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1 Introduction

The von Mangoldt function is defined as

AQn) = logp :n :p’”jpis prime, m € N
0 : otherwise,

and we will consider the sum ¥ (x) = >, _, A(n). The prime number theorem (PNT) is

the statement v (x) ~ x as x — 00. For the PNT in short intervals, it is known that

Y +h)—yh)~h 1)

provided that /2 grows suitably with respect to x. Heath-Brown [9] has shown that one
can take i = x12 7 provided that e — 0 asx — oco. Assuming the Riemann hypothesis
(RH), Selberg [14] showed that (1) is true for any & = h(x) such that h/(x1/? logx) — o0
as x — 00. On the other hand, Maier [11] has shown that the statement is false for
h = (logx)* for any A > 1.

In this paper we prove the following explicit version of Selberg’s result.

Theorem 1 Assuming RH, for any h satisfying /xlogx < h < x4 and all x > '© we have

[V (x+h) —¥(x) —h| < %\/a_clogxlog ( +2/xlog x. (2)

iozv)
Jxlogx

Selberg’s result follows from Theorem 1 for any # = f(x)/xlogx with unbounded
f(x) = o(x), in that we would have

[ (x + h) — ¥ (x) — h| < /xlogxlog (f(x)) = o(h).

For i = cy/xlogx, Theorem 1 implies Cramér’s [6] result on primes in the interval
(%, x + h) for all sufficiently large x and c. In an earlier paper [7], the author showed that
¢ = 1 + € is suitable for any ¢ > 0 and for all sufficiently large x. Carneiro, Milinovich
and Soundararajan [4] have since shown that we can take ¢ = 22/55 for all x > 4. The
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same methods used in [7] are applied to reach Theorem 1. As such, it could be possible to
sharpen Theorem 1 using the techniques in [4].
The closest result to Theorem 1 is the following from Schoenfeld [13].

Theorem 2 Assuming RH, for x > 73.2 we have
1
V() — x| < —Valog’x (3)

Schoenfeld’s result confirms Selberg’s theorem for the slightly stronger condition of
h/(«/a_clog2 x) — 00. One also has from the above

WG+ ) = Y@ — bl < ——xt hlog(e + )

When x is sufficiently large, Theorem 1 improves the leading constant in this bound for

any choice of 1 < x0735,

2 Proof of Theorem 1

2.1 A smooth explicit formula

The Riemann—von Mangoldt explicit formula relates ¥ (x) to the zeros of the Riemann
zeta-function ¢ (s) (e.g. see Ingham [10]). Tor all non-integer x > 0,

Y(x) =x — Z %0 —log2m — %log(l —x72), (4)
0

where the sum is over all non-trivial zeroes p = B + iy of ¢(s). We define the weighted

sum

V1w =Y - mAG) = /2 ¥ (Ot 5)

n<x

and use the following explicit formula, proved in [7] (see also Thm. 28 of [10]).

Lemma 3 For non-integer x > 0 we have

2 xP+1
Vi) = - —Zm — xlog(2) + €(x) (6)

0

where

1.545 < €(x) < 2.069.

The bound on €(x) has been reduced from [7], as we can write

2r+l 1

X
E(x)=210g2n—2+2———f log(1 — t~2)dt
~pp+1) 2y

3.3
<2log2m —2+22(y +2—log4n)+log%_ < 2,069

and

€(x) > 2log2mr —2 — 2%()/ +2 —log4m) > 1.545.
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Using a linear combination of Eq. (5), we can examine the distribution of prime powers
in the interval (%, x + /). For 2 < A < /xlogx < h < x, let
(m—x+A)/A t x—A<n<ux
x<n<x+h
x+h+A—n/A: x+h<n<x+h+A
0 :  otherwise.
This leads to the identity

3" Amyw(n) = %(zm(x Fh+A) =Y+ 1) — @) + Vil — D),

w(n) =

which can be verified by expanding both sides. Notice that over x < n < x+ /4, the sum on
the LHS is equal to ¥ (x + /) — ¥ (x). We thus aim to estimate this expression by bounding
the RHS of (7). Using Lemma 3 in the above equation gives the following.

