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Abstract

This paper gives an explicit bound for the prime number theorem in short intervals
under the assumption of the Riemann hypothesis.

1 Introduction
The von Mangoldt function is defined as

�(n) =
{
log p : n = pm, pis prime, m ∈ N

0 : otherwise,

and we will consider the sum ψ(x) = ∑
n≤x �(n). The prime number theorem (PNT) is

the statement ψ(x) ∼ x as x → ∞. For the PNT in short intervals, it is known that

ψ(x + h) − ψ(h) ∼ h (1)

provided that h grows suitably with respect to x. Heath-Brown [9] has shown that one
can take h = x

7
12−ε provided that ε → 0 as x → ∞. Assuming the Riemann hypothesis

(RH), Selberg [14] showed that (1) is true for any h = h(x) such that h/(x1/2 log x) → ∞
as x → ∞. On the other hand, Maier [11] has shown that the statement is false for
h = (log x)λ for any λ > 1.
In this paper we prove the following explicit version of Selberg’s result.

Theorem 1 Assuming RH, for any h satisfying
√
x log x ≤ h ≤ x

3
4 and all x ≥ e10 we have

|ψ(x + h) − ψ(x) − h| <
1
π

√
x log x log

(
h√

x log x

)
+ 2

√
x log x. (2)

Selberg’s result follows from Theorem 1 for any h = f (x)
√
x log x with unbounded

f (x) = o(x), in that we would have

|ψ(x + h) − ψ(x) − h| 	 √
x log x log (f (x)) = o(h).

For h = c
√
x log x, Theorem 1 implies Cramér’s [6] result on primes in the interval

(x, x + h) for all sufficiently large x and c. In an earlier paper [7], the author showed that
c = 1 + ε is suitable for any ε > 0 and for all sufficiently large x. Carneiro, Milinovich
and Soundararajan [4] have since shown that we can take c = 22/55 for all x ≥ 4. The
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same methods used in [7] are applied to reach Theorem 1. As such, it could be possible to
sharpen Theorem 1 using the techniques in [4].
The closest result to Theorem 1 is the following from Schoenfeld [13].

Theorem 2 Assuming RH, for x ≥ 73.2 we have

|ψ(x) − x| <
1
8π

√
x log2 x. (3)

Schoenfeld’s result confirms Selberg’s theorem for the slightly stronger condition of
h/(

√
x log2 x) → ∞. One also has from the above

|ψ(x + h) − ψ(x) − h| <
1
4π

√
x + h log2(x + h).

When x is sufficiently large, Theorem 1 improves the leading constant in this bound for
any choice of h ≤ x0.735.

2 Proof of Theorem 1
2.1 A smooth explicit formula

The Riemann–von Mangoldt explicit formula relates ψ(x) to the zeros of the Riemann
zeta-function ζ (s) (e.g. see Ingham [10]). Tor all non-integer x > 0,

ψ(x) = x −
∑
ρ

xρ

ρ
− log 2π − 1

2
log(1 − x−2), (4)

where the sum is over all non-trivial zeroes ρ = β + iγ of ζ (s). We define the weighted
sum

ψ1(x) =
∑
n≤x

(x − n)�(n) =
∫ x

2
ψ(t)dt (5)

and use the following explicit formula, proved in [7] (see also Thm. 28 of [10]).

Lemma 3 For non-integer x > 0 we have

ψ1(x) = x2

2
−

∑
ρ

xρ+1

ρ(ρ + 1)
− x log(2π ) + ε(x) (6)

where

1.545 < ε(x) < 2.069.

The bound on ε(x) has been reduced from [7], as we can write

ε(x) = 2 log 2π − 2 +
∑
ρ

2ρ+1

ρ(ρ + 1)
− 1

2

∫ x

2
log(1 − t−2)dt

< 2 log 2π − 2 + 2
3
2 (γ + 2 − log 4π ) + log

3
√
3

4
< 2.069

and

ε(x) > 2 log 2π − 2 − 2
3
2 (γ + 2 − log 4π ) > 1.545.



