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Abstract

In this paper, we investigate sign changes of Fourier coefficients of half-integral weight
cusp forms. In a fixed square class tZ2, we investigate the sign changes in the tp2-th
coefficient as p runs through the split or inert primes over the ring of integers in a
quadratic extension of the rationals. We show that infinitely many sign changes occur
in both sets of primes when there exists a prime dividing the discriminant of the field
which does not divide the level of the cusp form and find an explicit condition that
determines whether sign changes occur when every prime dividing the discriminant
also divides the level.
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1 Introduction
Throughout this paper, we let k ≥ 1 and N ≥ 4 be integers and 4 | N . We denote by
Sk+1/2(N,ψ) the space of cusp forms of weight k+1/2 for the group�0(N ) with aDirichlet
character ψ modulo N and S∗

3/2(N,ψ) the orthogonal complement with respect to the
Petersson scalar product of the subspaceU (N,ψ) generated by unary theta functions.We
also set S∗

k+1/2(N,ψ) = Sk+1/2(N,ψ) for k ≥ 2.
Each f ∈ S∗

k+1/2(N,ψ) has a Fourier expansion given by

f(z) =
∞∑

n=1
af(n)qn,

where q := e2π iz with z ∈ H, the complex upper half-plane. Under the assumption that
af(n) ∈ R, many authors have studied the change of signs sgn

(
af(n)

)
as n runs through

natural sequences (see for instance [3,9,11,13,15]). For example, in [14, Theorem 1] it
was shown that for a squarefree positive integer t, if af(t) �= 0 for some f ∈ S∗

k+1/2(N,ψ),
then there are infinitely many sign changes in the sequence

(
af

(
tp2n

))∞
n=1 , (1.1)
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where pn is the n-th prime. Formally, given a real sequence {a(n)}∞n=1, we say that {a(n)}∞n=1
exhibits or has a sign change at n0 ∈ N (or between n0 and n0 + 1) if a(n0)a(n0 + 1) < 0.
Letting K := Q

(√
D

)
be a quadratic extension of Q, where 1 �= D ∈ Z is a fundamental

discriminant, it is natural to ask whether there are infinitely many sign changes when the
sequence (1.1) is restricted to the subsequence af

(
tp2

)
with p running over all split (resp.

inert) primes in the ring of integersOK , or evenmore generally in arithmetic progressions
p ≡ m (mod M) for some fixed m and M. Since p is split (resp. inert) in OK if and only
if χD(p) = 1 (resp. χD(p) = −1), where χD(n) := (D/n) denotes the Kronecker–Jacobi–
Legendre symbol, we let pD,n,+ denote the n-th prime which is split in OK and pD,n,−
denote the n-th prime which is inert inOK . For each ε ∈ {±}, we investigate sign changes
across the sequences

(
af

(
tp2D,n,ε

))∞
n=1 . (1.2)

Theorem 1.1 Let k ≥ 1 be an integer, N ≥ 4 an integer divisible by 4, andψ be aDirichlet
character modulo N. Suppose that f ∈ S∗

k+1/2(N,ψ) has real Fourier coefficients and t ≥ 1
is a squarefree integer such that af(t) �= 0. If D is a fundamental discriminant for which
there exists an odd prime � | D with � � N, then there are infinitely many sign changes in
both of the sequences

(
af

(
tp2D,n,+

))∞
n=1

and
(
af

(
tp2D,n,−

))∞
n=1 .

More specifically, there exists a small constant δ = δf,t,D > 0 such that for sufficiently large
x, there is a sign change with pD,n,ε in the interval [xδ , x].

In order to describe the existence or non-existence of sign changes when every odd
prime dividing D also divides the level of the cusp form f ∈ S∗

k+1/2(N,ψ), we require
the Shimura lift [17]. For a squarefree positive integer t, f can be lifted to a cusp form
ft ∈ S2k (N/2,ψ2)

ft (z) =
∞∑

n=1
aft (n)q

n

by the t-th Shimura correspondance. Here the n-th coefficient aft (n) of ft is given by

aft (n) =
∑

d|n
ψt,N (d)dk−1af(t

n2

d2
), (1.3)

where ψt,N denotes the character

ψt,N (d) := ψ(d)
(
(−1)k t

d

)
.

Thus in particular

aft (p) = ψt,N (p)pk−1af(t) + af
(
tp2

)
. (1.4)

We also require some properties of quadratic twists of modular forms. For a modular
form f with Fourier expansion (q := e2π iz)

f (z) =
∑

n≥1
af (n)qn
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and a character χ , define the twist of f by χ by

(f ⊗ χ )(z) :=
∑

n≥1
χ (n)af (n)qn. (1.5)

If f is a primitive form, then f ⊗χ is a Hecke eigenform, but not necessarily primitive.We
write f 	

χ for the primitive form associated to the twist f ⊗ χ (see Remark 2.2 for details).
Also, we say that two characters χ1 and χ2 are almost equal if χ1(p) = χ2(p) for all primes
p not dividing their smallest positive periods and denote it by χ1 
 χ2. Otherwise, we say
that χ1 and χ2 are not almost equal and denote it by χ1 �
 χ2.

Theorem 1.2 Let k ≥ 1 be an integer, N ≥ 4 an integer divisible by 4, andψ be aDirichlet
character modulo N. Suppose that f ∈ S∗

k+1/2(N,ψ) has real Fourier coefficients and t ≥ 1
is a squarefree integer such that af(t) �= 0. Let D �= 1 be a fundamental discriminant for
which every odd prime dividing D also divides N . Then the following hold.

