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Abstract

We study twists of the Burkhardt quartic threefold over non-algebraically closed base
fields of characteristic different from 2, 3, 5. We show they all admit quartic models in
projective four-space. We identify a Galois-cohomological obstruction that measures if
a given twist is birational to a moduli space of abelian varieties. This obstruction has
implications for the rational points on these varieties. As a result, we see that all possible
3-level structures can be realized by abelian surfaces, whereas Kummer 3-level
structures that group-theoretically may be admissible, may not be realizable over
certain base fields. We give an example of a Burkhardt quartic over a bivariate function
field whose desingularization has no rational points at all. Our methods are based on
the representation theory of Sp4(F3), Galois cohomology, and the classical algebraic
geometry of the Burkhardt quartic.
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1 Introduction and results
The Burkhardt quartic threefold

B(1) : y0(y30 + y31 + y32 + y33 + y34) + 3y1y2y3y4 = 0,

has received significant studyboth classically overC (see [5,9,12,13,15]) andmore recently
arithmetically. For instance, in [4,6] the rationality and non-rationality of certain twists
of the Burkhardt quartic over Q is established, while in [3,7] it is remarked that twists of
the Burkhardt quartic that parametrize abelian surfaces, are unirational.
In this paper, we consider twists of B(1) over base fields k of characteristic distinct from

2, 3, 5. By a twist of B(1) wemean a variety B over k that, when base changed to a separable
closure ksep, is isomorphic to B(1). We refer to such a variety B as a Burkhardt quartic
over k . This terminology suggests that B can indeed be realized as a quartic threefold in
P
4. This is true, but requires proof. It, and some other basic facts, follows quite directly

from the representation theory of Sp4(F3). We collect these in the following theorem. See
Sect. 3.3 for the proof.

Theorem 1.1 Let k be a field of characteristic distinct from 2, 3, 5 and let B be a twist of
B(1).

(a) B admits a quartic model in P
4 with 45 singularities.
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(b) B comes equipped with a rational map π : M → B of generic degree 6, where M is a
Brauer–Severi variety of dimension 3. We writeOb(B) for the class of M in Br(k).

(c) Ob(B) ∈ Br(k) is of period dividing 2 and of index dividing 4.

It iswell-known thatB(1) is a birationalmodel of themoduli spaceof principally polarized
abelian surfaces with full 3-level structure. Outside the Hessian locus He(B) on B, a point
α corresponds to the Jacobian Aα = Jac(Cα) of a genus 2 curve Cα , together with an
isomorphism �(1) → Aα[3]. Here, �(1) = (Z/3Z)2 × (μ3)2 is equipped with a natural
pairing �(1) × �(1) → μ3 and the isomorphism is compatible with the Weil-pairing on
Aα[3].
The intersection B ∩ He(B) consists of a union of 40 planes over ksep, called j-planes.
The rationalmapπ : M → B, which is regular outside ofHe(B), has amoduli interpreta-

tion as well. It corresponds to marking an odd theta characteristic: a rational Weierstrass
point on Cα . TheM here is referred to as theMaschke P3.
For our purposes, it ismore natural to think ofB(1) as amoduli space ofKummer surfaces

Kα = Aα/〈−1〉. These come with a marked singularity (the image of the identity element
of Aα) as well as a Kummer 3-level structure �

(1) = �(1)/〈−1〉.
In general a Kummer surface K over k , with one of the 16 singular points marked, is

a quotient of an abelian surface A over ksep. It does not fully determine A over k : if A
admits a model over k , then any quadratic twist of A has a Kummer surface isomorphic
to K as well. In fact, there may be no such abelian surface over k at all. This is measured
by Ob(K ) ∈ Br(k) and is represented by a conic QK . Equivalently, this obstruction arises
from the moduli determining the curve Cα . These moduli determine a curve of genus 0
with a degree-6 locus marked, but only if that genus 0 curve is actually a P1 can one realize
a double cover ramified over the marked locus.
The Kummer 3-level structure already detects Ob(K ). We establish that any Burkhardt

quartic B parametrizes Kummer surfaces with prescribed Kummer 3-level structure, so it
follows that the obstruction map is constant and hence is a function of B itself. We collect
results about it, and implications for the rational points on B, in the theorem below, that
we prove in Sect. 4.1.

Theorem 1.2 Let B be a Burkhardt quartic over a field k of characteristic not 2, 3, 5.

(a) ThenB is naturally birational to themoduli space ofKummer surfaceswith aKummer
3-level structure �.

(b) If α ∈ B(k) \ He(B)(k), then Ob(B) = Ob(Kα).
(c) If He(B) ∩ B contains a j-plane defined over k then Ob(B) = 1.
(d) If the Kummer 3-level structure � is a quotient of a full 3-level structure � over k,

then B(k) is Zariski-dense in B, and one can find a hyperelliptic curve with a rational
Weierstrass point

C : y2 = x5 + a1x4 + a2x3 + a3x2 + a4x + a5

such that Jac(C)[3] � �.
(e) IfOb(B) has index 4 then B(k) consists of singular points and the desingularization of

B has no k-rational points at all.
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We also show that Ob(B) can indeed be of index 1, 2, or 4. To this purpose we consider
another classical model for the Burkhardt quartic threefold: the threefold in P

5 defined
by the elementary symmetric functions in six variables x1, . . . , x6 of degree 1 and 4:

B′ : σ1 = σ4 = 0.

We furthermore consider a form over k = R(s, t) that is isomorphic toB(1) over k(
√
s,

√
t),

defined by

B′′ : z40 + 4z0z31 + 3z41 + 3s2z42 + 3t2z43 + 3s2t2z44
+ 12sz0z1z22 + 12tz0z1z23 + 12stz0z1z24 + 24stz0z2z3z4 + 24stz1z2z3z4
− 6sz21z

2
2 − 6tz21z

2
3 − 6stz22z

2
3 − 6stz21z

2
4 − 6s2tz22z

2
4 − 6st2z23z

2
4 = 0.

