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Abstract

Let ζ (s) and Z (t) be the Riemann zeta function and Hardy’s function respectively. We
show asymptotic formulas for

∫ T
0 Z (t)ζ (1/2 + it)dt and

∫ T
0 Z2(t)ζ (1/2 + it)dt .

Furthermore we derive an upper bound for
∫ T
0 Z3(t)χα (1/2 + it)dt for

−1/2 < α < 1/2, where χ (s) is the function which appears in the functional equation
of the Riemann zeta function: ζ (s) = χ (s)ζ (1 − s).

Keywords: Hardy’s function, Mean value theorems, Approximate functional equation,
Exponential sum and integral
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1 Introduction
Let Z(t) be Hardy’s function defined by

Z(t) = ζ (1/2 + it)χ−1/2(1/2 + it),

where as usual ζ (s) is the Riemann zeta-function and χ (s) is the gamma factor appearing
in the functional equation of ζ (s):

ζ (s) = χ (s)ζ (1 − s). (1)

The explicit form of χ (s) is

χ (s) = 2sπ s−1 sin
(πs
2

)
Γ (1 − s) (2)

and its asymptotic behavior is given by

χ (σ + it) =
( |t|
2π

)1/2−σ−it
ei(t±

π
4 )

(

1 + O
(

1
|t|

))

(3)

for |t| ≥ t0 > 0, where t ± π
4 = t + sgn(t)π

4 . See Ivić [10].
From (1), it follows that Z(t) is a real-valued even function for real t and |Z(t)| =

|ζ (1/2 + it)|. Therefore the zeros of ζ (s) on the critical line Re s = 1/2 coincide with the
real zeros of Z(t). Historically, Hardy proved the infinity of the number of zeros of ζ (s) on
the critical line in 1914. A little later Hardy and Littlewood gave another proof by showing
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that
∫ T
0 Z(t)dt � T 7/8 and

∫ T
0 |Z(t)|dt � T . See Chandrasekharan [3, Chapter II, §4 and

Notes on Chapter II] or Titchmarsh [23, 10.5].
Since Z2(t) = |ζ (1/2 + it)|2, 2k-th power moment of Z(t) is equivalent to 2k-th power

moment of |ζ (1/2 + it)|. Hardy and Littlewood first showed the asymptotic formula in
the case k = 1. In fact they showed that

∫ T

0
|ζ (1/2 + it)|2dt ∼ T log T

([5,6]). In 1926, Ingham [9] derived

∫ T

0
|ζ (1/2 + it)|2dt = T log

T
2π

+ (2γ0 − 1)T + E(T ) (4)

withE(T ) � T 1/2 log T , where γ0 is Euler’s constant. There are a lot of literatures on E(T )
since then. For instance, Atkinson [1] gave an explicit formula for E(T ), which becomes
the fundamental tool of further researches on E(T ). See Ivić [10] for more details. For
k = 2, among other things, Ingham [9] showed that

∫ T

0
|ζ (1/2 + it)|4dt = 1

2π4T log4 T + E2(T ) (5)

with E2(T ) = O(T log3 T ) by applying the famous approximate functional equation of
ζ 2(s) of Hardy and Littlewood [7]. Ingham’s result was improved by Heath-Brown [8]
to E2(T ) = T

∑4
n=0 cn log

n T + O(T 7/8+ε). Motohashi [21] studied E2(T ) by the use of
spectral theory of automorphic forms. See also Ivić [11] or Titchmarsh [23, 7.20]. Other
mean value theorems (of even power) were studied by Hall [4] in connection with the
distribution of consecutive zeros of Z(t).
As for odd power moments of Z(t), Ivić [12] proved in 2004 that

∫ T

0
Z(t)dt � T 1/4+ε .

It shows that Z(t) changes sign quite often. Ivić’s result was sharpened to
∫ T
0 Z(t)dt �

T 1/4 by Jutila [17,18] and Korolev [20] independently. Moreover they showed the Omega
result

∫ T
0 Z(t)dt = Ω±(T 1/4) which was conjectured by Ivić [12]. It means that T 1/4 is

the true order of
∫ T
0 Z(t)dt. Since there are a large amount of cancellations, it is expected

that the cubic power moment has an exponent less than 1. In fact, Ivić showed that

∫ 2T

T
Z3(t)dt = 2π

√
2
3

∑

( T
2π )3/2≤n≤( T

π
)3/2

d3(n)
n1/6

cos
(

3πn2/3 + 1
8
π

)

+ O(T 3/4+ε)

and conjectured that

∫ T

0
Z3(t)dt � T 3/4+ε (6)

([14, Chapter 11]). Here d3(n) denotes the number of triples (k1, k2, k3) such that n =
k1k2k3, kj ∈ Z, kj > 0. If we use (4), (5) and the Cauchy-Schwarz inequality we have
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∫ T
0 Z3(t)dt � T (log T )5/2. The best upper bound at present is due to Bettin, Chandee
and Radziwiłł [2] who showed the second ineqality of the following:

∣
∣
∣
∣
∣

∫ T

0
Z3(t)dt

∣
∣
∣
∣
∣
≤

∫ T

0
|Z(t)|3dt � T (log T )9/4. (7)

It should be noted that T (log T )9/4 is the correct order of
∫ T
0 |Z(t)|3dt.