(1) The sequence (1.2) (with ε = ± fixed) restricted to the primes p � N does not exhibit
sign changes if and only if ψt,N 
 χ

j
D with j ∈ {0, 1} and the t-th Shimura correspon-

dence ft satisfies

ft ⊗ χN 2 =
∑

i
ci

(
fi − ε (fi)	χD

)
⊗ χN 2 (1.6)

for some ci ∈ C and where fi runs through a full set of primitive forms of level M | N.
Moreover, if (1.2) does not exhibit sign changes for ε, then it does exhibit sign changes
for −ε. There is at most one squarefree t for which no sign changes occur and, if it
exists, t | N.

(2) There exists a choice of N , t ≥ 1 squarefree, a Dirichlet character ψ modulo N, a
fundamental discriminant D �= 1, and g ∈ S∗

3/2(N,χ ) such that ag
(
tp2D,n,ε

)
exhibits

sign changes for precisely one of ε = ±.

Remark 1.3 The twist by χN 2 in Theorem 1.2 (1) precisely annihilates the coefficients
that are not relatively prime to the level, which do not affect the sign changes except for
possibly finitely many primes dividing N and not dividing D.
If fi and f 	

i = fj are both newforms of level dividing N , then the term fi − εf 	
i occurs

twice (once for i and once for j) unless fi = f 	
i , in which case we say that fi has CM by χD

(see (2.1)).
Note that althoughTheorem1.2 (1) gives an if andonly if statement, it is not immediately

clear that the conditions are consistent with the assumption that af(t) �= 0. The existence
of such a form is the content of Theorem 1.2 (2). The counterexample from Theorem
1.2 (2) is constructed via the theory of quadratic forms, and in particular spinor genus
theory. Although we only construct one explicit example, many can be constructed in an
analogous way.
We determine a precise criterion which implies alternation of the coefficients in both

cases and obtain Theorem 1.1 by showing that the criterion cannot be satisfied in this
case; to obtain Theorem 1.2 (1) we need to determine precisely when this criterion holds.
Arguing via orthogonality of characters, one should be able to generalize the results in this
paper to show that there are sign changes in arithmetic progressions p ≡ m (mod M) as
long as gcd(M,N ) = 1, but the counterexample in Theorem 1.2 (2) implies that the gcd
condition is necessary.
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It might be interesting to investigate sign changes of Fourier coefficients of integral
weight cusp forms across split or inert primes or arithmetic progressions as well.
The paper is organized as follows. In Sect. 2, we give some preliminaries and necessary

information about quadratic twists. In Sect. 3 we give some useful information about the
growth of convolution L-functions. In Sect. 4, we investigate the case when not every
prime dividing D divides the level of the modular form, proving Theorem 1.1. In Sect. 5,
we investigate the case when all of the divisors ofD divide the level, proving Theorem 1.2.

2 Preliminaries
2.1 Modular Forms and Quadratic Twists

Let γ =
(
a b
c d

)
∈ SL2(Z) and z ∈ H. A fractional linear transformation is defined by

γ z := az + b
cz + d

. Write j(γ , z) := cz + d. For a finite-index subgroup � ⊆ SL2(Z) and a
weight w ∈ R, a multiplier system (we may omit the multiplier if it is trivial) is defined as
a function ν : � → C such that

ν(γA)j(γA, z)w = ν(A)j(A, γ z)wν(γ )j(γ , z)w

for all γ , A ∈ � and |ν(γ )| = 1. Here and throughout we take the principal branch
Zw := |Z|weiwArg(Z) with−π < Arg(Z) ≤ π . Also, the slash operator |w,ν of weightw and
multiplier system ν is defined as

f |w,νγ := ν(γ )−1j(γ , z)−wf (γ z).

We call elements of �\Q ∪ {i∞} the cusps of �. For any cusp � of �, we let σ = σ� ∈
Q ∪ {i∞} be a representative and choose a matrix γσ that sends i∞ to σ . We say that f
grows at most polynomially towards the cusp � (or σ ) if there exists r ∈ R such that

Im(y)r f
∣∣
wγσ (z)

is bounded as y → ∞.
Using the above notation, we may give a general definition of modular forms that

includes both integral and half-integral weight. A holomorphic modular form of weight
w ∈ R and multiplier system ν for the subgroup � is a function f : H → C satisfying the
following:

(1) f (z) is holomorphic on H;
(2) f |w,νγ = f for all γ ∈ �;
(3) f grows at most polynomially towards every cusp.

If moreover f vanishes at every cusp, then f is called a cusp form.
We are particularly interested in the case whenw is a half-integer and � = �0(L), where

�0(L) :=
{(

a b
c d

)
∈ SL2(Z) : L | c

}
.

The theta multiplier is defined by

ν� := �(γ z)
j(γ , z)

1
2 �(z)

,
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where � is the usual weight 1/2 unary theta function

�(z) :=
∑

n∈Z

qn
2
.

For a character ψ : Z → C and w ∈ 1
2Z, we define the multiplier system

νψ ,w(γ ) := ψ(d)ν2w�

and call any modular form of weight w and multiplier system νψ ,w on � = �0(L) a
modular form of weight w with level L and Nebentypus character (or just character) ψ .
Let Sk (L,ψ) be the space of holomorphic cusp forms of integral weight k ≥ 2 and level L
and Nebentypus ψ . We denote by L∗ the conductor of the character ψ and by Snewk (L,ψ)
the orthogonal complement with respect to the Petersson inner product of the subspace
generated by all forms g(�z), where g ∈ Sk (M,ψM) has a strictly lower level M | L and
L∗ | M. If f ∈ Snewk (L,ψ) is a common eigenfunction for all Hecke operators and its first
coefficient equals one, then f is called a primitive form. We denote by H∗

k (L,ψ) the set of
all primitive forms of weight k , level L and Nebentypus ψ .
We require some properties of quadratic twists of modular forms. For a real character

χ = χD, we say that a Hecke eigenform f has CM by χ (or CM by the field Q(
√
D)) if

af (p) = 0 whenever p is a prime for which χ (p) = −1, or in other words if

f ⊗ χ = f. (2.1)

The following is well known, but we supply a proof for the convenience of the reader.