We use the notation (a, b) for the class in Br(k) of a quaternion algebra over a field k (see
(1)). We prove the following proposition in Sect. 4.2.

Proposition 1.3 (a) The standardmodelB(1) overQhasOb(B(1))=1, which is of index1.
(b) The symmetric model B′ ⊂ P

5 hasOb(B′) = (−3,−1), which over Q is of index 2.
(c) The model B′′ defined above has Ob(B′′) = (−1, s) ⊗ (−s, t), which over R(s, t) has

index 4. We have B′′(k) = {(1 : −1 : 0 : 0 : 0)}, which is a singular point on B′′. The
blow-up of B′′ at that point has no k-rational points at all.

We see that having Ob(B) of index 4 puts severe restrictions on the rational points
on B. As Proposition 1.3(c) shows, there are Kummer 3-level structures that a priori are
admissible in the sense that they correspond to an element of H1(k,PSp4(F3)), but do not
occur for a Kummer surface over k . This is in stark contrast to what happens with 3-level
structures for abelian surfaces, where Theorem 1.2(d) guarantees that the corresponding
moduli space is in fact unirational.
Over a number field, however, and in particular overQ, index andperiod of Brauer group

elements agree, so Ob(B) is of index at most 2 and we don’t get a particular obstruction
to Q-rational points on B.
For instance, it is not hard to find many rational points on B′, including ones that do

not lie in He(B′). We establish in Sect. 4.3 the following.

Proposition 1.4 The Burkhardt quartic B′ over Q is birational to the elliptic threefold in
P
2 × A

2, defined by

C(u,v) : (u + v − 1)XY (X + Y ) + (−uv + u + v)(X2 + Y 2)Z

+ (−u2 − 3uv + 3u − v2 + 3v − 1)XYZ + (u2v + uv2 − uv)Z3

+ (u2v − u2 + uv2 − 3uv + u − v2 + v)(X + Y )Z2 = 0,

where C(u,v) has rational flex points (1 : 0 : 0), (0 : 1 : 0), (1 : −1 : 0). The map to B′ is given
by

(x1 : x2 : x3 : x4 : x5 : x6) = (X : Y : −uZ : −vZ : Z : −X − Y + (u + v − 1)Z).

Furthermore, B′(Q) is Zariski-dense in B′.

With some modest experimentation we have not been able to find a twist of B over Q
that did not have any rational points. This gives some mild circumstantial evidence for a
possibly negative answer to the following question.
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Question 1.5 Does there exist a Burkhardt quartic B for whichOb(B) has index 2 and for
which the rational points are not Zariski-dense?

This article is partially based on the masters thesis [10] of the second author written
under supervision by the first.

2 Background
2.1 Brauer groups and Brauer–everi varieties

In what follows, we frequently refer to the Brauer group Br(k) of a field k . There are many
descriptions. It can be described as the Galois cohomology group Br(k) = H2(k, ksep×).
Elements of Br(k) also correspond to k-isomorphism classes of Brauer–Severi varieties:
varieties that, over ksep, are isomorphic to P

n for some n ≥ 0. We refer to [11] for details;
here we just review some standard terminology and results that we need in the rest of the
text.
The period of an element in Br(k) is its order under the group structure of Br(k). We

will only be dealing with elements of order dividing 2, i.e., elements that lie in Br(k)[2] =
H2(k,μ2), where μp stands for the pth roots of unity.
The index of an element ξ ∈ Br(k) is the smallest degree of an extension L such that ξ

lies in the kernel of the restriction map Br(k) → Br(L). Since a Brauer–Severi variety V is
isomorphic to Pn if and only if it has a rational point, the index is also the smallest degree
of an extension L for which V has an L-rational point.
The period always divides the index. For local fields and global fields, the period and

index are equal. However, for fields of higher cohomological dimension, such as R(s, t),
the period can be strictly smaller than the index.
Elements of Br(k) also correspond to Brauer-equivalence classes of central simple alge-

bras. The group law on Br(k) is induced by the tensor product on algebras. A famous
theorem byMerkurjev-Suslin states that Br(k)[2] is generated by quaternion algebras. For
a, b ∈ k× we write (a, b) for the quaternion algebra

(a, b) = k ⊕ ik ⊕ jk ⊕ ijk, with i2 = a, j2 = b, ij = −ji. (1)

We also use (a, b) to denote its Brauer class in Br(k). The Brauer–Severi variety belonging
to (a, b) is the conic Q : z2 − ax2 − by2 = 0. Elements of Br(k)[2] of index at most 2 are
exactly the ones that can be represented by a single quaternion algebra, or equivalently an
isomorphism class of plane conics.

2.2 Obstructions for genus 2 curves

As is well-known, genus 2 curves and, equivalently, abelian surfaces, can have different
fields of moduli and fields of definition: for a non-algebraically closed field k , one may
have an isomorphism class of genus 2 curves over ksep that is stable under Gal(ksep/k),
but does not contain any curves defined over k .
This phenomenon can be made very explicit, see [16]. A genus 2 curve is geometrically

determined by a degree-6 separated locus on a genus 0 curve. This data can be specified
over k by a plane conic Q and cubic curve C (in fact, a 3-dimensional linear system
of cubics) over k . The data only correspond to a genus 2 curve defined over k if Q is
isomorphic to P

1 over k , in which case an appropriate genus 2 curve is obtained as a
double cover of P1, ramified over the degree-6 locus.
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The isomorphism class of a conic Q over k , a Brauer–Severi variety of dimension 1, is
an element of the Brauer group of k of index and period dividing 2. Writing M2 for the
(coarse) moduli space of curves of genus 2, the construction above gives rise to a map

Ob: M2(k) → Br(k)[2],

where a point α ∈ M2(k) can be represented by a genus 2 curve defined over k if and only
if Ob(α) vanishes.