Lemmad Let2 < A < h <xwithx ¢& 7. Then

D Amw(nm) =h+ A - % D S(p) +€(A)
n P

where
S(o) = (x+ k4 AP — (x + )P — xPHL 4 (x — A)PTL
P= plp+1)
and
21
le(A)] < —

20A°

It remains to estimate the sum over zeros. We will split it into three sums,

Zs<m=( Yoo+ Y+ > )S(p) (7)

lyl<ax/h  ax/h<|y|<px/A  |y|zpx/A
where o > 0 and 8 > 0 are parameters we can later optimise over.

Lemma5 Let2 < A < h < x and assume RH. We have

3/2
S S| < RO g psa)

7 Bx

ly|=Bx/A

provided that Bx/A > y1 = 14.13. ., the ordinate of the first zero of ¢ (s).

Proof On RH, one has

4(x 4+ h+ A)3?

The result follows from Lemma 1(ii) of Skewes [15], that for all T > 4,

1 1logT
Z_2<2_ T :
y=1 7V T

O

The following lemmas require estimates on the zero-counting function N(T'), which
counts the number of zeros of £(s) in the critical strip 0 < 8 < 1with0 < y < T.

Backlund [1] showed that N(T') = P(T) + Q(T), where
T T 7

P(T) = L1
= —log — —
o 8or T ox '3
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and Q(T) = O(log T'). Hasanalizade, Shen, and Wong [8, Cor. 1.2] have given the most
recent explicit version of this, of

|Q(T)| <R(T) =aylog T + azloglog T + a3 (8)
with a; = 0.1038, ap = 0.2573, and a3 = 9.3675,forall T > e.

Lemma6 Let2 < A < h < x and assume RH. We have

h
Z S(p) <%Iog(ax/}z).

lyl<ax/h

Proof We can write

x+h+A  pu
S(p) = / / t* Y dtdu,
x+h u—h—A

so, under RH, one has
- (h+ A)A
NCENN
With (8), we can use
TlogT
21
from which the result immediately follows. O

1S(o)

N(T) <

For the middle sum of (7), we will use the following lemma. It follows directly from

1

Lemma 3 of [2], in whose notation we use ¢(y) = y -, and takes constants Ag and A;

from Trudgian [16, Thm. 2.2] and A, from [2, Lem. 2].

Lemma 7 For2m < T, < T we have

11 T, TTy  Q(T2) Q(Ty)
Z 47 & T1 ©8 47'[2 + T2 T1 + ( 1) (9)

T1<y<Ty
where |Q(T)| < R(T), defined in (8), and

2A110gT+2A0 + A1+ Ay

IE(T)| < =

with Ag = 2.067, A1 = 0.059, A, = 1/150.
Lemma 8 Let2 < A < h < x and assume RH. For ax/h > 15 we have

1 Bh o fx?
Z S(p)| < Alx+h+ A)1/2<; log <ﬁ) log (4n2hA> + 5.4).

ax/h<|y|<Bx/A

Proof We can write

1 x+h+A x
S(p) = —(/ tPdt —/ tpdt),
P x+h x—A

and so bounding trivially gives
20x + 1+ A)2A
Iyl '

IS(p)| <
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It follows that
1
Yo S| saxt+h+A)PA Y S
ax/h<|y|<Bx/A ax/h<y<pPx/A Y

on which we apply Lemma 7, and bound the smaller order terms with the assumption of
T1 > 15 to obtain the result. Note that the bound on T7 is to reduce the constant 5.4, but
not restrict « too much. O

2.2 Bounding the PNT in intervals

From Lemma 4 we can write

21

A
+ +20A

+ Z w(n)A(n)

x—A<n<x

’w(x+h) ) —h’ < %‘ > 8(0)
P

+ Y wmAwm)

x+h<n<x+h+A

As the smooth weight has |w(#n)| < 1, the above bound is no greater than

1 21
— S A+——+2 1 X 10
X 2250+ A+ o+ > logp (10)
P x+h<pk <x+h+A
k>1

The largest term in this bound comes from the sum over p, in particular, the section
estimated in Lemma 8. Larger A results in a smaller main-term constant, so we will set
A = C./xlogx and later choose an optimal value of C € (0, 1). The reason for not taking
larger A is two-fold: to keep A < /4 and ensure the smaller terms in (10) are O(y/x log x).