Proposition 2.1 Let χ be a Dirichlet character modulo q. If f ∈ Sk (M,ψ) is a Hecke
eigenform, then f ⊗ χ ∈ Sk (Mq2,ψχ2) is also a Hecke eigenform.

Proof Write af (n) for the n-th Fourier coefficient of f andTm for them-thHecke operator
as usual. If f ∈ Sk (M,ψ), then f ⊗ χ ∈ Sk (Mq2,ψχ2) by [12, Proposition 17 (b), p. 127].
Since f is a Hecke eigenform, we have

af (pn+1) = af (p)af (pn) − ψ(p)pk−1af (pn−1)

for all primes p and n ≥ 1. Also, af (d1d2) = af (d1)af (d2) for any d1, d2 ∈ N with
gcd(d1, d2) = 1, i.e., af (n) is multiplicative. Combining this with the fact that ψ(d)dk−1 is
completely multiplicative, we furthermore have

∑

d|gcd(n,m)
ψ(d)dk−1af

(nm
d2

)
= af (m)af (n)

by [1, Exercises 30, 31, pp. 49–50]. Hence one can check that

aTm(f ⊗χ )(n) =
∑

d|gcd(n,m)
(ψχ2)(d)dk−1af (

nm
d2

)χ (
nm
d2

)

= χ (mn)
∑

d|gcd(n,m)
ψ(d)dk−1af (

nm
d2

)

= χ (m)χ (n)af (m)af (n)

= χ (m)af (m)af ⊗χ (n)

for allm ∈ N. ��
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Remark 2.2 Given a Dirichlet character χ modulo q, if f ∈ Sk (M,ψ) is a primitive form,
then f ⊗χ ∈ Sk (Mq2,ψχ2) is a Hecke eigenform by Proposition 2.1. In general, f ⊗χ may
not be primitive, but there exists a unique primitive form f 	 ∈ Sk (M′,ψ	) withM′ | Mq2

such that ψχ2(n) = ψ	(n) and af ⊗χ (n) = af 	 (n) for any n prime to Mq2. [8, REMARK
(2), p. 133 and EXERCISE 5, p. 376].

Given a Dirichlet character χ and a Hecke eigenform f , we denote by f 	
χ (or simply f 	,

when the context is clear) the primitive form induced by a cusp form f ⊗ χ as in Remark
2.2. In particular, if f ⊗ χ is primitive, then f 	

χ = f ⊗ χ . When χ is real, (f 	)	 = f .
Although f ⊗ χ need not be primitive, it is primitive under certain conditions. Specifi-

cally, from [8, Proposition 14.19 and 14.20], if f ∈ H∗
k (M,ψ) and χ is a primitive character

modulo q with gcd(q,M) = 1, then f ⊗ χ ∈ H∗
k (Mq2,ψχ2).

Lemma 2.3 Let k,M ∈ N andψ and χ be characters such that the conductor ofψ divides
M and there exists a prime � such that � divides the conductor of χ but � does not divide
M. Then for any f ∈ H∗

k (M,ψ), we have that f 	
χ ∈ H∗

k
(
M′�2,ψχ2) for some M′ ∈ N.

In particular, if χ is real, f does not have CM by χ and if g ∈ H∗
k (N,ψ

′) with �2 � N or
ψ ′ �= ψ , then g �= f 	.

Proof Note that if χ = χ1χ2, then

f 	
χ = f 	

χ1χ2 =
(
f 	
χ1

)	

χ2
. (2.2)

Let � | q with � � M be given and split χ = χ1χ2 so that the conductor q′ of χ1 is relatively
prime to � and the conductor of χ2 is an �-power �r . Note that since h := f 	

χ1 is primitive
and its levelMh (dividingMq′2) is relatively prime to �,

f 	
χ1 ⊗ χ2

is primitive of levelMh�
2r . Since r ≥ 1, we see by (2.2) that

f 	
χ =

(
f 	
χ1

)	

χ2
= f 	

χ1 ⊗ χ2

has �2 dividing its level. This is the first claim.
Since �2 � M, we immediately obtain that f �= f 	, so f does not have CM by χ . Finally, if

g ∈ H∗
k (N,ψ

′) and �2 � N , then we immediately obtain that g �= f 	, as they have different
levels. If ψ ′ �= ψ , then they are not equal because they have different Nebentypus. ��

2.2 Quadratic Forms

LetV be aquadratic spaceoverQ associatedwith a symmetric bilinearmapB : V×V → Q

andwriteQ(x) = B(x, x), x ∈ V .We denote byO(V ) the orthogonal group ofV andO′(V )
the kernel of the homomorphism θ : O(V ) → Q

×/Q
×2 as usual. Let OA(V ) and O′

A
(V )

be the adelic groups ofO(V ) andO′(V ), respectively. Let L be a Z-lattice on V . We define
the class cls (L), spinor genus spn (L) and genus gen (L) of L by the orbits of L under the
actions of O(V ), O(V )O′

A
(V ) and OA(V ) respectively [see [10] for more details].