In this paper we shall prove several mean values of the functions combined with Z(t)
and ζ (1/2 + it).

Theorem 1 For large T > 0, we have
∫ T

0
Z(t)ζ

(
1
2

+ it
)

dt = 2
√
2π
3

e
π i
8

(
T
2π

)3/4 (
1
2
log

T
2π

+ 2γ0 − 2 log 2 − 2
3

)

+ O(T 1/2 log T ).

We recall that γ0 is Euler’s constant which coincides with the 0-th coefficient of the
Laurent expansion of ζ (s) at s = 1.
Ivić’s conjecture (6) would follow from the bound of exponential sum

∑

N≤n≤2
√
2N

d3(n)
n1/6

e3π in
2/3 � N 1/2+ε , (8)

or, as Ivić noted [15, (1.6)], from
∑

N≤n≤2N
d3(n)e3π in

2/3 � N 2/3+ε . (9)

It seems that (9) (or (8)) is out of reach of the present method of exponential sums.
However if we replace d3(n) by d(n) (the divisor function d(n) = ∑

n=d1d2 1), we can
prove the following theorem in the frame of Theorem 1.

Theorem 2 Let A be a parameter such that A � N−1/4 . Then we have
∑

N≤k≤2
√
2N

d(k)
k1/6

e3π i(Ak)
2/3

= √
3A−4/3

∑

A4/3N 1/3≤k≤√
2A4/3N 1/3

d(k)k1/2e−π i(k/A)2

+ O(A−1/3N 1/2+ε) + O(A1/3N 1/6 logN ) + O(A−1/9N 2/9+ε)

� A2/3N 1/2 logN.

For another kind of mean value of Z(t) and ζ (1/2 + it) we have

Theorem 3 For large T > 0 we have

∫ T

0
Z2(t)ζ (1/2 + it)dt = T

{
1
2

(

log
T
2π

)2
+ a1 log

T
2π

+ a2

}

+ O(T 3/4 log2 T ),

where a1 = 3γ0 − 1, a2 = 3γ1 + 3γ 2
0 − 3γ0 + 1, γj being the coefficients of the Laurent

expansion of ζ (s) at s = 1.
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We note that the integral of the left-hand side has an asymptotic form. It may be
interesting to compare with Ivić’s conjecture (6).
As for another mean value, we shall prove the following

Theorem 4 Let α be a real fixed constant such that −1/2 < α < 1/2. Then we have

∫ 2T

T
Z3(t)χα(1/2 + it)dt �

⎧
⎨

⎩

T 1− α
6 +ε if 0 ≤ α < 1/2,

T 1+ α
6 +ε if − 1/2 < α ≤ 0.

The cubic moment of Hardy’s function corresponds to α = 0, but unfortunately this
gives only O(T 1+ε).

2 Some Lemmas
Lemma 1 Suppose that f (x) andϕ(x) are real-valued functions on the interval [a, b]which
satisfy the conditions
1) f (4)(x) and ϕ′′(x) are continuous,
2) there exist numbers H, A,U, 0 < H,A < U, 0 < b − a ≤ U, such that

A−1 � f ′′(x) � A−1, f (3) � A−1U−1, f (4)(x) � A−1U−2

ϕ(x) � H, ϕ′(x) � HU−1, ϕ′′(x) � HU−2,

3) f ′(c) = 0 for some c, a ≤ c ≤ b.
Then

∫ b

a
ϕ(x) exp(2π if (x))dx = 1 + i√

2
ϕ(c) exp(2π if (c)

√
f ′′(c)

+ O(HAU−1)

+ O
(
H min(|f ′(a)|−1,

√
A)

)
+ O

(
H min(|f ′(b)|−1,

√
A)

)
.

This is Lemma 2 of Karatsuba and Voronin [19, p.71].

Remark 1 Here we give an important remark. As is noted in Ivić and Zhai [16], the proof
actually shows that if there is no c which satisfies the condition 3, the term containing c
does not appear in the right-hand side. Moreover if c = a or c = b, then the main term is
to be halved.

Lemma 2 For 1
2 ≤ σ < 1 fixed, 1 � x, y � tk , s = σ + it, xy = ( t

2π )
k , t ≥ t0 and k ≥ 1 a

fixed integer, we have

ζ k (s) =
∞∑

m=1
ρ

(m
x

)
dk (m)m−s + χk (s)

∞∑

m=1
ρ

(
m
y

)

dk (m)ms−1

+ O(tk(1−σ )/3−1) + O(tk(1/2−σ )−2yσ logk−1 t).

Here χ (s) is the function defined by (2) and ρ(u)(≥ 0) is a smooth function such that
ρ(u) + ρ(1/u) = 1 for u > 0 and ρ(u) = 0 for u ≥ 2.

