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Abstract

Let f be a half-integral weight cusp form of level 4N for odd and squarefree N and let
a(n) denote its nth normalized Fourier coefficient. Assuming that all the coefficients
a(n) are real, we study the sign of a(n) when n runs through an arithmetic progression.
As a consequence, we establish a lower bound for the number of integers n � x such
that a(n) > n−α where x and α are positive and f is not necessarily a Hecke eigenform.
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1 Introduction
Let f be an element of S�+1/2(4N ), the space of cusp forms of weight � + 1/2, of level 4N
and of trivial character modulo 4N . Write its Fourier expansion as

f (z) =
∑

n�1
a(n)n

�−1/2
2 e(nz)

for Im z > 0. Given positive real numbers α and x and a class amodulo a prime number
p, we are interested in giving a lower bound on the number of integers n � x such that
n = a [p] and a(n) > n−α (or a(n) < −n−α respectively). As far as we know, this specific
problem for half-integral weight modular forms has not been studied before. Of course,
when the weight is an integer, such a question can be partially answered using Sato-Tate
equidistribution for Hecke eigenvalues (see [4, Theorem B]).

1.1 The sign of Fourier coefficients

In the recent years, the sign of coefficients of half-integralweightmodular formshas drawn
considerable attention. As a matter of fact, this subject comes from a question asked by
Kohnen. Define f as previously and assume that it is a complete Hecke eigenform. If t is
a positive squarefree integer then, by Waldspurger’s formula, one knows that the value
of a(t)2 is essentially proportional to the central value L(1/2, Shf × χt ) where Shf is the
Shimura lift of f and χt is an explicit Dirichlet character depending on t.
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Thus, Kohnen’s question is : what squareroot of L(1/2, Shf × χt ) corresponds to a(t)?
In other words, assume that the coefficients a(n) are real, then what is the sign of a(t) if it
is nonzero and what could we say about the other coefficients a(n)?
Bruinier andKohnen [6] first showed that under some classical hypothesis, the sequence

(a(tn2))n�1 has infinitely many sign changes and equidistribution results were established
in [15] and [1] for the sign of this sequence. In [14], the authors studied the case of the
sequence (a(t))t for all squarefree t and for f of level 4. They showed that there are also
infinitelymany sign changes in this sequence and a lower bound for the number of positive
(respectively negative) a(t) for t � x is given in [26].
Then, Meher and Murty [30] turned their attention to the whole sequence (a(n))n�1

when f is a complete eigenform in Kohnen’s plus space of level 4. Detecting the sign
changes, they proved in particular that

∣∣{n � x a(n) ≶ 0
}∣∣�f,ε x27/70−ε (1.1)

for any ε > 0. In [19], the authors sharpened the exponent 27/70−ε to 1/2 and generalized
it when n runs through an arithmetic progression of fixed modulus.
Very recently, Lester andRadziwiłł[27] studied this problemand they showed that under

the previous assumptions, there are, for any ε > 0 and for x large enough, at least x1−ε

sign changes in (a(n))n where 1 � n � x and n is a fundamental discriminant of the
form n = 4t with t even and squarefree. This improves drastically the bound in (1.1) but
actually they did better on this matter. Using a result of Ono and Skinner [33], they gave
a rapid and elegant proof of the fact that if f is suitably normalized, then we have

∣∣{n � x a(n) ≶ 0
}∣∣�f

x
log x

and the proof can be easily adapted when f ∈ S�+1/2(4N ) for any integerN assuming that
the hypotheses of [33, Fundamental Lemma] hold and that f is a complete eigenform.

1.2 Principal results

Fix f as before. Let α be a positive real number and let a be a class modulo an integer q.
We consider

T +
a,q(x;α) = ∣∣{n � x n = a [q] and a(n) > n−α

}∣∣, (1.2)

T −
a,q(x;α) = ∣∣{n � x n = a [q] and a(n) < −n−α

}∣∣ (1.3)

for any x > 0. We also put T ±(x;α) = T ±
0,1(x;α).

Using recent results on sums of Fourier coefficients of half-integral weight modular
forms in arithmetic progressions, we prove a lower bound for T ±

a,p(x;α) for some fixed α

and for a positive proportion of a [p]. Here, p is a prime such that p and x are both going
to infinity in a certain range.
We distinguish two cases. The first one is when f is not necessarily a Hecke eigenform.

In that case, we prove that there exists a positive proportion of a [p]1 such that at least
one coefficient a(n) with n = a [p] and n � x satisfies a(n) > n−α for some positive α.
The second case is when f is a complete Hecke eigenform. Then, we establish a lower

bound on the number of a [p] such that both T +
a,p(x;α) and T −

a,p(x;α) are bigger than x1−ε

p7/4
for positive ε.

1Here and in the rest of the paper, a positive proportion means a number of a [p] which is � p.
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We emphasize the fact that there are two novelties in this work. First, we are not
just looking at the signs of the coefficients, we also provide lower bounds for |a(n)|.
Moreover, we include the case where f is not necessarily a Hecke eigenform which is
significantly different from the previous papers about the signs of coefficients of half-
integral weight cusp forms. Indeed, in the works we mentioned above, the assumption
that f is an eigenform is crucial since, in that case, Shimura’s correspondence is quite
explicit on the coefficients (see (2.1) below) and one can apply Waldspurger’s formula.
Let us now state the main theorem of this paper.

Theorem 1 Let f ∈ S�+1/2(4N )\{0} where � and N are two positive integers with N odd
and squarefree. If � = 1, we assume that f is in the orthogonal complement of the subspace
spanned by single variable theta-functions. We also assume that the Fourier coefficients of
f are real.
Then, for any ε > 0 and any α ∈ (3/14, 1/4], there exists a constant x0 = x0(f, ε,α) such

that for all x0 � x1−2α+ε � p � x4/7−ε with p a prime number, we have

T +
a,p(x;α) � 1

for a positive proportion of a [p] and where T +
a,p(x;α) is defined in (1.2). The same holds for

T −
a,p(x;α).
If, moreover, we assume that f is a complete Hecke eigenform, then for any ε > 0, any

δ > 0 small enough and any α ∈ (1/8, 1/7], there exists a constant x0 = x0(f, ε, δ,α) such
that for all x0 � x1/2+ε � p � x4α−ε with p a prime number, we have

T ±
a,p(x;α) � x1−2δ

p7/4

for a number of a [p] which is �f,δ
p3/4
xδ/2 .

We will then deduce the following corollary.

Corollary 1 Let f ∈ S�+1/2(4N )\{0} as in Theorem 1 (but not necessarily a Hecke eigen-
form) with N odd and squarefree. Then,

T ±(x; 3/14 + ε) � x4/7−ε

for any ε > 0 and x large enough.

Remark 1 The previous corollary implies an omega result on the absolute value of a(n).
However, the conclusion reached is weaker than the one established in recent papers on
this subject (see [9] and [12]).

The proof of the first assertion of Theorem 1 is based on estimates on sums of Fourier
coefficients over arithmetic progressions. This type of sums has drawn particular interest
over the past decade, especially for integral weight modular forms (see for example [25]
and [11]). The case of half-integral weights was treated in [7]. We will need the following.