M. Cully-Hugill, A. W. Dudek Res. Number Theory (2022) 8:61 Page 3 of 8 61

Using a linear combination of Eq. (5), we can examine the distribution of prime powers
in the interval (x, x + h). For 2 ≤ � <

√
x log x ≤ h ≤ x, let

w(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(n − x + �)/� : x − � ≤ n ≤ x
1 : x ≤ n ≤ x + h
(x + h + � − n)/� : x + h ≤ n ≤ x + h + �

0 : otherwise.
This leads to the identity∑

n
�(n)w(n) = 1

�
(ψ1(x + h + �) − ψ1(x + h) − ψ1(x) + ψ1(x − �)),

which can be verified by expanding both sides. Notice that over x ≤ n ≤ x+h, the sum on
the LHS is equal toψ(x+h)−ψ(x). We thus aim to estimate this expression by bounding
the RHS of (7). Using Lemma 3 in the above equation gives the following.

Lemma 4 Let 2 ≤ � < h ≤ x with x /∈ Z. Then∑
n

�(n)w(n) = h + � − 1
�

∑
ρ

S(ρ) + ε(�)

where

S(ρ) = (x + h + �)ρ+1 − (x + h)ρ+1 − xρ+1 + (x − �)ρ+1

ρ(ρ + 1)

and

|ε(�)| <
21
20�

.

It remains to estimate the sum over zeros. We will split it into three sums,∑
ρ

S(ρ) =
( ∑

|γ |≤αx/h
+

∑
αx/h<|γ |<βx/�

+
∑

|γ |≥βx/�

)
S(ρ) (7)

where α > 0 and β > 0 are parameters we can later optimise over.

Lemma 5 Let 2 ≤ � < h ≤ x and assume RH. We have∣∣∣∣∣∣
∑

|γ |≥βx/�
S(ρ)

∣∣∣∣∣∣ <
4�(x + h + �)3/2

πβx
log(βx/�)

provided that βx/� ≥ γ1 = 14.13 . . ., the ordinate of the first zero of ζ (s).

Proof On RH, one has

|S(ρ)| ≤ 4(x + h + �)3/2

γ 2 .

The result follows from Lemma 1(ii) of Skewes [15], that for all T ≥ γ1,∑
γ≥T

1
γ 2 <

1
2π

log T
T

.


�
The following lemmas require estimates on the zero-counting function N (T ), which

counts the number of zeros of ζ (s) in the critical strip 0 < β < 1 with 0 < γ ≤ T .
Backlund [1] showed that N (T ) = P(T ) + Q(T ), where

P(T ) := T
2π

log
T
2π

− T
2π

+ 7
8
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and Q(T ) = O(log T ). Hasanalizade, Shen, and Wong [8, Cor. 1.2] have given the most
recent explicit version of this, of

|Q(T )| ≤ R(T ) = a1 log T + a2 log log T + a3 (8)

with a1 = 0.1038, a2 = 0.2573, and a3 = 9.3675, for all T ≥ e.

Lemma 6 Let 2 ≤ � < h ≤ x and assume RH. We have∣∣∣∣∣∣
∑

|γ |≤αx/h
S(ρ)

∣∣∣∣∣∣ <
αx(h + �)�
πh

√
x − �

log(αx/h).

Proof We can write

S(ρ) =
∫ x+h+�

x+h

∫ u

u−h−�

tρ−1dtdu,

so, under RH, one has

|S(ρ)| <
(h + �)�√

x − �
.

With (8), we can use

N (T ) <
T log T
2π

,

from which the result immediately follows. 
�
For the middle sum of (7), we will use the following lemma. It follows directly from

Lemma 3 of [2], in whose notation we use φ(γ ) = γ −1, and takes constants A0 and A1
from Trudgian [16, Thm. 2.2] and A2 from [2, Lem. 2].