For n ∈ N, if there exists some x0 ∈ L such that Q(x0) = n, then we say that n is
represented by L and denote by r(n, L) the number of representation of n by L. Also, we
define the number of representations of n by the genus (resp. spinor genus) of L by the
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Siegel–Weil average

r(n, gen (L)) :=
⎛

⎝
∑

K∈gen (L)

1
|O(K )|

⎞

⎠
−1

∑

K∈gen (L)

r(n, K )
|O(K )|

and

r(n, spn (L)) :=
⎛

⎝
∑

K∈spn (L)

1
|O(K )|

⎞

⎠
−1

∑

K∈spn (L)

r(n, K )
|O(K )| ,

where the summuation is over a complete set of representatives of the classes in the genus
(resp. spinor genus) of L. A quadratic formQ can be always associatedwith a lattice LQ and
hence we abuse the notations r(n,Q), r(n, gen (Q)) and r(n, spn (Q)) standing for r(n, LQ),
r(n, gen (LQ)) and r(n, spn (LQ)).
For a ternary quadratic form Q of discriminant D and level N , the theta series θQ

associated with Q is given by

θQ(z) :=
∞∑

n=0
r(n,Q)qn,

and θQ ∈ M3/2(N,ψ) for an appropriate ψ (see for example [17, Proposition 2.1]). It is
well known that the theta series can be expressed as

θQ(z) = E(z) + H (z) + f (z), (2.3)

where E(z) =
∞∑
n=0

aE(n,Q)qn is in the space spanned by Eisenstein series, H (z) =
∞∑
n=0

aH (n,Q)qn ∈ U (N,ψ) and f (z) =
∞∑
n=0

af (n,Q)qn ∈ S∗
3/2(N,ψ) ( [5, Lemma 4]). In

the theory of quadratic forms, the coefficients aE(n,Q) and aH (n,Q) can be interpreted as
(see for example [5, Theorem 2]),

aE(n,Q) = r(n, gen (Q)) and aH (n,Q) = r(n, spn (Q)) − r(n, gen (Q)). (2.4)

3 Convolution L-Series
Hereafter, we assume that all the summations involving thenotationp runover the specific
subsets of all the primes. The following lemma follows immediately by replacing f by f ⊗χ

in [14, Lemma 2.1] and it agrees with their results when χ is a trivial character.

Lemma 3.1 Let f ∈ H∗
k (Mf ,ψf ) and g ∈ H∗

k (Mg,ψg ) whose n-th coefficients are
λf (n)n(k−1)/2 and λg (n)n(k−1)/2. Let χ be a primitive character modulo q and gcd(q,Mf ) =
1. Then as x → ∞, we have

∑

p≤x
p�Mf q

χ (p)λf (p)
p

= O(1) (3.1)

and
∑

p≤x
p�Mf q

|λf (p)|2
p

= log log x + O(1). (3.2)
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If g �= f ⊗ χ , then as x → ∞, we have

∑

p≤x
p�Mf q

χ (p)λf (p)λg (p)
p

= O(1). (3.3)

The implied constants in (3.1) and (3.2) depend on the form f and the character χ and that
in (3.3) depends on the forms f, g and the character χ .

Although aprimitive form f twistedwith the characterχ maynot be primitive in general,
we are still able to make use of [14, Lemma 2.1] by taking f 	 instead of f ⊗χ from Remark
2.2.

Lemma 3.2 Let f ∈ H∗
k (Mf ,ψf ) and g ∈ H∗

k (Mg,ψg ) whose n-th coefficients are
λf (n)n(k−1)/2 and λg (n)n(k−1)/2. Let χ be a primitive real character modulo q and f 	

the primitive form induced by f ⊗ χ .

(1) As x → ∞, we have
∑

p≤x
p�Mf q

χ (p)=±1

λf (p)
p

= O(1).
(3.4)

(2) If f does not have CM by χ , then as x → ∞, we have

∑

p≤x
p�Mf q

χ (p)=±1

λf (p)λf (p)
p

= 1
2
log log x + O(1), (3.5)

∑

p≤x
p�Mf q

χ (p)=±1

λf (p)λf 	 (p)
p

= ±1
2
log log x + O(1). (3.6)

If f has CM by χ , then as x → ∞, we have

∑

p≤x
p�Mf q

χ (p)=±1

λf (p)λf (p)
p

=
∑

p≤x
p�Mf q

χ (p)=±1

λf (p)λf 	 (p)
p

= 1 ± 1
2

log log x + O(1). (3.7)

If g �= f and g �= f 	, then as x → ∞, we have

∑

p≤x
p�Mf q

χ (p)=±1

λf (p)λg (p)
p

= O(1).
(3.8)

(3) Suppose that there exists an odd prime � | q such that � � Mf . Then as x → ∞, we
have

∑

p≤x
p�Mf q

χ (p)=±1

λf (p)λf (p)
p

= 1
2
log log x + O(1).

(3.9)
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Moreover, if g �= f and �2 � Mg, then as x → ∞, we have

∑

p≤x
p�Mf q

χ (p)=±1

λf (p)λg (p)
p

= O(1).
(3.10)

The implied constants in (3.4), (3.9) and (3.6) depend on the form f and the character χ ,
and that in (3.8) depends on the forms f, g and the character χ .

Proof (1) By Remark 2.2, we have χ (p)λf (p) = λf 	 (p) for any prime p � Mf q. For (3.4), by
Lemma 3.1 (3.1), we have

2
∑

p≤x
p�Mf q

χ (p)=±1

λf (p)
p

=
∑

p≤x
p�Mf q

λf (p)
p

±
∑

p≤x
p�Mf q

χ (p)λf (p)
p

=
∑

p≤x
p�Mf q

λf (p)
p

±
∑

p≤x
p�Mf q

λf 	 (p)
p

= O(1).