This is Lemma 4 of [16]. See also [14, Theorem 4.16].
For the proof of Theorem 4 we need the following lemma.
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Lemma 3 Let α,β , γ be fixed real numbers such that α(α − 1)βγ �= 0 and write e(x) =
e2π ix. Let

S =
2H∑

h=H+1

2N∑

n=N+1

∣
∣
∣
∣
∣
∣

∑

M<m≤2M
e
(

X
mαhβnγ

MαHβN γ

)
∣
∣
∣
∣
∣
∣

∗
,

where ∗ means that
∣
∣
∣
∣
∣
∣

∑

N≤n≤N ′
zn

∣
∣
∣
∣
∣
∣

∗
= max

N≤N1≤N2≤N ′

∣
∣
∣
∣
∣
∣

N2∑

n=N1

zn

∣
∣
∣
∣
∣
∣
.

Then we have

S � (HNM)1+ε

{(
X

HNM2

)1/4
+ 1

M1/2 + 1
X

}

.

This is Theorem 3 of Robert and Sargos [22].

3 Proofs of Theorem 1 and 2
Proof of Theorem 1 We consider the integral

J =
∫ 2T

T
Z(t)ζ

(
1
2

+ it
)

dt. (10)

By the definition of Z(t) and applying Lemma 2 we have

Z(t)ζ
(
1
2

+ it
)

= ζ 2
(
1
2

+ it
)

χ−1/2
(
1
2

+ it
)

=
( ∞∑

k=1
ρ

(
k
x

)
d(k)

k1/2+it + χ2
(
1
2

+ it
) ∞∑

k=1
ρ

(
k
y

)
d(k)

k1/2−it

+ O
(
t−2/3) + O

(
t−2y1/2 log t

)
)

χ−1/2
(
1
2

+ it
)

,

where xy = (t/2π )2. Substituting this expression to (10), we have

J = J1 + J2 + O(T 1/3), (11)

where

J1 =
∞∑

k=1

d(k)
k1/2

∫ 2T

T
ρ

(
k
x

)

k−itχ−1/2
(
1
2

+ it
)

dt (12)

and

J2 =
∞∑

k=1

d(k)
k1/2

∫ 2T

T
ρ

(
k
y

)

kitχ3/2
(
1
2

+ it
)

dt. (13)

We take

x = 2
(

t
2π

)

, y = 1
2

(
t
2π

)

,
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and put K = T
π
. Then the ranges of k in the sums in (12) and (13) are, in fact, k ≤ 4K and

k ≤ K , respectively.
We first consider J1. Using (3) we find that

k−itχ−1/2
(
1
2

+ it
)

= e−
π i
8 e

i
2 (t log

t
2π −t−t log k2) + O(1/t),

hence we have

J1 = e−
π i
8

∑

k≤4K

d(k)
k1/2

∫ 2T

T
ρ

(
k
x

)

e
i
2 (t log

t
2π −t−t log k2)dt + O(T 1/2 log T ).

We evaluate the above integral by applying Lemma 1 with ϕ(t) = ρ
(
k

(
π
t
))

and f (t) =
1
4π (t log

t
2π − t − t log k2). Note that ϕ(t) satisfies the conditions of Lemma 1 with H =

1, U = T . Since f ′(t0) = 0 if and only if t0 = 2πk2, the main term of the integral appears
for k such that

(
T
2π

)1/2
≤ k ≤

(
T
π

)1/2
. (14)

Thus we get
∫ 2T

T
ρ

(
k
x

)

e
i
2 (t log

t
2π −t−t log k2)dt

= M(k) + O
(

1 + min
(√

T,
1

| log( T
2πk2 )|

)
+ min

(√
T,

1
| log( T

πk2 )|
)
)

,

where

M(k) = e
π i
4 ρ

(
1
2k

)

2
√
2πke−π ik2 = 2

√
2πe

π i
4 k(−1)k

for k satisfying the condition (14) and 0 otherwise. This yields that

J1 = 2
√
2πe

π i
8

∑

( T
2π )1/2≤k≤( T

π
)1/2

′ (−1)kd(k)k1/2

+
∑

k≤4K

d(k)
k1/2

O
(

1 + min
(√

T,
1

| log( T
2πk2 )|

)
+ min

(√
T,

1
| log( T

πk2 )|
)
)

+ O(T 1/2 log T )

=: R0 + R1 + R2 + R3 + O(T 1/2 log T ),

where
∑′ means that the terms for k = (T/2π )1/2 and k = (T/π )1/2 are to be halved if

they are integers. It is clear that R1 � T 1/2 log T. To estimate R2, we divide the sum into
four parts:

∑

k≤4K
=

∑

1≤k< 1
2

(
T
2π

)1/2

+
∑

1
2

(
T
2π

)1/2≤k<
(

T
2π

)1/2

+
∑

(
T
2π

)1/2≤k≤2
(

T
2π

)1/2

+
∑

2
(

T
2π

)1/2
<k≤4K

=: S1 + S2 + S3 + S4 .