Theorem 2 Let f ∈ S�+1/2(4N )\{0} and w a smooth real-valued function compactly
supported in (0,+∞). Define for any x > 0, any prime number p and any class a modulo p

E(x, p, a) = 1√
x/p

∑

n=a [p]
a(n)w(n/x).
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Then, for any ε > 0,

1
p
∑

a [p]

×|E(x, p, a)|2 ∼ cf ‖w‖22

as long as x1/2+ε � p � x1−ε . The symbol
∑× means we restrict the summation over

invertible classesmodulo p, ‖w‖2 is the L2 norm of w and cf is a positive constant depending
only on f .
Moreover, if we assume that N is odd and squarefree, that f is in the orthogonal comple-

ment of the subspace spanned by single variable theta-functions when � = 1 and that the
Fourier coefficients of f are real, then

1
p
∑

a [p]

×
E(x, p, a)4 � 12(cf ‖w‖22)2 + o(1)

as long as x1/2+ε � p � x4/7−ε .

This is a special case of [7, Theorem 3] where the assumption that f is a complete
eigenform was relaxed and the level of f is greater than 4.
In order to prove the second assertion of Theorem 1, we will need the following result

about the fourth moment of the Fourier coefficients. While the second moment can
be easily computed using the classical theory of Rankin-Selberg transform, the fourth
moment ismore tricky to estimate.As it is done in [27],wewill do it byusingWaldspurger’s
formula [37] and a large-sieve type inequality by Heath-Brown for quadratic characters
[13].

Proposition 1 Let f ∈ S�+1/2(4N ) be a complete Hecke eigenformwithN odd and square-
free. If � = 1, we assume that f is in the orthogonal complement of the subspace spanned
by single variable theta-functions. Then

∑

n�x
|a(n)|4 �f,ε x1+ε

for any ε > 0 and any x > 0.

Remark 2 The assumption that N is odd and squarefree in Theorem 2 comes from the
fact that we need a sufficiently good theory on newforms of half-integral weight. As far as
we know, such a theory doesn’t exist on S�+1/2(4N ) for arbitrary N .
We also need this assumption in Proposition 1 to make Waldspurger’s formula a bit

more explicit.

1.3 Structure of the paper

Since we are going to work with smooth sums, we will consider coefficients a(n) with n/x
in the compact support of a smooth function w on (0,+∞) and prove a lower bound for

T +
a,q(x,α;w) = ∣∣{n � 1 n = a [q] and a(n)w(n/x) > n−αw(n/x)

}∣∣. (1.4)

The case of T −
a,q(x,α;w) will follow easily by changing f in −f .

Without loss of generality, we may assume that w is supported in (0, 1) and takes values
in [0, 1].
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We will proceed as follow. After proving Theorem 2, we will combine it with Hölder’s
inequality to show that

∑

a [p]
|E(x, p, a)| � p

which yields E(x, p, a) � 1 for a positive proportion of a [p] since
∑
a [p]

E(x, p, a) is small.

Then, the first assertion of Theorem 1 follows from an easy counting argument. We will
also prove the second assertion of Theorem 1 following the same line but we will use
Proposition 1 instead of the result about the fourth moment in arithmetic progression.
We will first recap some basic facts about half-integral weight modular forms and prove

Proposition 1 in Sect. 2. Section 3 is dedicated to the proof of Theorem 2 while Theorem
1 will be proved in Sect. 4.

1.4 Notations

As usual, we write a [p] for a class a modulo p and we also put ep(a) = e(a/p) with
e(x) = e2iπx.
The group GL2(R)+ (consisting of real matrices of positive determinant) acts on the

Poincaré half-planeH by Möbius transformation and we write this action as

γ z = az + b
cz + d

for any γ =
(
a b
c d

)
∈ GL2(R)+ and any z ∈ H.

We also denotedby I2 the identitymatrix inGL2(R)+ andby	0(N ) the usual congruence
subgroup.

For any odd integer d, define εd as the normalized Gauss sum i.e. εd =
{
1 if d = 1 [4],
i if d = 3 [4],

and for any fundamental discriminant D, we denote by
(
D
·
)
its associated quadratic

character. More generally, any non-zero integer n, with n = 0, 1 [4], can be written in a
unique way as n = Dm2 where D is a fundamental discriminant and m ∈ Z. Hence, we
denote by

(n
·
)
the character modulo |n| induced by

(
D
·
)
. If n = 2, 3 [4] then 4n can be

written in a unique way as 4n = Dm2 where D is a fundamental discriminant andm ∈ Z.
In this case, we denote by

(n
·
)
the character modulo 4|n| induced by

(
D
·
)
. By convention,

we also let
(

0
±1

)
= 1.

If x is a square modulo an odd prime p, we denoted by
√
xp the only integer y ∈

[1, (p − 1)/2] such that x = y2 [p].
Finally, the symbol

∑
 means we restrict the summation to positive squarefree integers

t and we put δp(x) =
{
1 if x = 0 [p],
0 otherwise.

2 Modular forms of half-integral weight
In this sectionwe first recall the principal properties of half-integral weightmodular forms
that we will use in this paper. A good introduction to this theory can be found in [32] and
a more complete study is done in [34] or [20]. Then, we will prove Proposition 1 and a
non trivial bound for Fourier coefficients of such forms.
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2.1 General setting

Let G be the set of pairs (σ ,φ) where σ =
(
a b
c d

)
∈ GL2(R)+ and φ : H → C is a

holomorphic function such that φ(z)2 = η(det σ )−1/2(cz + d) for all z ∈ H and with η a
complex number of norm 1 not depending on z. G has a group structure with the inner
law defined by

(σ ,φ)(σ ′,φ′) = (σσ ′,φ(σ ′·)φ′).

This group is a non-trivial central extension of GL2(R)+ by U the unit circle i.e. the
sequence

1 → U → G → GL2(R)+ → 1,

where η ∈ U is sent to (I2, η), is exact and the center of G is the subgroup of pairs (αI2, η)
with α ∈ R

∗ and η ∈ U.
This sequence splits over 	0(4) which means this group has a section sJ : 	0(4) → G

given explicitly by sJ (γ ) = (γ , J (γ , z)) with

J (γ , z) = ε−1
d

( c
d

)√
cz + d

for any γ =
(
a b
c d

)
∈ 	0(4). For any positive integer N , we denote by �0(4N ) the image

of 	0(4N ) by sJ . If χ is a Dirichlet character modulo 4N , then we put χ (ξ ) = χ (d) for any

ξ =
((

a b
c d

)
,φ
)

∈ �0(4N ).

Now for any integer �, any function f : H → C and any ξ = (σ ,φ) ∈ G, we define the
weighted slash operator |�+1/2 by

f |�+1/2ξ (z) = φ(z)−(2�+1)f (σ z)

which gives a well-defined right action of G on such functions f .
We say that f is a modular (respectively a cusp) form of level 4N , of weight � + 1/2 and

of character χ , and we note f ∈ M�+1/2(4N,χ ) (respectively f ∈ S�+1/2(4N,χ )), if

(1) f is holomorphic onH,
(2) f |�+1/2ξ = χ (ξ )f for all ξ ∈ �0(4N ),
(3) f is holomorphic (respectively cuspidal) at each cusp of 	0(4N ).