(2) It is not difficult to see the relation

2
∑

p≤x
p�Mf q

χ (p)=±1

λf (p)λg (p)
p

=
∑

p≤x
p�Mf q

λf (p)λg (p)
p

±
∑

p≤x
p�Mf q

χ (p)λf (p)λg (p)
p

=
∑

p≤x
p�Mf q

λf (p)λg (p)
p

±
∑

p≤x
p�Mf q

λf 	 (p)λg (p)
p

(3.11)

and the forms f , f 	 = f 	
χ and g are primitive. By Lemma 3.1, the first term in (3.11)

contributes log log x+O(1) if g = f andO(1) otherwise, while the second term contributes
± log log x + O(1) if g = f ∗ and O(1) otherwise.
For g = f with f not CM by χ , the first term in (3.11) thus contributes log log x + O(1)

and the second contributes O(1), giving (3.5).
For g = f 	, the second term in (3.11) always contributes ± log log x+O(1) and the first

term contributes log log x+O(1) if and only if f has CM by χ (andO(1) otherwise), giving
(3.6) and (3.7).
If g �= f and g �= f 	, then both terms in (3.11) contribute O(1), and we hence obtain

(3.8).
(3) By Lemma 2.3, � � Mf implies that f �= f 	

χ . Since f does not have CM by χ , (3.5)
implies (3.9).
Moreover, since �2 | Mf 	 by Lemma 2.3 and �2 � Mg in (3.10), we have g �= f 	, and

hence (3.10) follows immediately from (3.8). ��

4 Coefficients of Arbitrary Cusp Forms and the Proof of Theorem 1.1
Suppose that k, L ∈ N and ψ is a character with conductor Lψ | L. Writing

f
∣∣V�(z) := f (�z),
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in [2], A. Atkin and J. Lehner obtain the well-known decomposition

Sk (L,ψ) =
⊕

M|L
Lψ |M

⊕

f ∈H∗
k (M,ψ)

Span C

{
f
∣∣V� : � | (L/M)

}
.

(4.1)

Lemma 4.1 Let k ≥ 1 be an integer, N ≥ 4 an integer divisible by 4 and ψ a Dirichlet
character modulo N. Let χ be a primitive real character modulo q and ε ∈ {±1}. Suppose
that f ∈ S∗

k+1/2(N,ψ) and t ≥ 1 is a squarefree integer such that af(t) �= 0. Assume that
the sequence {af(tn2)}n∈N is real.

(1) Then as x → ∞, we have
∑

p≤x
p�q

χ (p)=±1

af(tp2)
pk+1/2 = Of,t,χ (1). (4.2)

(2) If there exists an odd prime r | q such that r � N, then as x → ∞, we have
∑

p≤x
p�q

χ (p)=ε

af(tp2)2

p2k
= C log log x + O(1) (4.3)

holds for some C > 0 for both ε = 1 and ε = −1.
(3) Suppose that every prime divisor of q divides N . The equality (4.3) holds with C > 0

unless the t-th Shimura correspondence ft satisfies

ft ⊗ χN 2 =
∑

i
ci

(
fi − εf 	

i
) ⊗ χN 2 , (4.4)

where fi run through all of the primitive forms of level dividing N and ci ∈ C. If (4.4)
holds, then C = 0 and moreover aft (p) = 0 for every prime p � N with χ (p) = ε.

The implied constants C and those occurring in the O-symbols depend on f, t, χ and ε.

Proof Applying the Möbius inversion formula to (1.3), we have

af(tn2) =
∑

d|n
μ(d)ψt,N (d)dk−1aft

(n
d

)
,

where aft (n) is the n-th coefficient of ft . Write aft (n) = λft (n)nk−1/2. Then we may rewrite
the above formula as

af(tn2)
nk−1/2 =

∑

d|n

μ(d)ψt,N (d)√
d

λft

(n
d

)
.

Considering the special case that n = p is a prime and noting that λft (1) = af(t) yields

af(tp2)
pk−1/2 = λft (p) − ψt,N (p)√p

af(t). (4.5)

Applying the decomposition (4.1) to S2k (N/2,ψ2), we obtain a basis

⋃

M|(N/2)
L

ψ2 |M

{
f
∣∣V� : � | N/2

M
, f ∈ H∗

2k (M,ψ2)
}
.
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Hence ft ∈ S2k (N/2,ψ2) can be written as

ft (z) =
∑

i

∑

�|(N/(2Mi))
ci,�fi(�z), (4.6)

where fi ∈ H∗
2k (Mi, (ψ2)Mi ) is primitive of levelMi and the ci,� are scalars depending on f .

For any prime p � Nq, the terms with � �= 1 do not contribute anything to the p-th
Fourier coefficient, so, comparing coefficients of the functions on each side of (4.6), we
see that

λft (p) =
∑

i
ciλfi (p),

where ci := ci,1. Moreover, since
∑

i
ci = λft (1) = af(t) �= 0

by assumption, not all the ci are zero. Expressing λft by the linear combination of λfi in
(4.5), we have

af(tp2)
pk−1/2 =

∑

i
ciλfi (p) − ψt,N (p)√p

af(t). (4.7)

(1) Dividing (4.7) by p and summing over p ≤ x with χ (p) = ±1 but p � Nq on (4.7) and
then applying Lemma 3.2 (3.4) to fi in (4.7), we deduce that

∑

p≤x
p�Nq

χ (p)=±1

af(tp2)
pk+1/2 =

∑

i
ci

∑

p≤x
p�Nq

χ (p)=±1

λfi (p)
p

− af(t)
∑

p≤x
p�Nq

χ (p)=±1

ψt,N (p)
p3/2

= Of,t,χ (1),

thereby showing (4.2).
(2) Since af(tn2) ∈ R, multiplying (4.7) by it its complex conjugate yields

af(tp2)2

p2k−1 =
∑

i
|ci|2|λfi (p)|2 +

∑

i �=j
cicjλfi (p)λfj (p)