For S1 and S4 we have min(
√
T, 1

| log( T
2πk2

)| ) � 1
log 4 , hence we get S1 � T 1/4 log T and

S4 � T 1/2 log T . For S2, we write k = [( T
2π )

1/2] − j for k in this range and divide the
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sum over j as S2 = S2,1 + S2,2, where S2,1 is the sum for j = 0, 1, 2 and S2,2 is the sum
for 3 ≤ j ≤ [( T

2π )
1/2] − 1

2 (
T
2π )

1/2. For S2,1 we use min(
√
T, 1

| log( T
2πk2

)| ) ≤ √
T and hence

S2,1 � T 1/4+ε since the sum is finite. As for S2,2, from

log

(
T
2π

)1/2

k
=

∣
∣
∣
∣
∣
∣
∣
∣

log

[(
T
2π

)1/2] − j
(

T
2π

)1/2

∣
∣
∣
∣
∣
∣
∣
∣

 j
(

T
2π

)1/2 ,

we have

S2,2 � T−1/4+ε
∑

j

(
T
2π

)1/2

j
� T 1/4+ε .

Thus we get S2 � T 1/4+ε . It is the same for S3. Combining these estimates we find that
R2 � T 1/2 log T. Similarly we have R3 � T 1/2 log T. As a result, we get

J1 = 2
√
2πe

π i
8

∑

(
T
2π

)1/2≤k≤
(
T
π

)1/2

′ (−1)kd(k)k1/2 + O(T 1/2 log T ). (15)

Next we consider J2. Similarly to the case of J1, we have by (3) that

J2 = e
3π i
8

∑

k≤K

d(k)
k1/2

∫ 2T

T
ρ

(
k
y

)

e−
3
2 i(t log

t
2π −t−t log k2/3)dt

+ O(T 1/2 log T ). (16)

We apply Lemma 1 to the above integral with ϕ(t) = ρ(2k(2π/t)) and f (t) =
− 3

4π (t log
t
2π − t − t log k2/3). In this case f ′(t0) = 0 if and only if t0 = 2πk2/3 and

t0 is contained in the interval [T, 2T ] if and only if
(

T
2π

)3/2
≤ k ≤

(
T
π

)3/2
.

Since the range of the sum over k is 1 ≤ k ≤ K , there are no such k , that is, the integral
in (16) does not have a main term. Considering the error term by Lemma 1 we find that

J2 �
∑

k≤K

d(k)
k1/2

(

1 + min
(
(
√
T,

1
| log T

2πk2/3 |
)

+ min
(√

T,
1

| log T
πk2/3 |

)
)

=: R′
1 + R′

2 + R′
3.

We have clearly R′
1 � T 1/2 log T . For R′

2 and R′
3 we note that | log T

k2/3 | � 1 since k ≤ K ,
which implies that R′

2, R
′
3 � T 1/2 log T . Hence

J2 � T 1/2 log T. (17)

From (11), (15) and (17), we get

J = 2
√
2πe

π i
8

∑

( T
2π )1/2≤k≤( T

π
)1/2

′ (−1)kd(k)k1/2 + O(T 1/2 log T ).
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Now dividing the interval [0, T ] as ∪j[T/2j , T/2j−1] and summing the above evaluations
we have

∫ T

0
Z(t)ζ

(
1
2

+ it
)

dt = 2
√
2πe

π i
8

∑

k≤( T
2π )1/2

(−1)kd(k)k1/2

+ O(T 1/2 log T ). (18)

To evaluate the sum on the right-hand side of (18) we recall that
∑

k≤x
(−1)kd(k) = x

2
(log x + 2γ0 − 1 − 2 log 2) + O(x1/3+ε)

for x � 1 (see, e.g., Ivić [13]), so by partial summation we have
∑

k≤x
(−1)kd(k)k1/2 = 1

3
x3/2

(

log x + 2γ0 − 2 log 2 − 2
3

)

+ O(x5/6+ε).

Substituting this form to (18) we finally get

∫ T

0
Z(t)ζ

(
1
2

+ it
)

dt = 2
√
2π
3

e
π i
8

(
T
2π

)3/4 (
1
2
log

T
2π

+ 2γ0 − 2 log 2 − 2
3

)

+ O(T 1/2 log T ).

This proves the assertion of Theorem 1. ��

Proof of Theorem 2 LetA be a parameter such thatT−1/2 � A � T 3/2.We shall consider
the integral

JA =
∫ 2T

T
Z(t)ζ

(
1
2

+ it
)

Aitdt

by the same way as in the proof of Theorem 1. Applying Lemma 2 we get

JA = JA,1 + JA,2 + O(T 1/3), (19)

where

JA,1 =
∫ 2T

T
χ−1/2

(
1
2

+ it
) ∞∑

k=1
ρ

(
k
x

)
d(k)

k1/2+it A
itdt (20)

and

JA,2 =
∫ 2T

T
χ3/2

(
1
2

+ it
) ∞∑

k=1
ρ

(
k
y

)
d(k)

k1/2−it A
itdt, (21)

where xy = ( t
2π )

2. Hereafter we put K0 =
(
T
π

)1/2
. ��

Now we shall evaluate JA,1 and JA,2 by taking two different choices of x and y, that is,
Case 1 : we take x = 8A( t

2π )
1/2 and y = 1

8A (
t
2π )

3/2,
Case 2 : we take x = A

4 (
t
2π )

1/2 and y = 4
A (

t
2π )

3/2.