Lemma 7 For 2π ≤ T1 ≤ T2 we have

∑
T1<γ<T2

1
γ

= 1
4π

log
T2
T1

log
T2T1
4π2 + Q(T2)

T2
− Q(T1)

T1
+ E(T1), (9)

where |Q(T )| ≤ R(T ), defined in (8), and

|E(T )| ≤ 2A1 log T + 2A0 + A1 + A2
T 2

with A0 = 2.067, A1 = 0.059, A2 = 1/150.

Lemma 8 Let 2 ≤ � < h ≤ x and assume RH. For αx/h ≥ 15 we have∣∣∣∣∣∣
∑

αx/h<|γ |<βx/�
S(ρ)

∣∣∣∣∣∣ < �(x + h + �)1/2
(
1
π
log

(
βh
α�

)
log

(
αβx2

4π2h�

)
+ 5.4

)
.

Proof We can write

S(ρ) = 1
ρ

(∫ x+h+�

x+h
tρdt −

∫ x

x−�

tρdt
)
,

and so bounding trivially gives

|S(ρ)| ≤ 2(x + h + �)1/2�
|γ | .
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It follows that∣∣∣∣∣∣
∑

αx/h<|γ |<βx/�
S(ρ)

∣∣∣∣∣∣ ≤ 4(x + h + �)1/2�
∑

αx/h<γ<βx/�

1
γ
,

on which we apply Lemma 7, and bound the smaller order terms with the assumption of
T1 ≥ 15 to obtain the result. Note that the bound on T1 is to reduce the constant 5.4, but
not restrict α too much. 
�

2.2 Bounding the PNT in intervals

From Lemma 4 we can write
∣∣∣∣ψ(x + h) − ψ(x) − h

∣∣∣∣ <
1
�

∣∣∣∣∣
∑
ρ

S(ρ)

∣∣∣∣∣ + � + 21
20�

+
∑

x−�<n≤x
w(n)�(n)

+
∑

x+h<n≤x+h+�

w(n)�(n)

As the smooth weight has |w(n)| ≤ 1, the above bound is no greater than

1
�

∣∣∣∣∣
∑
ρ

S(ρ)

∣∣∣∣∣ + � + 21
20�

+ 2
∑

x+h<pk≤x+h+�
k≥1

log p. (10)

The largest term in this bound comes from the sum over ρ, in particular, the section
estimated in Lemma 8. Larger � results in a smaller main-term constant, so we will set
� = C

√
x log x and later choose an optimal value of C ∈ (0, 1). The reason for not taking

larger � is two-fold: to keep � < h and ensure the smaller terms in (10) are O(
√
x log x).

To bound the sum over prime powers we can use Montgomery and Vaughan’s version
of the Brun–Titchmarsh theorem for primes in intervals [12, Eq. 1.12]. Defining θ (x) =∑

p≤x log p, Eq. (1.12) of [12] implies

θ (x + h) − θ (x) =
∑

x<p≤x+h
log p ≤ 2h log(x + h)

log h
.

The contribution from higher prime powers is relatively small, and can be bounded with
explicit estimates on the difference between the Chebyshev functionsψ(x) and θ (x). Costa
Pereira [5, Thm. 2,4,5] gives lower bounds for different ranges of x. These can be combined
into

ψ(x) − θ (x) > 0.999x
1
2 + 2

3
x

1
3 (11)

for all x ≥ 2187. Broadbent et al. [3, Cor. 5.1] give

ψ(x) − θ (x) < α1x
1
2 + α2x

1
3 (12)

with α1 = 1 + 1.93378 · 10−8 and α2 = 2.69 for all x ≥ e10. Thus, we have

ψ(x + h + �) − ψ(x + h) ≤ θ (x + h + �) − θ (x + h) + E1(x)

≤ 2� log(x + h + �)
log�

+ E1(x)
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where E1(x) = α1(x + h + �)
1
2 + α2(x + h + �)

1
3 − 0.999(x + h)

1
2 − 2

3 (x + h)
1
3 , and is

bounded by E1(x) ≤ β1x
1
2 + β2x

1
3 with

β1 = √
3α1 − 0.999 and β2 = 3

1
3 α2 − 2

3
.

