(m)| = o(x *+€) for any € > 0. So the term (Zm<x |a(m )|) m tends to zero

when x tends to co. Therefore by taking x tends to oo in Eq. (3), we get that

= 1

m=<t

Now using the fact ngt la(m)| > t* for every ¢ > 1in Eq. (4), we have
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3 Proof of Theorem 1
Proof We will prove the theorem by induction on r.

The case r = 1 easily follows from the hypothesis.

Next we will prove the case r = 2. Let (s, s2) € Uy, then oy > ap and oy + 01 > g+ 0.
Then we can choose ¢y > 0 such that

oy >ay+eand oy +01 > ay +a1 +é€. (5)

Now using the hypothesis and (5), we get that

N Jar(m)| = laa(ma)|
2 m' 2 (my + my)”

mlfl 1 m2:1
Z a1 (m1)] Z |az(my)| mi o2-(erter)
- L m G1+02*(012+€2 (m1 + ma)®2te2 \ my + my
my=
o o
Z |lay(m)] Z |lag(ms)|
o1+09—(ay+e€3) oyt+€
m1=1 my mp=1 ny

Suppose the theorem is true for r — 1, r > 3. Now we will prove for r. Let (s1, 82, . .., Sy) €
U,, then

op+or1+--+oi>arta 1+t jfor0<i<r-—1

So there exists an €, > 0 such that
or+or1+--Fo >+ 1+ Fo_Fefor0<i<r—1 (6)

Now consider

o0 o0
Z |ay (m11)] o Z |ar—1(my—1)| Z la,(m,)
m]! (my+ -+ mp_q)or-1 (mi+ -+ m,)r

m1=1 1 mp_1=1
o0 o0
_ Z lay(m1) Z |lar—2(my_3)|
- o . Or—2
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i Iar(mr)l (ml + )ar_(ar+€r)
o (m1+...+mr)ar+€r m1+...+mr

00 00
Z |ay(my)| Z lay—1(m,—1)]
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where the above inequality follows from induction hypothesis and (6). ]
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4 Proof of Theorem 2
Proof Leto,+o,_1+4---+0r—i > ar+ar_1+---+o,_;for0 <i <r—1,thenitfollows
from hypothesis and Theorem 1 that the series defined in (2) is absolutely convergent at
(51,82, -+ .5 87).

We will prove the converse part by induction on r.

The case r = 1 easily follows from Lemma 2.

Suppose the theorem is true for r — 1, r > 2. Now we will prove for r. By hypothesis, we
have

i i i |ay(my)|az(ma)| - - - |ar(my)| e )
— — m{' (m1 4+ m)%2 -+ (M1 + my + - - - + m,)°r '
m1=1my=1 =

The above inequality implies that

o0

ay(m
Z ¥ mlzr—l(— .r_).l_{_ P < oo forany (my, mo, ..., m,_1) € N7}
=1 r

and then by applying Lemmas 1 and 2, we have o, > «,. Now for any (my, my, ..., m,_1) €
N1 we get from Lemma 3 that

|ay(m;)| 1
> . 8
Z (my+my A+ -+ my)or 77 () ®
Therefore from expressions (7) and (8), we have
Z Z Z la1(m)||az(m2)| - - - lay—1(my—1)| - o
Ymy A+ ma)o2 - (my A+ - A mp2)0r2(my A - )OO er '

m1=1my=1 mr]l

Then from induction hypothesis, it follows that

or+o,1+---+o_i>ar+a,_1+---Fa_;jforl <i<r—1.

5 Proof of Theorem 3
Proof It is enough to show that for o, + 0,1 + -+ 4+ 0,—; > 0/ +0/_ 1+ -+ 0],

O§i<r—1 wehave

la1(m1)||az(ma)| - - - |a,(my)|
Z Z Z mi (my 4 mp)% - - - (my + my + - - - + my)or

m11m21 ,1

-’

0 0 )
< Z Z o Z la1(m1)||laz(m2)] - - - |a,(m,)|
my=1my=1 =1 ml‘(m1 4+ m)02 - (my + g + -+ my)%
Now consider
Z |ﬂl(m1)| Z lar—1 mr 1 Z |ﬂr(mr)|
=1 (Wll l)ar 1 (ml -+ mr)o'r
Z |ﬂ1(m1 Z |ay—2(my_2)| i |ay—1(my_1)|
m1=1 my_p=1 (1 - o+ 1y )02 my_1=1 (g + -+ mr_1)0r+0r71—<7,’

e e}

Z |ay(m,)] (Wll +---+ mr_1>a,—a,
mr=1(m1+"'+mr)d’/ my+ -+ my '
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it tmy_1 \ 70" /
Here ( 2 ———1L < laso, > o,, therefore we have

my+--+my
o laim)] & jar— 1(mr 1)| | (my)]
m;mi‘{‘mméﬁmﬁ Z<m1+~.+m,)0r
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> |ay(m,)|
W;l (g 4+ 4 )
Z Iﬂl(ml)l . Z |ar—3(m,—3)| i |Gy (my_2)]|
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Z lar—1(m,—1)| = |lar(m;)|
Wl (my+ -+ mr_l)ar,—l o (my+ -+ m)or

RR)

BRI

oy+oy_1—0,—0]_;
) <1laso,+

where the last inequality follows from the fact (211
or_1>0,+0/_;.

Continuing in the same manner, we obtain (9). O
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