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Abstract

This corrigendum serves to correct the article [1, Theorem 1.1]. In doing so, we correct
the proof and statement of Theorem 3.7, and see that one may disregard Proposition
3.4, Lemma 3.5 and Proposition 3.6.

Corrigendum to: J. Males Res. Number Theory (2020) 6:15
https://doi.org/10.1007/s40993-020-0190-x

This corrigendumdealswith two issues in the article [1] kindly pointedout to the author by
S. Zwegers. There is an error that occurs in the use of the integralsG+ andG−, and another
in the treatment of the functions gm,j for j = 1, 2, 3where exponential growth should occur.
Overall, these do not greatly impact the main results of the paper. In particular, Theorem
1.1 holds up to slight changes in constants and the correct version is stated as follows.

Theorem 1.1 For β := π
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6β log(n) we have that

b(m, n) = (−1)m+δ+ 3
2

β6m
8π5(2n) 14

e2π
√
2n + O

(
mn− 15

4 e2π
√
2n

)

as n → ∞. Here, δ := 1 if m < 0 and δ = 0 otherwise.

In the paper, it is claimed thatG+ = G−, which gives rise to the residue term. However,
this is not the case. In fact, G+ = −G−, and so the final term appearing in equation (3.1)
vanishes. Instead, we have that

fm(τ ) := f +
m + f −

m
2

= −2i
∫ 1

2

0
f (z; τ ) sin(2πmz)dz,

which can be easily seen by mapping z �→ 1 − z on the path of integration. One does not
require the limit as a → 0+, as the integrand is well-defined for all z ∈ [0, 12 ].
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Instead of the functions gm,j , now one uses Lemma 3.1, which gives the asymptotic
behaviour of f for 0 < z < 1

2 . With this in hand, evaluating the sinh functions clearly
shows that we have

− ε3

π3

sinh
(
2π2z

ε

)4

sinh( 4π2z
ε

)
= − ε3

π3 e
4π2z

ε

(
1 + O(e− 4π2z

ε )
)
.

Plugging in the formulae for the sinh functions and integrating explicitly, using the formula

∫ 1
2

0
exz sin(2πmz)dz = − 2πm

4π2m2 + x2 e
x
2 cos(πm) − 2πm

4π2m2 + x2 ,

shows directly that

fm(τ ) = − 2
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ε + O(ε3).

This replaces the statement given in Theorem 3.7. One then no longer requires the
integrals gm,j for j = 1, 2, 3, and as such can disregard Proposition 3.4, Lemma 3.5 and
Proposition 3.6. The subsequent results in the paper hold, and in particular the main
contribution to asymptotics is still given by the function at the dominant pole q = 1.
Tracing the changes in constants to the use of the circle method yields Theorem 1.1.
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