+af(t)2
|ψt,N (p)|2

p
− 2Re

(
∑

i

ciλfi (p)ψt,N (p)√p
af(t)

)
. (4.8)

Dividing (4.8) by p and summing over p ≤ x with χ (p) = ±1 but p � Nq yields

∑

p≤x
p�Nq

χ (p)=±1

af(tp2)2

p2k
=

∑

i
|ci|2

∑

p≤x
p�Nq

χ (p)=±1

|λfi (p)|2
p

+
∑

i �=j
cicj

∑

p≤x
p�Nq

χ (p)=±1

λfi (p)λfj (p)
p

+af(t)2
∑

p≤x
p�Nq

χ (p)=±1

|ψt,N (p)|2
p2

− 2
∑

p≤x
p�Nq

χ (p)=±1

Re
(

∑

i

ciλfi (p)ψt,N (p)
p3/2

af(t)
)
. (4.9)

The last two terms are Of,t,χ (1) from the fact that the sum
∑

i |λfi (p)| is bounded [7, see
Corollary 5.2]. Now consider the sum of the first and second terms.
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Define the index sets I	 := {i : fi has CM by χ} and J := {(i, j) : i �= j and fj = f 	
i }.

Write

S1 :=
∑

i/∈I	
|ci|2 S	

1 :=
∑

i∈I	
|ci|2 S2 :=

∑

(i,j)∈J
cicj .

Clearly, not both S1 and S	
1 are zero. For the first term in (4.9), we use (3.5) and (3.7) from

Lemma 3.2 to obtain
∑

i
|ci|2

∑

p≤x
p�Nq

χ (p)=ε

|λfi (p)|2
p

= S1 + (ε + 1)S	
1

2
log log x + Of,t,χ (1).

(4.10)

For the second term in (4.9), since fi �= fj for i �= j, (3.6) implies

∑

(i,j)∈J
cicj

∑

p≤x
p�Nq

χ (p)=ε

λfi (p)λfj (p)
p

= εS2
2

log log x + Of,t,χ (1).
(4.11)

If i �= j and (i, j) /∈ J , then fj �= fi and fj �= f 	
i (if fi has CM by χ , then f 	

i = fi, so fj �= fi
implies that fj �= f 	

i ). Hence for the remaining terms in (4.9) we may use (3.8) to obtain

∑

i �=j
(i,j)/∈J

cicj
∑

p≤x
p�Nq

χ (p)=ε

λfi (p)λfj (p)
p

= Of,t,χ (1).
(4.12)

Combining (4.10), (4.11), and (4.12), the sum of the first and second terms in (4.9) is given
by

S1 + εS2 + (ε + 1)S	
1

2
log log x + Of,t,χ (1). (4.13)

If there exists an odd prime r | q such that r � N , then Lemma 2.3 implies that r2 | Mf 	
i
.

Since r2 � N and Mj | N for every j (including j = i), f 	
i �= fj for every j and hence

I	 = J = ∅ and S2 = S	
1 = 0 in this case. Since S1 + S∗

1 > 0, we furthermore obtain that
S1 > 0. Hence (4.13) becomes

S1
2

log log x + Of,t,χ (1)

with S1 > 0. This yields the claim for the case that such an odd prime � exists.
(3) We write

S1 + εS2 + (ε + 1)S	
1 =: Ceiθ

with C ≥ 0 and −π < θ ≤ π and note that since the left-hand side of (4.3) is a sum of
nonnegative real numbers, ifC �= 0 then wemust have θ = 0 (otherwise the limit in (4.13)
would diverge to +eiθ∞ as x → ∞ while for each x it equals a nonnegative real number,
a contradiction).
Writing ai := Re(ci) and bi := Im(ci), we conclude that

S1 + εS2 + (ε + 1)S	
1 = Re

(
S1 + εS2 + (ε + 1)S	

1
)

and hence

C = S1 + εS2 + (ε + 1)S	
1 =

∑

i/∈I	

(
a2i + b2i

)
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+ε
∑

(i,j)∈J

(
aiaj + bibj

) + (ε + 1)
∑

i∈I	

(
a2i + b2i

)
. (4.14)

Consider the set

IJ := {i : ∃j s.t. (i, j) ∈ J }
and note that if (i, j) ∈ J then (j, i) ∈ J , but since

(
f 	
i
)	 = fi, the tuples in J appear in pairs,

and hence there does not exist j′ �= j such that (i, j′) ∈ J . Thus (4.14) becomes

C =
∑

i/∈(I	∪IJ )

(
a2i + b2i

) +
∑

(i,j)∈J

1
2

(
a2i + b2i + a2j + b2j

)
+ ε

(
aiaj + bibj

)

+ (ε + 1)
∑

i∈I	

(
a2i + b2i

)

=
∑

i/∈(I	∪IJ )

(
a2i + b2i

) + 1
2

∑

(i,j)∈J

((
ai + εaj

)2 + (
bi + εbj

)2) + (ε + 1)
∑

i∈I	

(
a2i + b2i

)
.

(4.15)

Hence we conclude that C > 0 unless all of the following hold:

• If i /∈ (
I	 ∪ IJ

)
, then ci = 0.

• If (i, j) ∈ J , then ci = −εcj .
• If ε = 1, then ci = 0 for every i ∈ I	.