2.3 Principally polarized abelian surfaces and their Kummer surfaces

Let C be a curve of genus 2 over a field k . Then Jac(C) is a principally polarized abelian
surface over k , and by the Torelli theorem, C can be recovered from Jac(C): there is an
injective morphism between moduli spacesM2 → A2.
Associated to a principally polarized abelian surface A is its Kummer surface Kum(A) =

A/〈−1〉, obtained by identifying points with their inverses. The fixed locus of the inversion
map, the 2-torsion A[2], is 0-dimensional of degree 16 and maps onto the singular locus
of Kum(A). In addition, one of the singular points on Kum(A) is distinguished: it is the
image of the identity element of A.
If A = Jac(C), then Kum(A) admits a quartic model in P

3 (a Kummer quartic), and
conversely, any quartic surface K in P

3 with 16 nodal singularities and a distinguished
node can be recognized as Kum(A) for some A over ksep. An explicit, classic construction
to do so goes as follows.
The projective dual K ∗ of K is again a Kummer quartic surface. The 16 singularities of

K ∗ correspond to 16 tropes onK : planes that intersectK in a double-counting conic. Each
trope passes through 6 nodes and each node lies on 6 tropes, forming the classical (166)
Kummer configuration.
Note that K has a distinguished node and, by duality, K ∗ has a distinguished trope. It

follows that K has a node defined over the base field k and K ∗ has a trope defined over
k . It is a classical result that if k is algebraically closed then K is projectively isomorphic
to K ∗. For k not algebraically closed, K and K ∗ may be non-isomorphic, witnessed by the
fact that K having a rational node does not imply that it also has a rational trope.
The distinguished trope on K ∗ cuts out a plane conic with six marked points: the

nodes the trope passes through. Equivalently, we consider the tangent cone to K at the
distinguished node. The six tropes passing through it intersect the tangent cone in lines
through the node. Projection from the node yields a plane conic QK with six marked
points.
IfQK � P

1 then this data determines a genus 2 curve C , up to quadratic twist, such that
K = Kum(Jac(C)). For a Kummer surface K over k , we write Ob(K ) for the isomorphism
class ofQK in Br(k). Indeed, every pointα ∈ M2(k) corresponds to aKummer quartic sur-
face Kα such that Ob(α) = Ob(Kα) and such that if Ob(α) = 0, then Kum(Jac(Cα)) = Kα .
This canbecheckedbyconsidering aquadratic extensionLof k such thatResL(Ob(α)) = 0,
construct Cα over L, and confirming that Kα can be descended to k .
In the following proposition, sufficiently general means representing a point on an open

part of the relevant moduli space. In fact the proof given works for Kummer surfaces of
Picard number 17.

Proposition 2.1 LetK bea sufficiently general quarticKummer surfacewithdistinguished
node. Then K has trivial automorphism group preserving the node.
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Proof An automorphism on K that fixes the distinguished node corresponds to a bira-
tional automorphism on K ∗ that preserves a trope. One can see this by considering the
desingularized Kummer surface K̃ that covers both K and K ∗.
Since twice a trope is a hyperplane section of K ∗, we see that the automorphism fixes

a hyperplane divisor. Since the quartic model of K ∗ in P
3 is given by a complete linear

system, we see that such an automorphism acts linearly on K ∗, and hence also on K .
It acts on the 16 nodes. However, for a sufficiently general Kummer surface, the only
non-identity linear transformations on the nodes are the translations (corresponding to
translation by 2-torsion), which have no fixed points.

Remark 2.2 As is shown in [8], for a point α ∈ A2(k) representing an abelian variety Aα

over ksep with an automorphismgroup larger than justμ2, the varietyAα can be descended
to a model over k . In that sense, Ob(α) = 1. However, in the case whereAα is a product of
elliptic curves, there are extra automorphisms from negation on one of the factors. As a
result, Kα inherits a non-trivial automorphism and the isomorphism class of Kα over k is
not uniquely determined by α. Indeed, there can be an obstruction Ob(K ) in those cases
that does not factor through Ob(α).
We can see this in the following way. Suppose thatA is theWeil restriction of an elliptic

curve E over a quadratic extension L = k[
√
r], possibly split. The quotient E → P

1 by −1
induces a degree-4 map from A to the Weil restriction V of P1. If we write

E(δ) : δy2 = f (x) = x3 + a2x2 + a4x + a6,

where δ ∈ L× prescribes a quadratic twist of E over L, then we canmodelV as a quadric in
P
3 with affine model x21 − rx22 − x3 = 0, related to E(δ) by x = x1 + x2

√
r. Let d = NL/k (δ).

We can get a degree-16 model K (d) for Kum(A(δ)) in weighted 9-dimensional projective
space with coordinates

(1 : x1 : x2 : x21 : x1x2 : x22 : x1x3 : x2x3 : x23 : w),

with weights 1, . . . , 1, 2. The first nine coordinates give part of the degree-2 Segre embed-
ding of V and the final coordinate expresses K (d) as a double cover of V via the relation

dw2 = NL/k (f (x1 + x2
√
r)).

The right hand side is indeed quartic in x1, x2, x3 thanks to the defining relation forV . We
see that the isomorphism class of K (d) only depends on the class of d in k×/k×2. On the
other hand, we see that K (d) only admits a cover by A(δ) if there is a non-zero solution to
the norm equation u20 − ru21 = dw2, i.e., if a conic is isomorphic to P

1.