The third point means that for all cusp a of the curve 	0(4N )\H and for all element
ξa = (σa,φa) ∈ G with σa∞ = a, the function f |�+1/2ξa has a Fourier expansion with
only non-negative (respectively positive) powers of e(z/ra) for some positive integer ra.
The Hecke operators Tm are defined on M�+1/2(4N,χ ) as double coset operators for

�0(4N )ξm�0(4N ) with ξm =
((

1 0
0 m

)
, m1/4

)
. In particular (see [34]), they vanish when

m is not a square and they satisfy the multiplicativity relation Tmn = TmTn for (m, n) = 1.
Also, the Tp2 for p � 4N are normal operators (they are self-adjoint when χ is real)

on S�+1/2(4N,χ ) with respect to the Petersson inner product. So there exists a basis of
S�+1/2(4N,χ ) composed of common eigenfunctions of all the Tp2 for p � 4N which we
call eigenforms.WhenN is squarefree, with a suitable theory of newforms of half-integral
weight (see [29] and [28]) one can prove that some of these eigenforms are actually also
eigenfunctions for Tp2 with p | 4N . We call them complete eigenforms.
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Whenχ is trivial, since there exists a basis ofS�+1/2(4N ) composedof formswith rational
coefficients (see [5]) and the Hecke operators are rational on this space, then there exists a
non-trivial subspace of S�+1/2(4N ) spanned by eigenforms (or even complete eigenforms
if N is squarefree) which have real Fourier coefficients.
For f ∈ S�+1/2(4N,χ ), we denote by f0 its image under the Fricke involution i.e.

f0 = f |�+1/2W4N

whereW4N =
((

0 −1
4N 0

)
, (4N )1/4

√−iz
)
. Then f0 ∈ S�+1/2

(
4N,

(
4N
·
)

χ
)
.

2.2 Shimura’s correspondence andWaldspurger’s Theorem

Let f ∈ S�+1/2(4N,χ ) be a complete eigenform with eigenvalues (λ(p))p i.e.

Tp2 f = λ(p)f

for any prime p. Define λ(n) for any integer n formally by
∑

n�1
λ(n)n−s =

∏

p

(
1 − λ(p)p−s + χ2(p)p2�−1−2s)−1.

Then, Shimura [34] and Niwa [31] showed that the function defined by

Shf (z) =
∑

n�1
λ(n)e(nz)

for z ∈ H is a complete Hecke eigenform in S2�(2N,χ2) whenever � � 2. For � = 1, this
holds if one assumes that f is in the orthogonal complement of the subspace spanned by
single variable theta-functions (we always make this assumption in the sequel).
Moreover, for any integer t which is not divisible by a square prime to 4N , we have

a(tn2)n�−1/2 = a(t)
∑

d|n
μ(d)

(
(−1)�t

d

)
χ (d)d�−1λ(n/d) (2.1)

for all integer n and where a(n) is the nth normalized Fourier coefficient of f .
Therefore, by Deligne’s bound for Hecke eigenvalues for integral weight modular forms

[10], one has

|a(tn2)| �ε |a(t)|nε (2.2)

for any ε > 0.
Waldspurger’s formula relates a(t) to the central value of the L-function associated to

Shf twisted by a character. We give a statement for such a formula which can be easily
derived from [37, Théorème 1]. For more explicit formulas, see also [23], [22] and [35].
Let f ∈ S�+1/2(4N,χ ) as before and assume that N is odd. For squarefree t, let us

consider the Dirichlet character

χt =
(
(−1)�t

·
)

χ (2.3)

whose conductor divides 4Nt.
By Shimura’s correspondence and Atkin-Lehner theory [2], there exists a unique new-

form

F (z) =
∑

n�1
b(n)n�−1/2e(nz)
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in S2�(M,χ2) for some M | 2N such that b(p)p�−1/2 = λ(p) for all prime p � 2N . Define
the twisted form Ft by

Ft (z) =
∑

n�1
χ t (n)b(n)n�−1/2e(nz)

which is in S2�(16N 2t2) (see [3, Proposition 3.1]). It is an eigenfunction of the pth Hecke
operator for p � 2Nt whose eigenvalue is χ t (p)λ(p). Therefore, there exists a unique
newform

F̃t (z) =
∑

n�1
bt (n)n�−1/2e(nz) (2.4)

in S2�(M′) for someM′ | 16N 2t2 such that bt (p)p�−1/2 = χ t (p)λ(p) for all prime p � 2Nt.
We define its normalized L-function as

L(s, F̃t ) =
∑

n�1

bt (n)
ns

which converges absolutely for Re s > 1.

Theorem 3 [37, Théorème 1] With notations as above, there exists a bounded function
�f defined on squarefree integers and depending only on f such that for all squarefree t,

a(t)2 = �f (t)L(1/2, F̃t ).

We will deduce from this theorem the estimate we need for the fourth moment of the
coefficients a(n).

2.3 The fourth moment

The goal of this subsection is to prove Proposition 1. The idea is to exploit (2.2) and
Theorem 3 to reduce this problem to finding an estimation of

∑

ψ

L(1/2, g × ψ)2 (2.5)

whereψ runs throughquadratic characters of bounded conductors and g is somenewform
of integral weight.
Since the form F̃t is not equal to Ft in general (their L-functions are equal up to a finite

number of Euler factors but this number could increase with t), we will need assumptions
under which F̃t is actually the twist of F by a quadratic character. Hence, we first prove
the following lemma.

Lemma 1 Let F (z) = ∑
n�1

λ(n)e(nz) ∈ Snewk (N ) be a complete Hecke eigenform of integral

weight k and let ψ be a primitive quadratic character modulo M. If N is squarefree then
the form

Fψ (z) =
∑

n�1
ψ(n)λ(n)e(nz)

is a newform and a complete Hecke eigenform.

Proof By assumption, either M is squarefree or it can be written as M = 4t with t
squarefree. Then, ψ decomposes as a product of primitive characters

ψ =
∏

p|M
ψp
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where ψp =
( ·
p

)
for odd p and ψ2 is a primitive character of conductor 4 or 8. By [2,

Theorem 6], for any newformG of levelN ′ with p-adic valuation vp(N ′) = 0 or 1, we have
Gψp ∈ Snewk (N ′p2−vp(N ′)). It is also suggested in [2] that this holds for quadratic characters
modulo 4 and 8 but since it is not explicitly written, we prefer to refer to [3, Theorem 3.1
and Corollary 3.1] from which we can deduce that if M = 2αM′ with α ∈ {2, 3} and M′

odd, then Fψ2 ∈ Snewk (22α−v2(N )N ). Then, it follows easily that Fψ is a newform and since
it is an eigenfunction of all but finitely many Hecke operators Tp, it must be a complete
eigenform. �

We now deduce the following classical estimate for sums of type (2.5).

Proposition 2 Let F (z) = ∑
n�1

b(n)n
k−1
2 e(nz) ∈ Snewk (N ) be a complete Hecke eigenform

of integral weight k and with N squarefree. For x > 0, let �(x) denote the set of primitive
quadratic characters of conductor at most x. Then

∑

ψ∈�(x)
|L(1/2, Fψ )|2 �F,ε x1+ε

for any ε > 0 and where L(s, Fψ ) = ∑
n�1

ψ(n)b(n)n−s.