Noting that, since χN 2 annihilates fi
∣∣V� for every � > 1,

ft ⊗ χN 2 =
∑

i
cifi ⊗ χN 2

and writing fi = 1
2

(
fi + f 	

i
)
for i ∈ I	, these three conditions are equivalent to (4.4).

Finally note that if (4.4) holds, then for p � N with χ (p) = ε we have

aft (p) =
∑

i
ci

(
afi (p) − εaf 	

i
(p)

)
=

∑

i
ci

(
afi (p) − εχ (p)afi (p)

)

=
∑

i
ci

(
afi (p) − afi (p)

) = 0,

where we used the fact that

af 	
i
(p) = afi⊗χ (p) = χ (p)afi (p).

��

Proof of Theorem 1.1 We claim that if

∑

p≤x
p�Nq

χ (p)=ε

af(tp2)2

p2k
= Cf,t,χ ,ε log log x + Of,t,χ ,ε(1), (4.16)

for some Cf,t,χ ,ε > 0, then the assertion is true for χ (p) = ε. By Deligne’s bound [4],
|λfi (p)| ≤ 2 (as |afi (p)| ≤ 2pk−1/2). Then (4.7) implies

|af(tp2)p−(k−1/2)| ≤ 2
∑

i
|ci| + |af(t)| =: Cf,t .
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Suppose that af(tp2) are of the same sign for y ≤ p ≤ xwith p � Nq and χ (p) = ε.Without
loss of generality, assume that af(tp2) > 0. Then

∑

y≤p≤x
p�Nq

χ (p)=ε

af(tp2)2

p2k
≤ Cf,t

∑

y≤p≤x
p�Nq

χ (p)=ε

af(tp2)
pk+1/2 . (4.17)

The left-hand side of (4.17) is given by

Cf,t,χ ,ε log
(
log x
log y

)
+ Of,t,χ ,ε(1)

from the assumption (4.16). However, the right-hand side is Of,t,χ (1) from Lemma 4.1
(4.2) for all x ≥ y ≥ 2. It is impossible if y = xδ with a sufficiently small constant
δ = δ(f, t,χ , ε) > 0. The claim is proved. Combining the claim with (4.3) from Lemma
4.1, we are done. ��

5 Spinor Genera and the Proof of Theorem 1.2
In this section, we investigate the case when every odd prime dividing the conductor of
χ also divides the level of the modular form. To prove Theorem 1.2 (1), we require the
following lemma [1, Lemma 7.5 and 7.6] for the case when ψt,N is a real character.

Lemma 5.1 Let χ be a nonprincipal character. As x → ∞, we have

∑

p≤x

χ (p) log p
p

= −L′(1,χ )
∑

n≤x

μ(n)χ (n)
n

+ O(1),

L(1,χ )
∑

n≤x

μ(n)χ (n)
n

= O(1),

where L(s,χ ) = ∑∞
n=1 χ (n)/ns is the Dirichlet L-function.

Now, we begin by showing Theorem 1.2 (1).

Proof of Theorem 1.2 (1) As in the proof of Theorem 1.1, the form exhibits sign changes
whenever (4.16) holds. Hence for f such that (1.6) does not hold, Lemma 4.1 implies that
(1.2) exhibits sign changes.
In the case that (1.6) holds, Lemma 4.1 implies that aft (p) = 0 for every p � N with

χD(p) = ε. Then (1.4) implies

0 = aft (p) = ψt,N (p)pk−1af(t) + af
(
tp2

)
.

Thus

af
(
tp2

) = −ψt,N (p)pk−1af(t).

Note that af(n) are all real and hence ψt,N (p) is real for any prime p � N with χD(p) = ε.
Let m1, m2 be the smallest positive periods of the characters ψt,N and χD, respectively,

and m := lcm(m1, m2). If ψt,N 
 χ
j
D, then −ψt,N (p) = −εj for any prime p not dividing

m and so for any prime p with χD(p) = ε (and so p � m1) but p � m2. Hence we have

af
(
tp2

) =
⎧
⎨

⎩
0 if χD(p) = ε and p | m2,

−εjpk−1af(t) if χD(p) = ε and p � m2.
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Thus there are no sign changes in this case.
If ψt,N �
 χ

j
D for j = 0, 1, suppose that the subsequence does not exhibit sign changes.

Then one of the following holds:

(a) ψt,N (p) = χD(p) = ε for any prime p with χD(p) = ε;
(b) ψt,N (p) = −χD(p) = −ε for any prime p with χD(p) = ε.

Case I: either (a) or (b) holds with ε = −1:
Choose a prime p0 with χD(p0) = −1 and p � m2. For any prime p with χD(p) = 1

and p � m2, we have χD(pp0) = −1. Since gcd(m, pp0) = 1, by Dirichlet’s theorem on
arithmetic progressions, there exists some prime q such that q ≡ pp0 (mod m). Hence
χD(q) = −1. If the statement (a) holds, then we have

ψt,N (pp0) = ψt,N (q) = −1 = χD(q) = χD(pp0)

and ψt,N (p0) = χD(p0) = −1; if the statement (b) holds, then we have

ψt,N (pp0) = ψt,N (q) = 1 = −χD(q) = −χD(pp0)

and ψt,N (p0) = −χD(p0) = 1. In both cases, we conclude that ψt,N (p) = χD(p) for
any prime p with χD(p) = 1 and p � m2, and so for any prime p with p � m2. Hence
ψt,N (p) = χD(p) for any prime p not dividing m1m2. Therefore, ψt,N 
 χD, yielding a
contradiction.
Case II: (b) holds with ε = 1:
By Dirichlet’s theorem, there exists a prime q with q ≡ 1 (mod m). Then χD(q) = 1. By

(b), we have ψt,N (q) = −χD(q) = −1. But ψt,N (q) = ψt,N (1) = 1 from q ≡ 1 (mod m).
This is a contradiction.
Case III: (a) holds with ε = 1:
For any prime p with χD(p) �= 0 and p � m, since gcd(p2, m) = 1, Dirichlet’s theorem

implies that there must exist a prime q ≡ p2 (mod m) and thus χD(q) = χD(p2) = 1. By
(a), we deduce that

ψt,N (p2) = ψt,N (q) = χD(q) = 1.