2.4 Three-level structure

The 3-torsion on a principally polarized abelian surfaceA is a 0-dimensional group scheme
A[3] of degree 34, together with a perfect alternating pairing A[3] × A[3] → μ3.
Let� be such a group scheme, equippedwith pairing. A 3-level structure on a principally

polarized abelian surface A is an isomorphism� → A[3] compatible with the pairings on
either side. One such group scheme is �(1) = (Z/3Z)2 × (μ3)2, with the pairing induced
by the fact that (μ3)2 is the Cartier dual to (Z/3Z)2.
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The automorphism group of �(1) is isomorphic to Sp4(F3). The twisting principle (see
[17, III.4]) implies that the isomorphism class of� over k , being a twist of�(1), is classified
by the Galois cohomology set H1(k, Sp4(F3)).
Wewrite� for (�−{0})/〈±1〉. It is a degree-40 scheme, togetherwith a pairing�×� →

{0, 1}, determined by whether the corresponding representatives in � pair trivially. The
automorphism group Sp4(F3) acts on�, with the center (generated by−1) acting trivially.
Hence the action factors through the simple group PSp4(F3).

Remark 2.3 The pairing information on � can be almost captured by an associated inci-
dence structure.We can view� as the set of 1-dimensional subspaces ofV = (F3)4, where
V is equipped with a perfect alternating pairing. There are exactly 40 maximal isotropic
subspaces of V , and each of those contains exactly four 1-dimensional subspaces. Hence
� comes with 40 subsets of cardinality 4. The group of permutations preserving this
incidence structure is PGSp4(F3), which contains PSp4(F3) as an index-2 subgroup.

Let A be an abelian surface with a 3-level structure � → A. Since multiplication-by-3
commutes with negation, it induces a well-defined map K → K , which we call pseudo-
multiplication by 3. The 3-level structure on A induces an isomorphism between � ∪ 0
and the fibre of the distinguished point. We call this a Kummer 3-level structure on K . A
Kummer surface has pseudo-multiplication maps, regardless of whether Ob(K ) is trivial.
Hence we have a Kummer 3-level structure on it as well.
The possible Kummer 3-level structures are classified by H1(k,PSp4(F3)). Taking coho-

mology of the short exact sequence

1 → μ2 → Sp4(F3) → PSp(F3) → 1

gives a map

H1(k, Sp4(F3)) → H1(k,PSp4(F3))
Ob−→ H2(k,μ2)

For a Kummer 3-level structure � we write Ob(�) for its class in H2(k,μ2).
By Proposition 2.1, we see that for a point α ∈ A2(k) for whichKα is sufficiently general,

we have that Kα and � are determined by α and hence that Ob(Kα) = Ob(�).
As explained in Remark 2.2, for α that correspond to products of elliptic curves, the

isomorphism class of the Kummer surface is only determined up to twist, but the Kummer
3-level structure determines the twistKα,� . In this case, it can be checked that once again,
Ob(Kα,�) = Ob(�).

2.5 Moduli spaces with 3-level structure

We write A2(�) for the moduli space of principally polarized abelian surfaces A with
3-level structure � → A. Since the (−1)-automorphism on � is the restriction of −1 on
A, the isomorphism class ofA2(�) only depends on �, and therefore we writeA2(�).
Indeed, from

H1(k,μ2) → H1(k, Sp4(F3)) → H1(k,PSp4(F3))

we see that different �,�′ map to isomorphic � exactly when they are quadratic twists,
and taking quadratic twists of an abelian varietyAwill correspondingly twist its 3-torsion.
Inparticular,we see that the level-structure-forgettingmorphismA2(�) → A2 isGalois

with automorphism group PSp4(F3). Hence, for any class � in H1(k,PSp4(F3)) we have
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a corresponding twist A2(�), which we can then consider as a moduli space of Kummer
surfaces with 3-level structure. The space comes with an obstruction map

Ob: B(k) → Br(k); α �→ Ob(Kα),

which is constant Ob(�).

3 Representation-theoretic description of the Burkhardt quartic threefold
TheBurkhardt quartic formcan be characterized, and in factwas discovered as, the unique
quartic invariant of a certain five-dimensional representation of Sp4(F3). The degree-6
unirational parametrization P

3 ��� B(1) was similarly studied in classical representation-
theoretic terms, see [5,9,13,15,18].
We review some of these results below, emphasizing the fact that these can all be

characterized in terms of low-dimensional irreducible representations of PSp4(F3). This
means they can all be recovered from different forms over non-algebraically closed base
fields as well.

3.1 The Burkhardt quartic through representation theory

Let k be a field of characteristic different from 2, 3, 5. For now, we fix the 3-level structure
� = �(1) = (Z/3Z)2 × (μ3)2 and the finite algebraic group �, defined over k , that
describes its automorphism group. Then �(ksep) is isomorphic to Sp4(F3), but it comes
with a specific Galois action. We refer to � as a form of Sp4(F3) over k .
The group affords two faithful irreducible 4-dimensional representations: ρ4 and its

dual ρ∨
4 the complex conjugate. Explicit generators for the image of ρ4 are

A1 =

⎛
⎜⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠ ,

A2 = 1
3

⎛
⎜⎜⎜⎝

3ζ 0 0 0
0 ζ + 2 ζ + 2 −ζ + 1
0 ζ + 2 ζ − 1 −ζ − 2
0 −ζ + 1 −ζ − 2 ζ + 2

⎞
⎟⎟⎟⎠ ,

A3 = 1
3

⎛
⎜⎜⎜⎝

2ζ + 1 −2ζ − 1 0 ζ + 2
ζ − 1 2ζ + 1 0 −ζ + 1
0 0 3ζ + 3 0

ζ + 2 2ζ + 1 0 2ζ + 1

⎞
⎟⎟⎟⎠ .