Here and hereafter, let x0 = e10. For x ≥ x0 we can bound the smaller order terms in
(10),

� + 21
20�

+ 2
∑

x+h<pk≤x+h+�
k≥1

log p < K1
√
x log x

where, for h ≤ xt with t < 1,

K1 = C + 4C log(x0 + 2xt0)
log(C√x0 log x0)

+ 2β1
log x0

+ 2β2

x
1
6
0 log x0

+ 21
20Cx0 log2 x0

.

This, along with Lemmas 5 and 6, allow us to bound

∣∣∣∣ψ(x + h) − ψ(x) − h
∣∣∣∣ <

1
�

∣∣∣∣∣
∑

αx/h<|γ |<βx/�
S(ρ)

∣∣∣∣∣ + E(x, h,�) (13)

where

E(x, h,�) = K1
√
x + αx(h + �)

πh
√
x − �

log
(αx
h

)
+ 4(x + h + �)3/2

πβx
log

(
βx
�

)
.

For
√
x log x ≤ h ≤ xt we have

E(x, h,�) ≤ K1
√
x + 2αx

π
√
x − C

√
x log x

log
(

α
√
x

log x

)

+ 4(x + xt + C
√
x log x)3/2

πβx
log

(
β
√
x

C log x

)
≤ K2

√
x log x,

where, for x ≥ x0 ≥ eβ/C and 0 < α ≤ 5, we can take

K2 = K1
log x0

+ α

π
+ 2(x0 + xt0 + C√x0 log x0)3/2

πβx3/20
.

The first term in (13) can be estimated with Lemma 8, so that

1
�

∣∣∣∣∣
∑

αx/h<|γ |<βx/�
S(ρ)

∣∣∣∣∣ < (x + h + �)1/2
(
1
π
log

(
βh
α�

)
log

(
αβx2

4π2h�

)
+ 5.4

)

<

√
x

π
log x log

(
h√

x log x

)
+ K3

√
x log x,
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in which, assuming 100e−10 ≤ αβ

4π2C ≤ 100, we can take

K3 = 1
π
log

(
β

αC

)
log

(
αβx0

4π2C log2 x0

)
1

log x0

+ xt/2−1/2
0

π log x0
log

(
βxt−1/2

0
αC log x0

)
log

(
αβx0

4π2C log2 x0

)

+
√
C

πx1/40
√
log x0

log
(

βxt−1/2
0

αC log x0

)
log

(
αβx0

4π2C log2 x0

)

+ 5.4
log x0

(
1 + xt−1

0 + C log x0√x0

)1/2
.

Note that the assumption for α and β is to ensure certain terms are bounded for all x ≥ x0.
Combining estimates, we have

∣∣∣∣ψ(x + h) − ψ(x) − h
∣∣∣∣ <

√
x

π
log x log

(
h√

x log x

)
+ K4

√
x log x, (14)

where K4 = K3 + K2. It remains to optimise over the parameters. Before deciding these
values, recall that we have made the assumptions β ≤ 10C ,

15h
x

≤ α ≤ 5, β ≥ γ1
C log x√

x
, Cα < β ≤ α, and

100
e10

≤ αβ

4π2C
≤ 100.

The restriction on α will be satisfied for all
√
x log x ≤ h ≤ x

3
4 if we take α ≥ 15x− 1

4
0 .

Optimising over C , α, and β to minimise K4, we find that choosing C = 0.25 and α =
β = 1.35 allows us to take K4 = 2 for all x ≥ x0.
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