Proof By Lemma 1, for all ψ ∈ �(x), Fψ is a newform whose L-function satisfies a
functional equation of the form

�(s, Fψ ) := Ns/2
ψ (2π )−s	(s + (k − 1)/2)L(s, Fψ ) = ε(Fψ )�(1 − s, Fψ )

for some ε(Fψ ) ∈ {±1} and where Nψ � Nx2 is the level of Fψ .
Then, using the approximate functional equation (see [18, Theorem 5.3]) one derives

L(1/2, Fψ ) = (1 + ε(Fψ ))
∑

n�1

ψ(n)b(n)√
n

V 1
2

(
n√
Nψ

)
(2.6)

where

V 1
2
(y) = 1

2iπ

∫

(σ )

	(s + k/2)
s	(k/2)

(2πy)−sds

for any σ > 0. Let η > 0. Breaking the sum in (2.6) according to n < x1+η or not and
using the fact that V 1

2
(y) �k,A y−A for any A > 0, we have

∑

ψ∈�(x)
|L(1/2, Fψ )|2 �F,η

∑

ψ∈�(x)

∣∣∣∣∣∣

∑

n<x1+η

ψ(n)b(n)√
n

V 1
2

(
n√
Nψ

)∣∣∣∣∣∣

2

.

Now, by [13, Corollary 2], the right-hand side of the above inequality is

�ε x(2+η)ε+1+η
∑

n1 , n2 < x1+η√n1n2 ∈ Z

|b(n1)b(n2)|√n1n2

and this last sum is bounded by
∑

n<x1+η

σ0(n2)
n1−η with σ0(n2) the number of divisors of n2.

Since η can be arbitrary small, the conclusion follows.
�


We can now prove Proposition 1.
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Proof of Proposition 1 Write f (z) = ∑
n�1

a(n)n
�−1/2

2 e(nz) ∈ S�+1/2(4N ) as usual.

Since N is odd, by Theorem 3,

|a(t)|2 �f |L(1/2, F̃t )|
for any squarefree t and where F̃t is defined by (2.4). Let Dt be the fundamental discrim-
inant such that

(
Dt·
)
induces χt (defined by (2.3) for χ principal). The discussion before

Theorem 3 shows that F̃t is an eigen-newform of integral weight whose associated eigen-
values are

(
Dt
p

)
λ(p) for all but finitely many p. Hence, by Lemma 1 and [2, Theorem 4],

we have F̃t = F(Dt·
) and recall that F is a complete eigen-newform which depends only

on f . Thus, by (2.2), we have for any ε > 0,

∑

n�x
|a(n)|4 �f,ε

∑

t�x


|L(1/2, F(Dt·
))|2

∑

m�
√ x

t

m2ε

�f,ε x1/2+ε
∑

t�x


|L(1/2, F(Dt·
))|2t−1/2−ε

and since |Dt | � 4t, a summation by parts and Proposition 2 give the result.
�


2.4 Bounds for Fourier coefficients

Let f ∈ S�+1/2(4N,χ ) and put

f (z) =
∑

n�1
a(n)n

�−1/2
2 e(nz)

for z ∈ H. In the proof of Theorem 2, we will use a bound for the coefficients a(n) which
must hold for arbitrary f .
If � � 2 and t is squarefree then, by [16, Theorem 1], one has

|a(t)| �f,ε t3/14+ε

for any ε > 0. Actually this still holds if t is divisible by p2 for p | 4N . Precisely, we have
the following proposition.

Proposition 3 Let f ∈ S�+1/2(4N,χ ) where � and N are two positive integers. If � = 1, we
assume that f is in the orthogonal complement of the subspace spanned by single variable
theta-functions. For all integer n = tm2 with squarefree t and m | 4N, we have

|a(n)| �f,ε n3/14+ε

for any ε > 0.

Proof This is a straightforward consequence of [36, Theorem 1]. �

From this we can deduce the following more general bound.

Proposition 4 Assume the hypotheses of the previous proposition hold. If, moreover, N is
odd and squarefree and χ is real then for all squarefree t and all positive integer n,

|a(tn2)| �f,ε t3/14(tn)ε

for any ε > 0.
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Proof By [29, Theorems 7], f can be written as a finite sum

f =
∑

i
U (r2i )fi

where ri | 2N , U (r2i ) :
∑
n�1

c(n)e(nz) �→ ∑
n�1

c(r2i n)e(nz) and fi is either a complete eigen-

form of S�+1/2(M,χ ) for someM dividing 4N or a complete eigenform of Kohnen’s plus
space S+

�+1/2(M,χ ) for someM dividing 4N . Hence,

a(tn2) =
∑

i
ai(t(rin)2)

with ai(m) the mth normalized coefficient of fi. If fi is a classical eigenform then, by (2.2)
and Proposition 3, we have |ai(t(rin)2)| �i,ε t3/14(trin)ε .
If fi is in the plus space, then relation (2.2) still holds but with t = |D| where D is a

fundamental discriminant (see [21]). In that case we have |ai(t(rin)2)| �i,ε |ai(t)|(rin)ε
or |ai(t(rin)2)| �i,ε |ai(4t)|(rin/2)ε . In both cases, we can apply Proposition 3 and get
|ai(t(rin)2)| �i,ε t3/14(trin)ε which is enough to conclude. �


3 Fourier coefficients in arithmetic progressions
The aim of this section is to prove Theorem 2. Since we use the same tools as in [7], we
will skip some details. For self-contained study of this problem, we refer to the author’s
Phd thesis [8].

3.1 Voronoı̆ summation formula

Let f (z) = ∑
n�1

a(n)n
�−1/2

2 e(nz) ∈ S�+1/2(4N ) be a cusp form and let w be a smooth [0, 1]-

valued function compactly support in (0, 1). Define for any x > 0, any prime p � x and
any a [p]

E(x, p, a) = 1√
x/p

∑

n=a [p]
a(n)w(n/x). (3.1)

It is shown in [7] that 1√
x/p is the right normalization of the sum above since a squareroot

cancellation appears when x and p go to infinity in a certain range.
The first step consists in rearranging E(x, p, a) by using the functional equation for f

twisted by an additive character. Such an equation is established in [14] for the special
case N = 1. Yet, the proof can be easily adapted to any N and one gets the following.

Proposition 5 Let f ∈ S�+1/2(4N ) as above. Let u and q be two coprime integers such that
(q, 4N ) = 1. Put

L(s, f, u/q) =
∑

n�1
a(n)eq(un)n−s

then L(s, f, u/q) converges absolutely for Re s > 1 and can be extended to an entire function
satisfying

�(s, f, u/q) :=
(√

4Nq
2π

)s

	

(
s + � − 1/2

2

)
L(s, f, u/q) = ωq(u)�(1 − s, f0,−4Nu/q)

where uū = 1 [q] and ωq(u) = ε
−(2�+1)
q

(−ū
q

)
.