Note that the image of ρ4 is stable under complex conjugation, so the image is a form of
Sp4(F3) over k , even though the elements are not all individually defined over k .
The representation ρ4 induces a projective representation of � = �/〈−1〉, whose image

is a form of PSp4(F3) over k . The image of the projective representation can be described
as the automorphism group of aWitting configuration inM = P

3, consisting of 40 points
and 40 planes, such that each point lies in 12 planes and each plane passes through 12
points.
Table 1 lists some irreducible characters of Sp4(F3), together with the character values

at the generators. The values at these generators happen to separate all characters of
Sp4(F3). Of particular note is that the characters of degree up to 10 are almost completely
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Table1 Irreducible characters of Sp4(F3) of degrees 4, 5, 10, 20, 30

χi χi (A1) χi (A2) χi (A3)

ρ4 −4 2ζ + 1 3ζ + 2

ρ∨
4 −4 −2ζ − 1 −3ζ − 1

ρ5 5 0 −3ζ − 1

ρ∨
5 5 0 3ζ + 2

ρ10 10 −1 −3ζ − 5

ρ∨
10 10 −1 3ζ − 2

χ7 −20 0 7

ρ20 20 1 2

χ9 −20 0 3ζ − 5

χ10 −20 0 −3ζ − 8

χ11 −20 2ζ + 1 6ζ + 1

χ12 −20 −2ζ − 1 −6ζ − 5

χ13 30 −1 3

ρ30 30 0 −9ζ − 6

ρ∨
30 30 0 9ζ + 3

determined by their degree: there are atmost two of each, inwhich case one is the complex
conjugate of the other.
A simple character computation, or an explicit computation with the given generators

A1, A2, A3, shows that Sym2 ρ4 = ρ10 and that Sym4 ρ4 = ρ5 ⊕ ρ30. The representation
ρ5 gives rise to a rational map π : M ��� P

4, defined by a linear system1 of degree 4 and
dimension 4 that vanishes on the Witting configuration inM. For � as defined above, we
can write (t1 : t2 : t3 : t4) for the coordinates on M. The linear system corresponding to
ρ5 as a component of Sym4 ρ4 is generated by

Y0 = 3t1t2t3t4 ,

Y1 = t1(t32 + t33 − t34 ),

Y2 = −t2(t31 + t33 + t34 ),

Y3 = t3(−t31 + t32 + t34 ),

Y4 = t4(t31 + t32 − t33 )

With this description of π , the image in P
4 is dense in

B : y0(y30 + y31 + y32 + y33 + y34) + 3y1y2y3y4 = 0.

Hence, we recover the Burkhardt quartic threefold.
Of special note is that the centre of � lies in the kernel of ρ5 and ρ10, so these rep-

resentations are inflations of representations of �. This allows us to obtain a model of
π : M ��� B entirely in terms of the representation theory of � in the following way.
If we consider the degree-2 Veronese embedding v2 : P3 → P

9 then the action of � on
P
9 is through Sym2 ρ4 = ρ10. We have Sym2 ρ10 = ρ5 ⊕ ρ30 ⊕ ρ20. Indeed, the image of

v2 is defined by a 20-dimensional space of quadrics on P
9, corresponding to ρ20 and the

rational map to B can now be obtained as a linear system of degree 2 and dimension 4 on
P
9, from ρ5 as a constituent of Sym2 ρ10.

1Recall that the dimension of a linear system is a projective dimension and hence one less than the dimension of the
vector space corresponding to it.
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Conversely, we can recover ρ10 from ρ5 via
∧2

ρ5 = ρ∨
10. Thatmeans that for any twist of

B inP4, togetherwith its automorphismgroup�, givenby its 5-dimensional representation
ρ5 on the coordinates of B, we can recover ρ10, a model of M ⊂ P

9 through ρ20, and the
mapM ��� B.

3.2 The moduli interpretation of B andM

We recall that the polars of a form F ∈ k[x1, . . . , xn] at a point (α1, . . . ,αn) are defined by

P(1)
α (F ) =

n∑
i=1

αi
∂F
∂xi

and P(r+1)
α (F ) = P(r)

α (P(1)
α (F )) for r = 1, 2, . . . .

We write P(i)
α for the polars of the form defining B. These are forms of degrees 3, 2, 1 for

i = 1, 2, 3 respectively.
Intersection of B with its hessian He(B) yields a locus that over ksep consists of 40

planes, called j-planes. The action of � on these is conjugate to the action of PSp4(F3) on
the cyclic subgroups of� of order 3. These subgroups are in bijection with�. The pairing
information is also reflected in the j-plane configuration: planes that pair trivially meet in
a line and others meet in a point.
There is a synthetic description of the modular interpretation of B, see [9,12]. Let α be a

point in B \He(B). Then P(3)
α ∩P(2)

α is a cone over a plane conicQα , and the cubic P(1)
α cuts

out a degree six locus on Qα . In fact, the enveloping cone at α of P(1)
α yields a cone over

a dual Kummer surface K ∗
α , with P(3)

α projecting to the distinguished trope. The j-planes
project to tangent planes of K ∗

α and hence yield points on its dual Kα , marking a Kummer
3-level structure � on Kα . It follows that Ob(α) = Ob(�).
The rational map π : M ��� B has generic degree 6 and also has a modular inter-

pretation: outside He(B) it corresponds to the choice of an odd theta-characteristic, or,
equivalently, a Weierstrass point on the genus 2 curve of which Aα is the Jacobian. In
recognition of the work Maschke did on these spaces [15], the space M is sometimes
referred to as theMaschke P

3.
As discussed before, for each ξ ∈ H1(k,�) we get a different Kummer 3-level structure

�
(ξ ), and a corresponding form �

(ξ ). By Hilbert 90, any representation ρ : � → GLn gives
rise to a corresponding representation ρ(ξ ) : �

(ξ ) → GLn.
Thatmeans that�(ξ ) affords representations corresponding to ρ5, ρ10, ρ20. In particular,

we get a twist B(ξ ) ⊂ P
4, together with a 3-dimensional Brauer–Severi varietyM(ξ ) ⊂ P

9

and a degree-6 rational map π (ξ ) : M(ξ ) → B(ξ ). Note that M(ξ ) is isomorphic to P
3

precisely when the action of �
(ξ ) can be lifted to a 4-dimensional linear representation,

i.e., when ξ can be lifted to H1(k,�). It follows that the isomorphism class of M(ξ ) ⊂ P
9

as a Brauer–Severi variety is the image Ob(�(ξ )) = Ob(ξ ) ∈ H2(k,μ2).