Therefore, ψt,N (p) ∈ R for any prime with χD(p) �= 0 and p � m. Note that χD(p) = 0
implies ψt,N (p) = 0. It follows that ψt,N (p) ∈ R for any prime p. Hence ψt,N is a real
character.
From the above discussion, if the subsequence does not exhibit sign changes, then ψt,N

must be real. We now suppose that ψt,N is real and ψt,N �
 χ
j
D, and will prove that the

sign changes do indeed occur. From af
(
tp2

) = −ψt,N (p)pk−1af(t), it is sufficient to show
that the following both occur:

(c) there exist infinitely many primes p with χD(p) = ε such that ψt,N (p) = χD(p) = ε;
(d) there exist infinitely many primes p with χD(p) = ε such that ψt,N (p) = −χD(p) =

−ε.

By analytic number theory it suffices to show that for ε = ±1 the sum

∑

p≤x
χD(p)=ε ,ψt,N (p)=±ε

log p
p
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diverges as x → ∞. Without loss of generality, we only consider the case χD(p) = 1 and
ψt,N (p) = −1. Then one can check that

∑

p≤x
χD(p)=1 ,ψt,N (p)=−1

log p
p

= 1
2

⎛

⎜⎜⎝
∑

p≤x
ψt,N (p)=−1

log p
p

+
∑

p≤x
ψt,N (p)=−1

χD(p) log p
p

⎞

⎟⎟⎠ + O(1)

= 1
4

⎛

⎝
∑

p≤x

log p
p

−
∑

p≤x

ψt,N (p) log p
p

+
∑

p≤x

χD(p) log p
p

−
∑

p≤x

ψt,N (p)χD(p) log p
p

⎞

⎠ + O(1).

Since χD, ψt,N , and ψt,NχD are nonprincipal and real (from the assumptions that ψt,N �

χ
j
D and D �= 1), the associated L-functions do not have poles at s = 1. So the last three

terms contribute O(1) by Lemma 5.1 and the first term contributes log x + O(1) by the
Prime Number Theorem. Hence

∑

p≤x
χD(p)=1 ,ψt,N (p)=−1

log p
p

= 1
4
log x + O(1),

and the claim is proved. Thus (1.2) exhibits infinitely many sign changes when ψt,N �
 χ
j
D

for j = 0, 1.
Finally note that (1.6) cannot hold for both ε and −ε because that would contradict the

assumption that aft (1) = λft (1) = af(t) �= 0. Moreover, the condition ψt,N 
 χ
j
D can

occur for at most one choice of t and sinceD | N and ψ is a character moduloN , we have
t | N . ��

While Theorem 1.2 (1) should yield many examples where sign changes are not exhib-
ited, it is not entirely obvious that the conditions ψt,N 
 χ

j
D, af(t) �= 0, and (1.6) are

simultaneously satisfied. We hence construct an explicit example where we can verify all
three conditions. The construction goes through the theory of spinor genera of ternary
quadratic forms.

Proof of Theorem 1.2 (2) Consider the quadratic forms

Q1(x, y, z) := x2 + 48y2 + 144z2,

Q2(x, y, z) := 4x2 + 48y2 + 49z2 + 4xz + 48yz,

discussed for example in [16, (4.18), p.9] and [6, §7.3 An example].
The forms Q1 and Q2 are in the same spinor genus and are moreover representatives

for the only two classes in their spinor genus.
The level NQj and the determinant DQj of Qj (j = 1, 2) are 2632 and 2833, respectively.

Schulze-Pillot found that t = 1 is a primitive spinor exception and is represented by Q1,
but not represented by Q2. By the theory of spinor genera, the spinor genus does not
primitively represent the integers tp2, or in other words, since all representations of tp2

come from representations of t,

r(tp2, Qj) = r(t, Qj).

Thus in particular

r(tp2, Q2) = r(t, Q2) = 0
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for any odd prime p ≡ −1 (mod 3), i.e. (−3/p) = −1.
Plugging in the expansion (2.3) and noting that r(t, Q) is the t-th coefficient of θQ, (2.4)

implies that

0 = r(t, Q2) = aE(t, Q2) + aH (t, Q2) + af (t, Q2) = r(t, spn (Q2)) + af (t, Q2).

Therefore, we have

af (t, Q2) = −r(t, spn (Q2)) �= 0.

For any inert prime p in Q(
√−3), i.e., (−3/p) = −1, replacing t by tp2, we have

af (tp2, Q2) = −r(tp2, spn (Q2)) analogously from r(tp2, Q2) = 0. Since t is represented by
spn (Q2), tp2 is not primitivley represented by spn (Q2). Therefore,

r(tp2, spn (Q2)) − r(t, spn (Q2)) = r∗(tp2, spn (Q2)) = 0,

where r∗(n, spn (Q)) denotes the number of primitive representation of n by Q. Namely,
r(tp2, spn (Q2)) = r(t, spn (Q2)). It follows that

af (t, Q2) = −r(t, spn (Q2)) = −r(tp2, spn (Q2)) = af (tp2, Q2).

Hence we see that af (tp2, Q2) has the same sign for t = 1 and any prime p ≡ −1 (mod 3).
��
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