Moreover, this L-function has polynomial growth in vertical strips.
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Next, using Mellin transform, we easily deduce the so-called Voronoı̆ summation for-
mula.

Proposition 6 Let f , u and q be as above. Then for all x > 0,
∑

n�1
a(n)eq(un)w(n/x) = ωq(u)

x√
4Nq

∑

m�1
a0(m)eq(−4Nu m)B

(
m

4Nq2/x

)

where a0(m) is the mth normalized Fourier coefficient of f0 and B is a smooth function of
rapid decay as in [7, Sect. 3].

By Mellin transform again, we see that
∑

n�1
a(n)w(n/x) �f,A x−A (3.2)

for any A > 0 so detecting the congruence in the sum in (3.1) and applying the last
proposition, we have for any p � 4N

E(x, p, a) = ε
−(2�+1)
p√

Y

∑

m�1
a0(m)Salp(4Nm, a)B

(m
Y

)
+ Of,A(x−A)

where Y = 4Np2/x and

Salp(u, v) = 1√p
∑

b [p]

× (b
p

)
ep(ub + vb̄)

is the normalized Salié sum. Classically (see [24, Lemme 8.4.3]), if u and v are coprime to
p then

Salp(u, v) =
(
v
p

)
εp

∑

y2=uv [p]

ep(2y).

Thus, using [7, Proposition 3] (where in the proof, f does not need to be an eigenform),
we infer that

E(x, p, a) = ε−2�
p

(
a
p

)
1√
Y

∑

1�m�Y 1+η

a0(m)Sap(Nma)B
(m
Y

)
+ Of,A(Y−A) (3.3)

for any η > 0, provided that Y 1+η < p, and where

Sap(y) =
{
ep(

√yp) + ep(−√yp) if
(
y
p

)
= 1,

0 otherwise.

3.2 Some estimates on sums of Fourier coefficients

Before proving Theorem 2 we establish some basic facts on certain sums of Fourier coef-
ficients.

Lemma 2 Let f ∈ S�+1/2(4N ) as above. Then
∑

n�1
|a(n)|2w(n/x)2 ∼ cf ‖w‖22x as x → +∞

where

cf = (4π )�+1/2

	(� + 1/2)Vol (	0(4N )\H)

∫

	0(4N )\H
|f (z)|2y�+1/2 dxdy

y2
.
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Proof We have for any σ > 1,
∑

n�1
|a(n)|2w(n/x)2 = 1

2iπ

∫

(σ )
D(s, f × f̄ )ŵ2(s)xsds

where D(s, f × f̄ ) = ∑
n�1

|a(n)|2n−s and ŵ2(s) = ∫ +∞
0 w2(t)ts−1dt is the Mellin transform

of w2. Because w is smooth and compactly supported in (0, 1), ŵ2(s) (as well as ŵ(s)) is
well-defined on the whole complex plane and it is of rapid decay in vertical strips.
Classically (see [17, Sect. 13.4]), D(s, f × f̄ ) extends to a meromorphic function for

Re s � 1/2 with a finite number of poles which are simple and in the interval 1/2 < s � 1.
At s = 1, there is a simple pole whose residue is cf .
Hence, moving the contour of integration to σ = 1− ε with ε > 0 small enough, we get
∑

n�1
|a(n)|2w(n/x)2 = cf ŵ2(1)x + 1

2iπ

∫

(1−ε)
D(s, f × f̄ )ŵ2(s)xsds

and because D(s, f × f̄ ) is of polynomial growth on vertical strips, we have the desired
conclusion.

�


Lemma 3 Let f ∈ S�+1/2(4N ) as above and take a class a [p]. Then
∑

n=a [p]
a(n)w(n/x) = Of,w,ε(x−εp1+2ε)

for any ε > 0.

Proof Write

∑

n=a [p]
a(n)w(n/x) = 1

p
∑

b [p]
ep(−ba)

∑

n�1
a(n)ep(bn)w(n/x)

= 1
p
∑

b [p]
ep(−ba)

1
2iπ

∫

(σ )
L(s, f, b/p)ŵ(s)xsds

for any σ > 1. Moving the contour of the integral to σ = −ε, we get
∑

n=a [p]
a(n)w(n/x) = 1

p
∑

b [p]
ep(−ba)

1
2iπ

∫

(−ε)
L(s, f, b/p)ŵ(s)xsds

since the integrated functions are entire. Using the functional equation given in Proposi-
tion 5 (for b �= 0 [p]), the result follows.

�


We will also need to compare sums of Fourier coefficients to Dirichlet series over
arithmetic progressions.

Lemma 4 Let 0 < α < 1/2 and take a class a [p]. Then
∑

n=a [p]
n−αw(n/x) = O

(
x1−α

p

)
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Proof Since w is supported in (0, 1) and takes values in [0, 1], we have
∣∣∣∣∣∣

∑

n=a [p]
n−αw(n/x)

∣∣∣∣∣∣
�
∑

n�x/p

1
(a + np)α

�
∫ x/p

1

dt
(a + tp)α

� x1−α

p
.

�

We are now ready to prove Theorem 2.

3.3 Proof of Theorem 2

Since the computation of the second moment is the same whether the a(n)’s (or equiva-
lently the a0(n)’s) are real or not, we will assume from now that they are. Let ν ∈ {2, 4}
and write for p � 4N

1
p
∑

a [p]

×
E(x, p, a)ν = 1

2
M+

ν + 1
2
M−

ν

with

M±
ν = 2

p
∑
(
a
p

)
=1

E(x, p, Nμ±a)ν = 1
p
∑

b [p]

×
E(x, p, Nμ±b2)ν

and μ± is any positive integer such that
(

μ±
p

)
= ±1.

Then, by (3.3) and [7, Lemma 5], we have

M±
ν = 1

Y ν/2

∑

1 � mi � Y 1+η

1 � i � ν,
(

mi
p

)
= ±1

ν∏

i=1
a0(mi)B

(mi
Y

) ∑

e∈{±1}ν
δp

(
ν∑

i=1
ei

√
μ±mi

p
)

+ Of,A

(
Y ν/2

p
+ Y−A

)

with Y = 4Np2/x. If ν = 2 then notice that

e1
√

μ±m1
p + e2

√
μ±m2

p = 0 [p] ⇐⇒
{

m1 = m2
e1e2 = −1

since 1 � √
μ±mi

p < p/2 and 1 � mi < p. Therefore,

M±
2 = 2

Y
∑

1 � m � Y 1+η
(

m
p

)
= ±1

a0(m)2B2
(m
Y

)
+ Of,A

(
Y
p

+ Y−A
)

and
1
p
∑

a [p]

×
E(x, p, a)2 = 1

Y
∑

1�m�Y 1+η

a0(m)2B2
(m
Y

)
+ Of,A

(
Y
p

+ Y−A
)

so, if Y → +∞ with Y 1+η < p, we get the first assertion of Theorem 2 since, by Lemma
2 or simply [7, Sect. 6], we have

1
Y

∑

1�m�Y 1+η

a0(m)2B2
(m
Y

)
∼ cf ‖w‖22 asY → +∞ (3.4)
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and the constant cf is the same as in Lemma 2 because a change of variable shows that f
and f0 have the same Petersson norm.
Things are a bit trickier when ν = 4. Put

Q4(x) =
∏

e ∈ {±1}4
e1 = 1

4∑

i=1
ei

√
xi

for any positive x1, x2, x3, x4. Because of the parity in the variables
√
xi ’s of the right-

hand side of the above equality, we may view Q4(x) as a homogeneous polynomial of
Z[x1, x2, x3, x4].
For 1 � m1, m2, m3, m4 � Y 1+η we have

|Q4(m1, m2, m3, m4)| �
∏

e ∈ {±1}4
e1 = 1

4Y
1+η
2 � 216Y 4(1+η).