3.3 Proof of Theorem 1.1

Part (a) 2 As described above, the automorphism group Aut(B) of B is some form of
PSp4(F3). Thus, by Hilbert 90, there is a representation ρ10 of Aut(B), giving a
linear projective action ofAut(B) onP9. Similarly, the decomposition Sym2 ρ10 =
ρ5 ⊕ ρ30 ⊕ ρ20 yields an Aut(B)-stable 19-dimensional linear system of quadrics
on P

9 defining a 3-dimensional Brauer–Severi variety M ⊂ P
9, together with a

2Alternatively, as Anastasia Vikulova points out, one can also establish that B(1) is the anticanonical model of its
desingularization, implying that B admits a quartic model in the same way.
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covariant map π : M ��� P
4 from ρ5. Its image then yields a quartic model for B.

Over ksep, this model differs from B(1) by a linear transformation, so B also has a
singular locus of dimension 0 and degree 45.

Part (b) We have already constructed the map π above. Base changing to ksep does not
change its generic degree, and there it agrees with the standard expression of the
Maschke P3 over B(1).

Part (c) By definition, Ob(B) is the class of the Brauer–Severi varietyM. From the coho-
mological description, it is clear that Ob(B) ∈ H2(k,μ2) = Br(k)[2], so its period
divides 2. Since M is a Brauer–Severi variety of dimension 3, its isomorphism
class is represented by an element of H1(k,PGL4(ksep)), which also classifies 16-
dimensional central simple algebras. Such an algebra is split by an extension of
degree dividing 4. ��

Remark 3.1 The moduli interpretation of B extends to products of elliptic curves as well:
the blow-up of each of the 45 nodal singularities of B yields a component of the locus
of A2(3) corresponding to products of elliptic curves. Indeed, PSp4(F3) has a unique
conjugacy class of index 45 subgroups, which are the stabilizers of decompositions of its
standard representation into non-isotropic 2-dimensional subspaces.
The tangent cone of a node s on B is a cone over a non-singular quadric V ⊂ P

3. Each
node lies on eight j-planes, which map to four lines of each ruling on V . A choice of
point α on V marks a distinguished point and one line from each ruling by intersection
with the tangent plane. Each 4-tuple of lines cut out by j-planes cuts out the locus of a 3-
division polynomial on one of the lineswhich, togetherwith themarked intersection point,
determines a ksep-isomorphism class of an elliptic curve. As explained in Remark 2.2, this
determines an elliptic Kummer surface up to twist, and � somehow encodes which twist.
We have not found a direct way of reading off the full information of the Kummer surface
in this situation, but on general principles we know its obstruction will be Ob(�).

4 Period-index questions about obstructions
4.1 Proof of Theorem 1.2

Part (a) Note that the isomorphism classes of Burkhardt quartics as well as of Kummer
3-level structures are classified by H1(k,PSp4(F3)). The synthetic description
described in Sect. 3.2 gives a way, given a point α on B \ He(B), to construct a
Kummer surface Kα with the requisite level structure. In particular, we can do so
at the generic point, to get a universal family over an open part of B.

Part (b) As noted in Sect. 2.4, for a Kummer 3-level structure � on a quartic Kummer
surface, we have Ob(�) = Ob(K ). Furthermore, we have Ob(B) = Ob(�).

Part (c) By [4, Proposition 2.8], the choice of j-plane allows the construction of a cubic
genus 1 curve together with a cubic map to P

1, such that Cα is the discriminant
curve of the cubic extension. This directly determines a model of Cα over k , so
there is no obstruction for Cα and therefore Ob(B) = 1.

Part (d) Note that Ob(�) = Ob(B) is the class of the MaschkeM associated to B. Hence,
if it is trivial then M � P

3, and π : P3 → B yields a unirational map. The image
π (P3(k)) is then Zariski-dense. Points in the image correspond to Jacobians of
genus 2 curves with a marked Weierstrass point, i.e., curves that admit a quintic
affine model.
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Part (e) If α ∈ B(k) \ He(B)(k), then Ob(B) = Ob(Kα) is represented by a conic Qα , and
therefore of index at most 2. Hence, if Ob(B) is of index 4 then any rational point
on B must lie in He(B). By (c) we know that for the field of definition L of any
j-plane, the restriction of Ob(B) to L is trivial. If the index of Ob(B) is 4, then it
follows that L has degree at least 4 and hence that any rational point on He(B)
must lie on at least four j-planes, the conjugates. But the only points that lie on
more than two j-planes are the singular points of B. Furthermore, by Remark 3.1
we see that the special fibre of the blow-up of B at any one of these singularities
has amodular interpretation as well. By Remark 2.2 we see that any rational point
on it would lead to a representative of Ob(B) of index at most 2, which would
contradict that its index is 4. ��

4.2 Proof of Proposition 1.3

Part (a) follows because over finite fields Br(k) = 0 and for infinite fields there are abelian
varieties with 3-torsion structure (Z/3Z)2 × (μ3)2.
For Part (b) we let σ1, σ4 ∈ k[x1, . . . , x6] be the elementary symmetric functions of

degrees 1 and 4 respectively. Then B′ : σ1 = σ4 = 0 is also a Burkhardt quartic threefold,
lying in the hyperplane σ1 = 0 insideP5.We have α = (40 : −30 : −8 : −5 : 3 : 0) ∈ B′(Q)
and Qα is isomorphic to the plane conic 3x2 + y2 + z2 = 0. This conic is not isomorphic
to P

1 over Q.
For Part (c) we take k = R(s, t), a bivariate function field. We take a twist of B(1) that is

isomorphic to B(1) over k(
√
s,

√
t), by setting

y0 = z0
y1 = z1 + z2

√
s + z3

√
t + z4

√
st

y2 = z1 − z2
√
s + z3

√
t − z4

√
st

y3 = z1 + z2
√
s − z3

√
t − z4

√
st

y4 = z1 − z2
√
s − z3

√
t + z4

√
st.

This yields the model B′′ as stated.
Note that Ob(B′′) is an element of period 2 and that it trivializes upon base change to

k(
√
s,

√
t). Also note that B′′ is actually defined over k[s, t] and has good reduction outside

st = 0. We write R = R[s, s−1, t, t−1]. We see that Ob(B) ∈ Br(R). Since R is a regular
domain with fraction field k , base extension gives a natural injection Br(R) → Br(k) and
we identify Br(R) with its image in Br(k).

Lemma 4.1 The group Br(R)[2] is generated by

(−1,−1), (−1, s), (−1, t), (s, t).

Proof For a field K of characteristic 0 we first establish the structure of Br(K [t, t−1]). We
first note that Br(K [t]) = Br(K ) by [2, Proposition 7.7]. The residue map at the prime
ideal (t) then gives us the exact sequence

0 → Br(K [t]) → Br(K [t, t−1]) → K×/K×2,

which is split by the map K× → Br(K [t, t−1])[2] defined by a �→ (a, s). It follows that a
class in Br(K [s, s−1])[2] can be represented by

A = B ⊗ (a, t) with B ∈ Br(K )[2] and a ∈ K×
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We apply this result for K = R(s) to see that classes in Br(R) ⊂ Br(R(s)[t, t−1]) can be
represented by

A = B ⊗ (a, t) with B ∈ Br(R(s))[2] and a ∈ R(s)×

Note that evaluation at t = 1 yields a homomorphism Br(R) → Br(R[s, s−1]) which sends
the class of A to that of B, so in fact we see that B must represent a class in Br(R[s, s−1]),
which, using the result on Laurent polynomial rings, yields that

A = C ⊗ (b, s) ⊗ (a, t) with C ∈ Br(R)[2], b ∈ R
×, a ∈ R(s)×.

Without loss of generality we can take a ∈ R[s] and square-free. Let p be an irreducible
factor of a. If (p) �= (s) then A must be Azumaya at (p). Let L = R(s)[t]/(p) be the
corresponding residue field. The residue map Br(R(s, t))[2] → L×/L×2 sends A to t or st,
depending on whether p divides b. Neither is a square, so it follows that a = cs or a = c
for some c ∈ R. The statement now follows from the fact that Br(R) = 〈(−1,−1)〉 and
R

×/R×2 = 〈−1〉. ��

We note that the product of restriction maps

Br(k) → Br(k(
√
s)) × Br(k(

√
t)) × Br(k(

√
st))

is injective on Br(R). We compute the restriction to Br(k(
√
s)) by specializing to s = 1.

The intersection with z3 = z4 = 0 yields a genus 0 curve on B′′, with the point α = (16 :
−31 : 9 : 0 : 0) outside He(B′′) = 0. We find that Qα is equivalent to X2 − tY 2 + Z2 = 0,
and therefore that the restriction of Ob(B′′) to k(

√
s) is (−1, t). Symmetry gives us that

specializing t = 1 should yield (−1, s) and specializing st = 1 should yield (−1, s) = (−1, t).
Computation shows Ob(B′′) = (−1, t) ⊗ (−1, s) ⊗ (s, t) = (−1, s) ⊗ (−s, t). We describe
two ways to verify that this class is of index four.
First, one can simply enumerate all the classes of index at most two, since they will be of

the form (a, b), where a, b lie in themultiplicative group generated by {−1, s, t}. Given that
(a, a) = (−1, a), we see there are

(7
2
) + 1 choices, but many represent equivalent classes.

The classes that are not covered (and hence must be of index four) are

(−1,−1) ⊗ (s, t), (−1,−1) ⊗ (s,−t), (−1,−1) ⊗ (−s, t), (−1, s) ⊗ (−s, t).

Alternatively, one canuse that a biquaternion algebra is of index four if andonly if itsAlbert
form is anisotropic, see [14, Albert’s Theorem 4.8]. In fact, Albert’s original example [1,
Theorem 1] applies directly to (s, s) ⊗ (t, st), which is equivalent to our algebra.
It follows fromTheorem 1.2(e) that all rational points of B′′ lie in the singular locus. The

only rational point there is (1 : −1 : 0 : 0 : 0).
In order to show that the desingularization of B′′ has no rational points at all, we can

also directly look at the blow-up. The tangent cone to B′′ at (1 : −1 : 0 : 0 : 0) is the affine
cone over the quadric

su20 + tu21 + stu22 − 3u23 = 0,

which is indeed easily checked to have no non-zero solutions over C[[s, t]]: a non-zero
solution can be reduced to a solution with coprime coordinates, but by solving for coeffi-
cients successively, one finds that all ui must be divisible by s and t. ��
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4.3 Proof of Proposition 1.4

First note thatB′ has 15 rational singularities, constituting the orbit of (1 : −1 : 0 : 0 : 0 : 0)
under the action of S6 on the coordinates. These singularities form 20 triples of collinear
points. The lines lie in He(B′)∩B′. For instance, the singularities (1 : −1 : 0 : 0 : 0 : 0), (1 :
0 : 0 : 0 : 0 : −1), (0 : 1 : 0 : 0 : 0 : −1) lie on the line L345 = x3 = x4 = x5 = σ1 = 0.
We consider the 2-dimensional linear system of planesVu,v in σ1 = 0 containing this line,
defined by

Vu,v : x3 − ux5 = x4 − vx5 = σ1 = 0.