X. Cao et al. Res. Number Theory (2021) 7:30 Page 9 of 16 30

3.1 Case 1

The ranges of the sums in JA,1 and JA,2 are at most k ≤ 16AK0 and k ≤ 1
4AK

3
0 , respectively.

By (3) and the trivial estimate for the error term we get

JA,1 = e−
π i
8

∑

k≤16AK0

d(k)
k1/2

∫ 2T

T
ρ

(
k
x

)

e
i
2 (t log

t
2π −t−t log( kA )

2)dt

+ O
(
A1/2T 1/4+ε

)
. (22)

We shall evaluate the integral by Lemma 1. Let f (t) = 1
4π (t log

t
2π − t − t log( kA )

2). Then
f ′(t0) = 0 if and only if t0 = 2π ( kA )

2 and T ≤ t0 ≤ 2T if and only if

A
(

T
2π

)1/2
≤ k ≤ A

(
T
π

)1/2
. (23)

We find that all k satisfing (23) are contained in the range k ≤ 16AK0. Therefore the
integral in (22) has a main term which is given by

MA(k) = e
π i
4 ρ

(
1
8

)

2
√
2π

k
A
e−π i(k/A)2

for A( T
2π )

1/2 ≤ k ≤ A(T
π
)1/2 and MA(k) = 0 otherwise. We note that ρ(1/8) = 1 in the

above formula. It follows from Lemma 1 and (22) that

JA,1 = e−
π i
8

∑

A
(

T
2π

)1/2≤k≤A
(
T
π

)1/2

d(k)
k1/2

MA(k)

+
∑

k≤4AK0

d(k)
k1/2

O

⎛

⎜
⎜
⎝1 + min

(√
T,

1
∣
∣log

(
(

T
2π

) 1
2

k/A
)∣∣

)

+ min
(√

T,
1

∣
∣log

(
(
T
π

) 1
2

k/A
)∣∣

)
⎞

⎟
⎟
⎠

+ O(A1/2T 1/4+ε).

Similarly to the proof of Theorem 1, we see that the contributions from the O-terms are
bounded by O(A1/2T 1/4+ε + A−1/2T 1/4+ε). Hence we get

JA,1 = e
π i
8
2
√
2π
A

∑

A
(

T
2π

) 1
2 ≤k≤A

(
T
π

) 1
2

d(k)k1/2e−π i(k/A)2

+ O(A1/2T 1/4+ε) + O(A−1/2T 1/4+ε). (24)

Next we consider JA,2. Similarly to JA,1 we have

JA,2 = e
3π i
8

∑

k≤ 1
4AK

3
0

d(k)
k1/2

∫ 2T

T
ρ

(
k
y

)

e−
3
2 i(t log

t
2π −t−t log(Ak)2/3)dt

+ O(A−1/2T 3/4+ε).

If we put f (t) = − 3
4π (t log

t
2π − t − t log(Ak)2/3) this time, f ′(t0) = 0 if and only if

t0 = 2π (Ak)2/3 and so T ≤ t0 ≤ 2T if and only if

1
A

(
T
2π

)3/2
≤ k ≤ 1

A

(
T
π

)3/2
. (25)
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Since k runs in the range 1 ≤ k ≤ 1
4AK

3
0 , there is no main term in the integral of JA,2.

Hence by Lemma 1, we get similarly that

JA,2 �
∑

k≤ 1
4AK

3
0

d(k)
k1/2

⎛

⎝1 + min
(√

T,
1

| log
(
(T/2π )3/2

Ak

)
|

)

+min
(√

T,
1

| log ( (T/π )3/2
Ak

)|

))

� A−1/2T 3/4+ε + A1/2T−1/4+ε . (26)

From (19), (24) and (26), we obtain

JA = e
π i
8
2
√
2π
A

∑

A( T
2π )

1
2 ≤k≤A( T

π
)
1
2

d(k)k1/2e−π i(k/A)2

+ O(A1/2T 1/4+ε) + O(A−1/2T 3/4+ε) + O(T 1/3). (27)

3.2 Case 2

In this choice of x and y, the sums in (20) and (21) are actually over k ≤ 1
2AK0 and

k ≤ 8
AK0

3, respectively. Thus

JA,1 = e−
π i
8

∑

k≤ A
2 K0

d(k)
k1/2

∫ 2T

T
ρ

(
k
x

)

e
i
2 (t log

t
2π −t−t log( kA )

2)dt

+ O
(
A1/2T 1/4+ε

)

and

JA,2 = e
3π i
8

∑

k≤ 8
AK

3
0

d(k)
k1/2

∫ 2T

T
ρ

(
k
y

)

e−
3
2 i(t log

t
2π −t−t log(Ak)2/3)dt

+ O(A−1/2T 3/4+ε).