To bound the sum over prime powers we can use Montgomery and Vaughan’s version
of the Brun-Titchmarsh theorem for primes in intervals [12, Eq. 1.12]. Defining 6(x) =
prx log p, Eq. (1.12) of [12] implies

2hlog(x + h)

Ox+h)—600)= Y  logp= log

x<p=<x+h

The contribution from higher prime powers is relatively small, and can be bounded with
explicit estimates on the difference between the Chebyshev functions v (x) and 6 (x). Costa
Pereira [5, Thm. 2,4,5] gives lower bounds for different ranges of x. These can be combined

into
121
Y(x) — 0(x) > 0.999x2 + §x3 (11)
for all x > 2187. Broadbent et al. [3, Cor. 5.1] give
Yx) —0x) < alx% + oegx% (12)
with @1 = 1+ 1.93378 - 1078 and ay = 2.69 for all x > e1°. Thus, we have
Yx+h+A)—yx+h) <0x+h+A)—0x+h) + Ei(x)

- 2Alogx +h+ A)

E
log A + E1(x)
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where Ey(x) = a1(x + 1+ A)? + ax(x + h + A)3 — 0.999(x + h)? — 2(x + k)3, and is
bounded by E1(x) < B1x2 + ax3 with

2
B =+/3a; —0.999 and By =33y — 5

Here and hereafter, let xy = e!°. For x > x¢ we can bound the smaller order terms in
(10),

21
A+——+2 Z logp < Ki/xlogx

20A
x+h<pX<x+h+A
k>1

where, for # < x? with t < 1,

4C1 2t 2 2 21
K =C+ og(xo + 2xg) B1 B2

log(C. /%o logxo)  logxo xé log %0 20Cxo log? xo

This, along with Lemmas 5 and 6, allow us to bound

Y. S

ax/h<|y|<Bx/A

Yx+h) —Yx) — h‘ < % + E(x, 1, A) (13)

where

3/2
B ) = K+ S0 g (5) AL oy (B),

mTh'x — A A 7 Bx

For /xlogx < h < x* we have

2
Eh A) < Kiva+ = log (aﬁ>

/x — Cy/xlogx logx
A 4 Crlog x)32
N (x + ' + Cy/xlogx) log by < Kzv/xlogx,
7T,3x Clogx

where, for x > xy > ¢#/€ and 0 < @ < 5, we can take

Ki o n 2(xo + xé + C\/JC_()log?Co)?’/2

logxg = nﬂxg/z

The first term in (13) can be estimated with Lemma 8, so that

1 Bh o x>
172 — Ll
<x+h+A4) (nlOg <aA>log <4n2hA>+5'4)

h
Kz+/xlogx,
ﬁlogx) + K3v/xlogx

> S

ax/h<|y|<Bx/A

v (
< —logxlog
b
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in which, assuming 100e~1° < 4:’23 c < 100, we can take

1 B aBxo 1
Kz = —log| — | log 5
b4 aC 472C log” xo /) logxo
t/2-1/2 t—1/2
L %o log ( Bx ) log (onz)
7 log xo aClog xg 4712C log” xg

L C <ﬁx61/2>log< aBaxo )

log
nx(l)/zlw/log X0 aClogxg 472C log® xo
5.4 Clogx\ '/
+ <1+x31+—g 0) ,
log x¢ %o

Note that the assumption for & and 8 is to ensure certain terms are bounded for all x > x.
Combining estimates, we have

‘w(x—{—h)—lﬁ(x)—h’ <\/7§logxlog< ) + Ky/xlog x, (14)

h
Jxlogx
where K3 = K3 + K. It remains to optimise over the parameters. Before deciding these
values, recall that we have made the assumptions § < 10C,

Clogx 100 apf

Ca < B <a and 210 < 222G < 100.

15/ <a<5 B>
- a e — —)
x - " Jx

_1
The restriction on o will be satisfied for all \/xlogx < h < x% if we take a > 15x, 4,

Optimising over C, «, and 8 to minimise Ky, we find that choosing C = 0.25 and a =
B = 1.35 allows us to take Ky = 2 for all x > x.
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