Thus, if p � x4/7−ε then there exists ε′ > 0 such that p7/4+2ε′ � x which implies that
p2(1+ε′)/x � p1/4 so, taking 0 < η < ε′, we have

216Y 4(1+η) < p/2

for Y large enough. Assume this is the case, then for any e ∈ {±1}4 and any m =
(m1, m2, m3, m4) with 1 � mi � Y 1+η and

(
mi
p

)
= ±1, one has

4∑

i=1
ei

√
μ±mi

p = 0 [p] ⇒ Q4(μ±m) = 0 [p]

⇒ Q4(m) = 0 ⇒ ∃e′ ∈ {±1}4 ,
4∑

i=1
e′i

√
mi = 0.

For any 1 � i � 4 and 1 � mi � Y 1+η, writemi = tir2i where ti is squarefree and ri � 1.

Since the different values of the
√
ti’s are linearly independent overQ, then

4∑
i=1

e′i
√
mi = 0

only if |{t1, t2, t3, t4}| = 1 or 2. In the second case, say t1 = t2 �= t3 = t4,
4∑

i=1
e′i

√
mi = 0 ⇒ (e′1r1 + e′2r2)

√
t1 + (e′3r3 + e′4r4)

√
t3 = 0

⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r1 = r2
e′1e′2 = −1
r3 = r4

e′3e′4 = −1

⇒
{
m1 = m2
m3 = m4

since ri � 1 for all i. But ifm1 = m2 �= m3 = m4 then

(e1 + e2)
√

μ±m1
p + (e3 + e4)

√
μ±m3

p = 0 [p] ⇐⇒ e1 = −e2 and e3 = −e4 .

Indeed, if, for example, e1 + e2 �= 0 i.e. e1 + e2 ∈ {±2}, then e3 + e4 �= 0 (otherwise√
μ±m1

p = 0 [p]) and μ±m1 = μ±m3 [p] which impliesm1 = m3 but we have excluded
this case. This proves the necessary condition of the above equivalence and the sufficient
condition is trivial. Therefore,

∑

e∈{±1}4
δp

( 4∑

i=1
ei

√
μ±mi

p
)

= 4.
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Since this discussion is the same if m1 = m3 �= m2 = m4 or m1 = m4 �= m2 = m3, it
allows us to write

M±
4 = 12

Y 2

∑

1 � m1 , m2 � Y 1+η

t1 �= t2 ,
(

mi
p

)
= ±1

a0(m1)2B2
(m1
Y

)
a0(m2)2B2

(m2
Y

)

+ R
Y 2 + Of,A

(
Y 2

p
+ Y−A

)
(3.5)

where

R =
∑


t � Y 1+η
(

t
p

)
= ±1

∑

1 � tr2i � Y 1+η

1 � i � 4

4∏

i=1
a0(tr2i )B

(
tr2i
Y

)
∑

e∈{±1}4
δp

( 4∑

i=1
ei
√

μ±tr2i
p
)
. (3.6)

We are going to show that this last term is negligible. Precisely we have the following.

Proposition 7 Define R as in (3.6). Then for any ε > 0 and η sufficiently small

|R| �f,ε Y 2−1/7+ε .

Proof Following the previous discussion or simply by [7, Lemma 6],

∑

e∈{±1}4
δp

( 4∑

i=1
ei
√

μ±tr2i
p
)

�
∑

e∈{±1}4
δ0

( 4∑

i=1
eiri

)

so, since B is bounded, it suffices to prove that

R′ :=
∑


t�Y 1+η

∑

1 � tr2i � Y 1+η

∑4
i=1 ei ri = 0

4∏

i=1
|a0(tr2i )| �f,ε Y 2−1/7+ε (3.7)

for any e ∈ {±1}4 and any ε > 0. Fix such e and ε. For any t, the inner sum in R′ becomes

∑

1 � tr2i � Y 1+η

1 � i � 3

∣∣∣∣∣∣
a0

⎛

⎝t
( 3∑

i=1
eiri

)2⎞

⎠

∣∣∣∣∣∣

3∏

i=1
|a0(tr2i )| �f,ε t6/7+ε Y ε(1+η)

∑

1 � tr2i � Y 1+η

1 � i � 3

3∏

i=1
rε
i

by Proposition 4. Thus, for η sufficiently small,

R′ �f,ε Y ε(1+η)
∑


t�Y 1+η

t6/7+ε

(
Y 1+η

t

) 3
2 (1+ε)

�f,ε Y 3/2+6ε
∑


t�Y 1+η

t5/14−1

�f,ε Y 2−1/7+7ε .

�


Remark 3 If one has a better exponent in Proposition 4, say a(tr2) �f,ε tθ (tr)ε for some
θ > 0, then the exponent 2−1/7 in Proposition 7 is replaced by 1+4θ . This only improves
slightly the error term in (3.5) but it does not extend the range of convergence for the
fourth moment.
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To finish the proof of Theorem 2, note that
∑

1 � m1 , m2 � Y 1+η

t1 = t2 ,
(

mi
p

)
= ±1

a0(m1)2B2
(m1
Y

)
a0(m2)2B2

(m2
Y

)

is bounded by R′ defined in (3.7) (with e = (1,−1, 1,−1) for example) so we have from
(3.5) and Proposition 7,

M±
4 = 12

Y 2

∑

1 � m1 , m2 � Y 1+η
(

mi
p

)
= ±1

a0(m1)2B2
(m1
Y

)
a0(m2)2B2

(m2
Y

)
+ Of,ε

(
Y−1/7+ε + Y 2

p

)

= 12

⎛

⎜⎜⎝
1
Y

∑

1 � m � Y 1+η
(

m
p

)
= ±1

a0(m)2B2
(m
Y

)
⎞

⎟⎟⎠

2

+ Of,ε

(
Y−1/7+ε + Y 2

p

)

for any ε > 0. Recall that x1/2+ε � p � x4/7−ε for some ε > 0 so the error term above is
o(1) as x → +∞. Hence

|M±
4 | � 12

⎛

⎝ 1
Y

∑

1�m�Y 1+η

a0(m)2B2
(m
Y

)
⎞

⎠
2

+ o(1)

and again, using (3.4), we get the conclusion.

4 Proof of Theorem 1
We are now going to prove an analog of Theorem 1 for T +

a,q(x,α;w) defined in (1.4).
This result will be even stronger than Theorem 1 since it counts the number of positive
coefficients a(n) with n/x in the support of w.

4.1 Preliminary lemmas

We first prove two elementary lemmas that we will use several times.