As for JA,1, the integral has a main term if and only if k satisfies (23). Since k runs over
1 ≤ k ≤ A

2K0, there are no such k . The contribution from the error term of the integral is
the same as in the previous case since the range of the sum has the same order, hence we
get

JA,1 � A1/2T 1/4+ε + A−1/2T 1/4+ε . (28)

On the other hand, the integral of JA,2 has a main term if and only if k satisfies (25), and
in fact all k are in the range k ≤ 8

AK
3
0 . Hence by Lemma 1, JA,2 has the following form:

JA,2 = e
3π i
8

∑

1
A

(
T
2π

)3/2≤k≤ 1
A

(
T
π

)3/2

d(k)
k1/2

M̃A(k)

+
∑

k≤ 8
AK

3
0

d(k)
k1/2

O
(

1 + min
(√

T,
1

| log ( (T/2π )3/2
Ak

)|

)



X. Cao et al. Res. Number Theory (2021) 7:30 Page 11 of 16 30

+ min
(√

T,
1

| log ( (T/π )3/2
Ak

)|

))

+ O(A−1/2T 3/4+ε),

where

M̃A(k) = e−
π i
4 ρ

(
1
4

)
2
√
2π√
3

(Ak)1/3e3π i(Ak)
2/3

for 1
A (

T
2π )

3/2 ≤ k ≤ 1
A (

T
π
)3/2 and 0 otherwise. We see that the contribution from the

O-term is the same as the previous case, therefore

JA,2 = e
π i
8
2
√
2π√
3

A1/3
∑

1
A

(
T
2π

)3/2≤k≤ 1
A

(
T
π

)3/2

d(k)
k1/6

e3π i(Ak)
2/3

+ O(A−1/2T 3/4+ε) + O(A1/2T−1/4+ε). (29)

From (28) and (29) we obtain that

JA = e
π i
8
2
√
2π√
3

A1/3
∑

1
A

(
T
2π

)3/2≤k≤ 1
A

(
T
π

)3/2

d(k)
k1/6

e3π i(Ak)
2/3

+ O(A−1/2T 3/4+ε) + O(A1/2T 1/4+ε) + O(T 1/3). (30)

Now we have two expressions of JA: (27) and (30). Comparing these expressions we
obtain

∑

1
A

(
T
2π

)3/2≤k≤ 1
A

(
T
π

)3/2

d(k)
k1/6

e3π i(Ak)
2/3

= √
3A−4/3

∑

A
(

T
2π

) 1
2 ≤k≤A

(
T
π

) 1
2

d(k)k1/2e−π i(k/A)2

+ O(A−5/6T 3/4+ε) + O(A1/6T 1/4+ε) + O(A−1/3T 1/3+ε)

� A1/6T 3/4 log T, (31)

where the last inequality is obtained by the trivial estimate. In (31), we take T =
2π (AN )2/3. Then (31) is transformed to
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∑

N≤k≤2
√
2N

d(k)
k1/6

e3π i(Ak)
2/3

= √
3A−4/3

∑

A4/3N 1/3≤k≤√
2A4/3N 1/3

d(k)k1/2e−π i(k/A)2

+ O(A−1/3N 1/2+ε) + O(A1/3N 1/6+ε) + O(A−1/9N 2/9+ε)

� A2/3N 1/2 logN

for A � N−1/4. This proves the assertion of Theorem 2.

4 Proof of Theorem 3
Since the method is similar to Theorem 1, we shall only give an outline of proof. Let

I =
∫ 2T

T
Z2(t)ζ

(
1
2

+ it
)

dt.

This time we have

Z2(t)ζ
(
1
2

+ it
)

= ζ 3
(
1
2

+ it
)

χ−1
(
1
2

+ it
)

= χ−1
(
1
2

+ it
) ∞∑

k=1
ρ

(
k
x

)
d3(k)
k1/2+it + χ2

(
1
2

+ it
) ∞∑

k=1
ρ

(
k
y

)
d3(k)
k1/2−it

+ O
(
t−1/2) + O

(
t−2y1/2 log2 t

)
, (32)

where xy = ( t
2π )

3.
We take x = 2( t

2π )
3/2 and y = 1

2 (
t
2π )

3/2 in (32) and putK3 = (T/π )3/2. Then the ranges
of k in the above two sums are at most k ≤ 4K3 and k ≤ K3, respectively. Hence

I =
∑

k≤4K3

d3(k)
k1/2

∫ 2T

T
ρ

(
k
x

)

k−itχ−1
(
1
2

+ it
)

dt

+
∑

k≤K3

d3(k)
k1/2

∫ 2T

T
ρ

(
k
y

)

kitχ2
(
1
2

+ it
)

dt + O(T 1/2)

=: I1 + I2 + O(T 1/2). (33)

As for I2, using (3), we get

I2 = e
π i
2

∑

k≤K3

d3(k)
k1/2

∫ 2T

T
ρ

(
k
y

)

e−2i(t log t
2π −t−t log

√
k)dt + O(T 3/4 log2 T ).