The intersection Vu,v ∩ B′ decomposes into the line L345 and the plane cubic Cu,v stated
in the proposition. It is straightforward to check that the singularities give rise to three
collinear flexes on Cu,v . By choosing one of those flexes as zero-section, we see that Cu,v is
an elliptic threefold with 3-torsion. This yields a birational elliptic fibration on B′. In fact,
the different choices of triples of collinear singularities on B′ give us 20 such fibrations. In
order to establish density of rational points on B′ we use a standard trick combining these
multiple fibrations. We intersect B′ with increasing linear spaces and establish density in
each iteratively.
It is straightforward to check that V3/5,4 passes through the point P0 = (20 : 2 : −9 :

−60 : 15 : 32) ∈ B′(Q) and that it yields a non-torsion point on C3/5,4. Since the rational
points on the line x3 = x4 = x5 = σ1 = 0 are definitely dense, this gives that rational
points on B′ are dense in the intersection of B′ with the plane spanned by P0 and L345.
Next, we pick the fibration generated by planes through L245 : x2 = x4 = x4 = σ1 = 0.

The fibers that intersect the plane above form a one-dimensional family of elliptic curves.
The density established above yields infinitely many members in this family that have a
rational point besides those arising from the three torsion sections. In only finitely many
of those can this be torsion, so most of those fibers have infinitely many rational points
themselves. This yields Zariski density of rational points in B′ intersected by the 3-space
spanned by P0, L345 and L245.
We repeat this trick once more using the fibration generated by planes through

L145 : x1 = x4 = x5 = σ1. The multi-section obtained by intersecting with the 3-space
above is generically non-torsion, so there is a proper sublocus where it reduces to torsion
of order, say, at most 12 (the largest that can occur overQ). The result above shows there
is a Zariski-dense set of fibers that have an extra rational point arising from this multi-
section, and it follows a Zariski-dense subset has positive rank. This yields Zariski-density
of rational points on B′. ��

5 Computational considerations
In this section we collect some remarks concerning explicit construction of the various
objects considered. First, for a Burkhardt quartic B ⊂ P

4 over a field k of characteristic
different from 2, 3, 5 and a point α ∈ B(k) outside the Hessian locus, we can readily con-
struct a conicQα representing Ob(B) ∈ Br(k[2]): as discussed in Sect. 3.2, the intersection
of polars P(2)

α ∩ P(3)
α yields a cone over a plane conic Qα and P(1)

α cuts out a degree six
locus onQα . The conic represents Ob(B) and the degree six locus marked on it allows the
recovery of Cα , if the obstruction is trivial.
More directly, the enveloping cone at α of P(1)

α is a cone over K ∗
α , with the Kummer

3-level structure marked on it by He(B), as described in Sect. 3.2 as well.
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In order to explicitly recoverπ : M ��� B from an explicitly given Burkhardt quarticB ⊂
P
4 one candetermine� ⊂ SL5(k) that preserves the singular locus.Thiswill be isomorphic

to PSp4(F3) as a group and we have a natural 5-dimensional k-vectorspace V5 with an
action of �. Following the remarks in Sect. 3.1, we consider V10 = (

∧2 V5)∨. Then P(V10)
yields the natural projective space P9 containingM. We have that Sym2 V10 decomposes
as a �-module into a 20-dimensional space of quadratic forms on P

9 defining M, a 5-
dimensional space of quadratic forms yielding the map π : M ��� B, and a remaining
30-dimensional space.
The general representation theory of Sp4(F3) and PSp4(F3) implies that M ⊂ P

9 is a
three-dimensional Brauer–Severi variety and that its class in Br(k) is the same as Br(B),
but reading off important characteristics such as period and index may not be so simple
from this explicit representation ofM as a variety in P

9.
Finally, given some explicit representation of ξ ∈ H1(k,PSp4(F3)), Theorem 1.1(a)

asserts the existence of a corresponding quartic model B(ξ ) ⊂ P
4. Whether it is easy

to construct B depends on how ξ is specified. If we can somehow get the representa-
tion ρ5 from it, then the corresponding Burkhardt quartic form is just the unique quartic
invariant form (up to scaling). Generally, specifying just the splitting field of�, for instance
by specifying a degree-40 algebra, does not fully capture ξ , because it does not specify the
pairing information.
There is one case where simply specifying an algebra is sufficient: there is a unique

subgroup conjugacy class in PSp4(F3) of order 720, represented by Sym(6) acting by
permutation on the coordinates of B′. For a square-free degree-6 polynomial

h(T ) = (T − β1) · · · (T − β6)

we set

x̃i = x1 + βix2 + · · · + β5
i x6 for i = 1, . . . , 6.

It follows that a permutation on the βi has the same permutation action on the x̃i. Further-
more, we see that the elementary symmetric functions σ̃1 and σ̃4 in the x̃i have coefficients
that are symmetric in the βi and therefore can be expressed in terms of the coefficients of
h. Thus we see that σ̃1 = σ̃4 = 0 in P

5 defines a Burkhardt quartic that over the splitting
field of h is isomorphic to B′. This provides an easy way of directly constructing twists
for Burkhardt quartics. The example B′′ presented above is also of this type, although the
model given makes use of the smaller splitting field.
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