Lemma 5 Let (b(n))n be a sequence of real numbers such that

∑

n�x
b(n) = o

⎛

⎝
∑

n�x
|b(n)|

⎞

⎠

as x → +∞. Put
∑+

(x) =
∑

n � x
b(n) > 0

b(n) and
∑−

(x) = −
∑

n � x
b(n) < 0

b(n).

Then,
∑±

(x) ∼ 1
2
∑

n�x
|b(n)|

as x → +∞.
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Proof We have

∑+
(x) = 1

2

(∑+
(x) +

∑−
(x)
)

+ 1
2

(∑+
(x) −

∑−
(x)
)

= 1
2
∑

n�x
|b(n)| + 1

2
∑

n�x
b(n)

∼ 1
2
∑

n�x
|b(n)|

by assumptions. The proof is the same for
∑−(x). �


Lemma 6 Let X be a finite set of positive integers and for any n ∈ X, let b(n) and c(n) be
two real numbers with c(n) � 0. Assume there exists M > 0 and V > 0 such that

∑

n∈X
c(n) � M �

∑

n∈X
b(n)

and
∑

n∈X
b(n)2 � V.

Then,

∣∣{n ∈ X b(n) > c(n)
}∣∣ �

(
M −

∑

n∈X
c(n)

)2

V−1

Proof One has

M �
∑

n ∈ X
b(n) � c(n)

b(n) +
∑

n ∈ X
b(n) > c(n)

b(n)

�
∑

n∈X
c(n) +

⎛

⎜⎝
∑

n ∈ X
b(n) > c(n)

1

⎞

⎟⎠

1/2 (
∑

n∈X
b(n)2

)1/2

using Cauchy–Schwarz inequality in the second sum.
Since

∑
n∈X

c(n) � M and
∑
n∈X

b(n)2 � V , the result follows easily.
�


4.2 Case where f is arbitrary

Fix f as in Theorem 1 (but not necessarily an eigenform). For x > 0 and a prime number
p, we always assume that x1/2+ε � p � x4/7−ε for some fixed ε > 0. Hence, if x goes
to infinity then so does p but restricted in this range. We can first establish the following
proposition.

Proposition 8 If 0 < m <
‖w‖2√cf
4
√
3

then

∣∣{a [p]
∣∣ E(x, p, a) > m

}∣∣ �
(

1
4
√
3

− m
‖w‖2√cf

)2

p + o(p)

as x → +∞.
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Proof By Hölder’s inequality, we have

1
p
∑

a [p]

×
E(x, p, a)2 �

⎛

⎝1
p
∑

a [p]

×|E(x, p, a)|
⎞

⎠
2/3⎛

⎝1
p
∑

a [p]

×
E(x, p, a)4

⎞

⎠
1/3

so using Theorem 2, we get

cf ‖w‖22 + o(1) �

⎛

⎝1
p
∑

a [p]

×|E(x, p, a)|
⎞

⎠
2/3
(
12(cf ‖w‖22)2 + o(1)

)1/3

and then
∑

a [p]

×|E(x, p, a)| �
‖w‖2√cf
2
√
3

p + o(p).

Also, by (3.2) and Lemma 3,
∑

a [p]

×
E(x, p, a) = 1√

x/p
∑

n�1
a(n)w(n/x)

− 1√
x/p

∑

n=0 [p]
a(n)w(n/x) = Of (x−1/2p3/2+ε) = Of (p1−δ)

for some δ > 0 because p � x4/7−ε .
Thus, Lemma 5 yields
∑

a [p]

+
E(x, p, a) �

‖w‖2√cf
4
√
3

p + o(p) (4.1)

where
∑
a [p]

+ means that we restrict the sum to invertible classes a [p] such that E(x, p, a) >

0.
Now, use Lemma 6 with X = {0 < a < p E(x, p, a) > 0} and, for a ∈ X , with

b(a) = E(x, p, a) and c(a) = m <
‖w‖2√cf
4
√
3

. By (4.1) and Theorem 2, we obtain

∣∣{a [p]
∣∣ E(x, p, a) > m

}∣∣ �
(‖w‖2√cf

4
√
3

p − mp + o(p)
)2 (

cf ‖w‖22p + o(p)
)−1

�
(

1
4
√
3

− m
‖w‖2√cf

)2

p + o(p).

�

Proposition 8 allows us to give a lower bound for

∑
n=a [p]

a(n)w(n/x) for a certain number

of a [p]. We are now going to upper bound
∑

n=a [p]
a(n)2w(n/x)2 for a large number of a [p]

in order to apply Lemma 6 once again.

Proposition 9 Let m > 0. Then

∣∣{a [p]
∣∣ ∑

n=a [p]
a(n)2w(n/x)2 > mx/p

}∣∣ �
( cf ‖w‖22

m
+ o(1)

)
p.

Proof This is a straightforward consequence Markov’s inequality and Lemma 2.
�
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Now, let us prove the main result of this subsection.

Theorem 4 Let f , x and p be as above. For any a [p], define T +
a,p(x,α;w) as in (1.4). Let

α ∈ (3/14, 1/4] and r < 1/48. Then, for x large enough
∣∣∣
{
a [p] T +

a,p(x,α;w) � 1
}∣∣∣ � rp

as long as x1−2α+ε � p � x4/7−ε for some ε > 0.

Proof Letm1 > 0 andm2 > 0 such that
√
r <

1
4
√
3

− m1
‖w‖2√cf

and
cf ‖w‖22
m2

<

(
1

4
√
3

− m1
‖w‖2√cf

)2

− r.

Apply Propositions 8 and 9 to see that
∑

n=a [p]
a(n)w(n/x) � m1

√
x/p and

∑

n=a [p]
a(n)2w(n/x)2 � m2x/p (4.2)

for a certain number of invertible a [p] greater than rp for p large enough i.e. x large
enough.
Also, by Lemma 4,

∑

n=a [p]
n−αw(n/x) � x1−α

p
.

The right-hand side of the above inequality is o
(√

x/p
)
because x1−α

p = x1/2−α

p1/2
√
x/p and

x1−2α+ε � p.
Hence, for these invertible a [p] satisfying (4.2), using Lemma 6 with X = {n =

a [p] | w(n/x) �= 0}, b(n) = a(n)w(n/x) and c(n) = n−αw(n/x), we have for x large
enough,

T +
a,p(x,α;w) � 1

m2x/p

(
m1
√
x/p + o

(√
x/p
))2

> 0

and since T +
a,p(x,α;w) is an integer, we get the result.

�

Theorem 4 easily implies the first assertion of Theorem 1. Unfortunately, the lower

bound for T +
a,p(x,α) cannot be improved with our method since it only gives

T +
a,p(x,α) � m2

1
m2

= m2
1

cf ‖w‖2
cf ‖w‖2
m2

with m2
1

cf ‖w‖2 and cf ‖w‖2
m2

both less than 1
4
√
3
so the right-hand side of the above inequality

cannot be greater than one.
We also deduce Corollary 1 from Theorem 4.

Proof of Corollary 1 Let ε > 0 and x > 0. For x large enough, there always exists a prime
p in the interval [x4/7−2ε , x4/7−ε] by Bertrand’s postulate. Then, applying Theorem 4 with
α = 3/14 + 2ε and ε small enough, we see that the number of n ∈ [1, x] such that
a(n) > n−α is greater than rp � rx4/7−2ε for fixed r < 1/48.