As in the pevious case, we apply Lemma 1 to the above integral with ϕ(t) = ρ
(
2k

( 2π
t

)3/2)

and f (t) = − 1
π
(t log t

2π − t − t log
√
k). Then we find that f ′(t0) = 0 if and only if

t0 = 2π
√
k , and this t0 is contained in the interval [T, 2T ] if and only if

(
T
2π

)2
≤ k ≤

(
T
π

)2
. (34)
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Since k runs over the range 1 ≤ k ≤ K3, there is no k which satisfies (34), hence the main
term does not appear in this integral. On the other hand, the error term of this integral is
given by

1 + min

⎛

⎝
√
T,

1
| log T

2π
√
k
|

⎞

⎠ + min

⎛

⎝
√
T,

1
| log T

π
√
k
|

⎞

⎠ � 1,

hence

I2 �
∑

k≤K3

d3(k)
k1/2

+ T 3/4 log2 T � T 3/4 log2 T. (35)

Next we treat I1. By (3) again, we have

I1 = e−
π i
4

∑

k≤4K3

d3(k)
k1/2

∫ 2T

T
ρ

(
k
x

)

ei(t log
t
2π −t−t log k)dt + O(T 3/4 log2 T ).

In this case ϕ(t) = ρ(k( 2πt )3/2/2) and f (t) = 1
2π (t log

t
2π − t − t log k). We see that

f ′(t0) = 0 if and only if t0 = 2πk and this t0 is contained in [T, 2T ] if and only if

T
2π

≤ k ≤ T
π
.

Therefore we have
∫ 2T

T
ρ

(
k
x

)

ei(t log
t
2π −t−t log k)dt

= M(k) + O
(

1 + min
(√

T,
1

| log T
2πk |

)

+ min
(√

T,
1

| log T
πk |

))

,

whereM(k) is the main term given by

M(k) = e
π i
4 ρ

(
1

2
√
k

)

(2π t0)1/2e−2π ik = 2πe
π i
4 k1/2

for k such that T
2π ≤ k ≤ T

π
and 0 otherwise. Therefore we get

I1 = 2π
∑

T
2π ≤k≤ T

π

′ d3(k)

+
∑

k≤4K3

d3(k)
k1/2

(

1 + min
(√

T,
1

| log T
2πk |

)

+ min
(√

T,
1

| log T
πk |

))

= 2π
∑

T
2π ≤k≤ T

π

′ d3(k) + O(T 3/4 log2 T ). (36)

Here we can get the lastO-term by the same way as in the previous case. Combining (33),
(35) and (36), we obtain

I = 2π
∑

T
2π ≤k≤ T

π

′ d3(k) + O(T 3/4 log2 T ).
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Now dividing the interval [0, T ] as ∪j[T/2j , T/2j−1] and summing the above estimate
we obtain that

∫ T

0
Z2(t)ζ

(
1
2

+ it
)

dt = 2π
∑

k≤ T
2π

d3(k) + O(T 3/4 log2 T ).

Theorem 3 follows from the well-known formula:
∑

n≤x
d3(n) = x

(
1
2
log2 x + (3γ0 − 1) log x + 3γ1 + 3γ 2

0 − 3γ0 + 1
)

+ O(x1/2),

where γj is the coefficients of the Laurent expansion of ζ (s) at s = 1.

5 Proof of Theorem 4
To prove Theorem 4, we put

I(α) =
∫ 2T

T
Z3

(
1
2

+ it
)

χα

(
1
2

+ it
)

dt,

where α is a fixed constant such that −1/2 < α < 1/2. This time we have

I = I1 + I2 + O(T 1/2),

where

I1(α) =
∞∑

k=1

d3(k)
k1/2

∫ 2T

T
ρ

(
k
x

)

k−itχα− 3
2

(
1
2

+ it
)

dt (37)

and

I2(α) =
∞∑

k=1

d3(k)
k1/2

∫ 2T

T
ρ

(
k
y

)

kitχα+ 3
2

(
1
2

+ it
)

dt, (38)

where xy = ( t
2π )

3. We only sketch an outline of evaluations of Ij(α).
Assume that 0 ≤ α < 1

2 . We take x = 2( t
2π )

1/2 and y = 1
2 (

t
2π )

1/2 and put K4 = (T
π
)3/2.

Then the range of k in the sum of (37) and (38) are at most 1 ≤ k ≤ 4K4 and 1 ≤ k ≤ K4,
respectively.
The integral in (37) becomes

e
π i
4

(
α− 3

2

) ∫ 2T

T
ρ

(
k
x

)

e
(
3
2−α

)
i
(

t log t
2π −t−t log k

1
3/2−α

)

dt + O(1).

The main term of this integral appears only when

(
T
2π

) 3
2−α

≤ k ≤
(
T
π

) 3
2−α

,

in which case it is given by

Mα(k) = e
π i
4 ρ

(
k

−2α
3−2α /2

) 2π√
3/2 − α

k
1

3−2α e−
(
3
2−α

)
ik

1
3/2−α

.
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By Lemma 1 again, we get

I1(α) = e
π i
4 (α− 1

2 )
2π√

3/2 − α

∑

(
T
2π

)3/2−α≤k≤
(
T
π

)3/2−α

d3(k)
k1/2

k
1

3−2α e−
(
3
2−α

)
ik

1
3/2−α

+
∑

k≤K4

d3(k)
k1/2

O
(

1 + min
(√

T,
1

| log (T/2π )3/2−α

k |

)

+min
(√

T,
1

| log (T/π )3/2−α

k |

))

. (39)

Just in the same way as the previous cases, we can see easily that the above O-term is
estimated as O(T 3/4 log2 T ).
On the other hand, for I2(α), the main term does not appear from the integral by the

assumption 0 ≤ α < 1/2 and the sum over k is estimated as O(T 3/4 log2 T ).
Now it remains to evaluate the sum over k in (39). Let

S =
∑

(
T
2π

)3/2−α≤k≤
(
T
π

)3/2−α

d3(k)
k1/2

k
1

3−2α e−
(
3
2−α

)
ik

1
3/2−α

.

By partial summation we may have

S � T
α
2 − 1

4 max(
T
2π

)3/2−α≤T ′≤
(
T
π

)3/2−α

∣
∣
∣
∣
∣
∣
∣
∣

∑

(
T
2π

)3/2−α≤k≤T ′

d3(k)e−(3/2−α)ik
1

3/2−α

∣
∣
∣
∣
∣
∣
∣
∣

. (40)

Considering the definition of d3(k), it is reduced to the estimate of the sum of the form

S1 :=
∑

T1≤k1k2k3≤2T1

e2π ic(k1k2k3)
δ

,

where δ = 1
3/2−α

, c is a real constant and ( T
2π )

3/2−α ≤ T1 ≤ 1
2 (

T
π
)3/2−α . Since δ �= 0, 1 we

can apply Lemma 3. Divide the summation condition in S1 into O(log3 T ) subintervals of
the form (k1, k2, k3) ∈ [H, 2H ] × [N, 2N ] × [M, 2M]. By symmetry of kj , we can assume
that M is the largest, hence M � T 1/3

1 . Now applying Lemma 3 to the sum S1 by taking
X = (HNM)δ  T δ

1 , we find that

S1 � T 1+ε
1 (T (δ− 4

3 )/4
1 + T−1/6

1 + T−δ
1 ) � T 2/3+δ/4+ε

1 . (41)

Here the last inequality follows from the assumption 0 ≤ α < 1/2. By (40), (41) and
T1  T 3/2−α , δ = 1

3/2−α
we find that

S � T 1− α
6 +ε .

This proves the assertion in the case 0 ≤ α < 1/2.
In the case −1/2 < α ≤ 0, we take x = 1

2 (
t
2π )

3/2 and y = 2( t
2π )

3/2. Then the main
term arises from the integral corresponding I2(α) and the assertion is proved similarly.
We omit the details in this case.



30 Page 16 of 16 X. Cao et al. Res. Number Theory (2021) 7:30

Authors’ contributions
The authors are very grateful to the referee for his/her valuable comments and suggestions. Furthermore he/she kindly
pointed out the authors the reference [2], where (7) is established, and the possibility to prove Theorem 3 more quickly
from starting with

∫ T
0 |ζ (1/2 + it)|2n−it dt .

Author details
1Department of Mathematics and Physics, Beijing Institute of Petro-Chemical Technology, Beijing 102617, People‘s
Republic of China, 2Nishisato 2-13-1, Meito, Nagoya 456-0084, Japan, 3Department of Mathematics, China University of
Mining and Technology, Beijing 100083, People‘s Republic of China.

Received: 11 August 2020 Accepted: 8 March 2021 Published online: 16 April 2021

References
1. Atkinson, F.V.: The mean value of the Riemann zeta-function. Acta Math. 81, 353–376 (1949)
2. Bettin, S., Chandee, V., Radziwiłł. M.: The mean square of the product of the Riemann zeta-function with Dirichlet

polynomials. J. Reine Angew. Math. 729, 51–79 (2017)
3. Chandrasekharan, K.: Arithmetical Functions. Springer, New York (1970)
4. Hall, R.R.: The behaviour of the Riemann zeta-function on the critical line. Mathematika 46, 281–313 (1999)
5. Hardy, G.H., Littlewood, J.E.: Contributions to the theory of the Riemann zeta-function and the distribution of primes.

Acta Math. 41, 119–196 (1918)
6. Hardy, G.H., Littlewood, J.E.: The approximate functional equation in the theory of the zeta-function, with applications

to the divisor problems of Dirichlet and Piltz. Proc. Lond. Math. Soc. 21(2), 39–74 (1922)
7. Hardy, G.H., Littlewood, J.E.: The approximate functional equation of ζ (s) and ζ 2(s). Proc. Lond. Math. 29(2), 81–97

(1929)
8. Heath-Brown, D.R.: The fourth power moment of the Riemann zeta-function. Proc. Lond. Math. Soc. 38(3), 385–422

(1979)
9. Ingham, A.E.: Mean value theorems in the theory of the Riemann zeta-function. Proc. Lond. Math. Soc. 27(2), 273–300

(1926)
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13. Ivić, A.: On the divisor function and the Rimann zeta-function in short intervals. Ramanujan J. 19, 207–224 (2009)
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