�
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We now turn our attention to the second assertion of Theorem 1, that we will prove
using the same technics as previously.

4.3 Case where f is a complete eigenform

Fromnow on, assume that f is a complete eigenform and that x and p still satisfy x1/2+ε �
p � x4/7−ε for some ε > 0. We start by proving the following proposition.

Proposition 10 For m > 0 and δ > 0, put

A(x, p,m, δ) =

⎧
⎪⎨

⎪⎩
a [p]

∑
n=a [p]

a(n)2w(n/x)2 > mx/p
∑

n=a [p]
a(n)4w(n/x)4 � x1+δ√p

⎫
⎪⎬

⎪⎭
. (4.3)

Then, for m sufficiently small and x large enough, one has
∣∣A(x, p,m, δ)

∣∣�f,δ x−δ/2p3/4 .

Proof First note that, by Cauchy–Schwarz inequality,

∑

n=a [p]
a(n)2w(n/x)2 �

√
x/p

⎛

⎝
∑

n=a [p]
a(n)4w(n/x)4

⎞

⎠
1/2

sincew is compactly supported in (0, 1). It is also [0, 1]-valued, so using Proposition 1, one
gets

∑

n=a [p]
a(n)2w(n/x)2 �f,δ1

x1+δ1

√p

for any δ1 > 0 and any a [p]. However, if a ∈ A(x, p,m, δ) then we even have
∑

n=a [p]
a(n)2w(n/x)2 �f,δ

x1+δ/2

p3/4
.

By Markov’s inequality and Proposition 1, we also have that
∣∣∣∣∣∣

⎧
⎨

⎩a [p]
∑

n=a [p]
a(n)4w(n/x)4 >

x1+δ

√p

⎫
⎬

⎭

∣∣∣∣∣∣
�

√p
xδ2

for any 0 < δ2 < δ.
Therefore, using Lemma 2,

x �f
∑

a/∈A(x,p,m,δ)

∑

n=a [p]
a(n)2w(n/x)2 +

∑

a∈A(x,p,m,δ)

∑

n=a [p]
a(n)2w(n/x)2

and splitting the first sum according to
∑

n=a [p]
a(n)2w(n/x)2 � mx/p or not, we get

x �f,δ,δ1 mx + x1+δ1

√p

√p
xδ2

+ x1+δ/2

p3/4
∣∣A(x, p,m, δ)

∣∣

and the result follows by choosing δ1 < δ2 andm small enough.
�


We will prove that for most a ∈ A(x, p,m, δ), the coefficients a(n)’s with n = a [p] have
a certain number of positive and negative signs. To do so, we need to bound the number

of a [p] such that

∣∣∣∣∣
∑

n=a [p]
a(n)w(n/x)

∣∣∣∣∣ or
∑

n=a [p]
a(n)2w(n/x)2 is too big.
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Proposition 11 For δ > 0, put

B(x, p, δ) =
⎧
⎨

⎩a [p]

∣∣∣∣∣∣

∑

n=a [p]
a(n)w(n/x)

∣∣∣∣∣∣
>

x1−δ

p5/4
or

∑

n=a [p]
a(n)2w(n/x)2 >

x1+δ

p3/4

⎫
⎬

⎭ .

(4.4)

Then, for m > 0 and δ > 0 small enough,
∣∣B(x, p, δ)

∣∣ = o
(∣∣A(x, p,m, δ)

∣∣)

as long as x1/2+ε � p � x4/7−ε for some ε > 0

Proof By Chebychev’s inequality and Theorem 2, the number of a [p] such that
∣∣∣∣∣∣

∑

n=a [p]
a(n)w(n/x)

∣∣∣∣∣∣
>

x1−δ

p5/4

is less than
(cf ‖w‖22 + o(1))x

x2−2δp−5/2 �f
p5/2

x1−2δ = x−δ/2p3/4
p7/4

x1−5δ/2

and p7/4
x1−5δ/2 = o(1) for δ small enough since p � x4/7−ε .

Similarly, by Markov’s inequality and Lemma 2, the number of a [p] such that
∑

n=a [p]
a(n)2w(n/x)2 >

x1+δ

p3/4

is less than
(cf ‖w‖22 + o(1))x

x1+δp−3/4 �f
p3/4

xδ

which is o(x−δ/2p3/4).
�


As previously, when a ∈ A(x, p,m, δ), we use Hölder’s inequality to give a lower bound
on

∑
n=a [p]

|a(n)|w(n/x).

Lemma 7 Let a ∈ A(x, p,m, δ) defined in (4.3). Then
∑

n=a [p]
|a(n)|w(n/x) � m3/2 x1−δ/2

p5/4
.

Proof Hölder’s inequality yields

mx/p <
∑

n=a [p]
a(n)2w(n/x)2 �

⎛

⎝
∑

n=a [p]
|a(n)|w(n/x)

⎞

⎠
2/3⎛

⎝
∑

n=a [p]
a(n)4w(n/x)4

⎞

⎠
1/3

.

Hence
∑

n=a [p]
|a(n)|w(n/x) � (mx/p)3/2

(
x1+δ

√p

)−1/2
� m3/2 x1−δ/2

p5/4
.

�
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We can now prove the main Theorem of this subsection which implies the second
assertion of Theorem 1.

Theorem 5 Let f , x and p be as above. Assume that f is a complete eigenform. For any
a [p], define T ±

a,p(x,α;w) as in (1.4). Let α ∈ (1/8, 1/7]. Then, for any δ > 0 small enough
and any x large enough

∣∣∣∣

{
a [p] min

(
T +
a,p(x,α;w),T −

a,p(x,α;w)
)� x1−2δ

p7/4

}∣∣∣∣�f,δ
p3/4

xδ/2

as long as x1/2+ε � p � x4α−ε for some ε > 0.

Proof Let a ∈ A(x, p,m, δ)\B(x, p, δ). By Propositions 10 and 11, such a [p] exists for m
and δ small enough and there are �f,δ x−δ/2p3/4 of them.
Lemma 7 implies that
∣∣∣∣∣∣

∑

n=a [p]
a(n)w(n/x)

∣∣∣∣∣∣
� x1−δ

p5/4
= o

⎛

⎝
∑

n=a [p]
|a(n)|w(n/x)

⎞

⎠

so, by Lemma 5 and for x large enough,

±
∑±

n=a [p]
a(n)w(n/x) � x1−δ/2

p5/4

where
∑±

n=a [p]
means that we restrict the sum over n = a [p] such that a(n) > 0 or a(n) < 0

respectively.
Also, by Lemma 4,

∑

n=a [p]
n−αw(n/x) � x1−α

p
= x1−δ/2

p5/4
p1/4

xα−δ/2 = o
(
x1−δ/2

p5/4

)

for δ small enough because p � x4α−ε . Hence, recalling that a /∈ B(x, p, δ), we can apply
Lemma 6 and obtain

T ±
a,p(x,α;w) � x2−δp−5/2

x1+δp−3/4 = x1−2δ

p7/4
.

�
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