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Abstract

Under the assumption of the Hodge, Tate and Fontaine–Mazur conjectures we give a
criterion for a compatible system of �-adic representations of the absolute Galois group
of a number field to be isomorphic to the second cohomology of a K3 surface. This is
achieved by producing a motiveM realizing the compatible system, using a local to
global argument for quadratic forms to produce a K3 lattice in the Betti realization ofM
and then applying surjectivity of the period map for K3 surfaces to obtain a complex K3
surface. Finally we use a very general descent argument to show that the complex K3
surface admits a model over a number field.

1 Introduction
This paper grew out of an attempt to answer a question on the section conjecture for
moduli spaces of K3 surfaces, inspired by recent work of Patrikis et al. [13]. In this paper,
the authors study the section conjecture for the moduli space of principally polarized
abelian varieties. The section conjecture for a (geometrically connected) variety X over a
number fieldK relates the set of rational pointsX(K ) with the sections of the fundamental
sequence

1 → π1(X) → π1(X) → �K → 1
(we omit base points for the étale fundamental group and, for any field K , write �K =
Gal(K/K ) for the absolute Galois group with a fixed algebraic closure K , and X the
basechange of X to K ). Given a rational point x : Spec(K ) → X , functoriality of π1 gives
a section �K → π1(X) and this defines a map σX : X(K ) → H (K, X) where H (K, X) is the
set of sections up to conjugation by π1(X). The section conjecture for X states that the
map σX is a bijection. Of course, for generalX this map is far from a bijection, so we would
want to find a class of varieties suitably determined by their fundamental groups. These
are the so called anabelian varieties introduced by Grothendieck in his letter to Faltings
[15], pp. 49–58. Grothendieck suggested that hyperbolic curves, moduli spaces of curves
and (less emphatically) moduli spaces of abelian varieties should all be anabelian.
It is known that moduli spaces Ag of abelian varieties should not be anabelian by

results of Ihara and Nakamura [9]. However, Theorem 1.1 of [13] shows that under the
assumption of well known motivic conjectures, a large subset of sections S0(K,Ag ) ⊂
H (K,Ag ) is contained in the image of σAg , where the sections S0(K,Ag ) are those coming
from points locally. The authors are able to prove this by reducing to a question about
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Galois representations. More specifically there is a short exact sequence

1 π1(Ag ) π1(Ag ) �K 1

1 Sp2g (Ẑ) GSp2g (Ẑ) Ẑ
× 1

∼= (1)

Given a section s : �K → π1(Ag ) composition with the middle arrow gives a collection
of �-adic representations {ρ� : �K → GSp2g (Z�)}�. The fact that the left arrow is an
isomorphism shows that the sections H (K,Ag ) are determined by their associated �-adic
representations. Then the authors use well known conjectures to find conditions on a
collection of �-adic representations {ρ�} that ensure they are isomorphic to the �-adic
Tate module of an abelian variety [13, Thm 3.3]. The proof of Theorem 3.3 proceeds by
using these conjectures tofindamotiveunderlying the collectionof �-adic representations.
Taking Betti realization of this motive gives a Hodge structure that has the Hodge weights
of an abelian variety. Using Riemann’s theorem one can show that this Hodge structure
is isomorphic to the Hodge structure on the first homology of an abelian variety.
One might ask whether [13, Thm 3.3] can be generalized to other classes of varieties. In

order for the above method to work, such a class of varieties would require an analogue
of Riemann’s theorem, which gives a criterion for an abstract Hodge structure to appear
in the (co)homology of a variety. After abelian varieties, the most natural class of varieties
with this property is K3 surfaces, where surjectivity of the period map is known. Our
main theorem is precisely the analogue for K3 surfaces of [13, Thm 3.3]. We find a set
of conditions on a weakly compatible system of �-adic representations (for all �) to relate
them to the weakly compatible system H2(XK ,Q�) for varying primes �. We now make
this precise.
Let K be a number field and S a finite set of rational primes. A collection of Galois

representations {ρ� : �K → GLn(Q�)}�/∈S is said to be weakly compatible if there exists a
finite set � of finite places of K satisfying

I. For each � /∈ S the representation ρ� is unramified outside �� ∪ � where �� is the
set of places of K lying over �.

II. For each � /∈ S and each place v of K not in �� ∪ �, the characteristic polynomial
of ρ�(Frv) has rational coefficients and is independent of � (here Frv is a geometric
Frobenius element at v).

Now let � = U⊕3 ⊕ E8(−1)⊕2 be the K3 lattice. Fix a basis e, f of the first copy of the
hyperbolic plane U such that (e)2 = (f )2 = 0 and (e, f ) = 1. We prove the following

Theorem 1.1 Let K be a number field. Assume the Hodge, Tate and Fontaine–Mazur
conjectures. Let {ρ� : �K → O(� ⊗ Q�)} be a weakly compatible system (with S empty) of
semisimple representations such that

(1) There exist an integer d > 0 such that for all but finitely many primes �, (e+df )⊗1 ∈
(� ⊗ Q�(1))�K

(2) For some �0, ρ�0 is de Rham at all v|�0.
(3) For some �1, End�K (ρ�1 ) = Q�1 ⊕ Q�1 .
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(4) For some �2 and some v|�2, ρ�2 |�Kv is de Rham with Hodge-Tate weights 0, 1, 2 of
multiplicities 1, 20, 1.

Then there is a K3 surface X over a finite extension L of K such that ρ�|�L
∼= H2(XL,Q�)

for all �.

The primes �0, �1, �2 could all be the same. Conditions (1), (2) and (4) are of course nec-
essary conditions for the collection {ρ�} to be isomorphic to H2(XK ,Q�) for X a K3
surface with a polarization of degree 2d. Condition (3) is an irreducibility condition
(similar to the hypothesis of absolute irreducibility in [13, Thm 3.3]) and is satisfied
by the cohomology of the generic K3 surface, i.e. those of geometric Picard rank 1 with
End�K (H2(XK ,Q�)) ∼= Q� ⊕ Q�. Suppose X is a K3 surface over K ⊂ C. Recall that for
any complex K3 surface there is a decomposition of rational Q-Hodge structures

H2(XC,Q) = (NS(XC) ⊗ Q) ⊕ (T (XC) ⊗ Q)

of the rationalQ-latticeNS(XC)⊗Q and its orthogonal complementT (XC)⊗Q. A theorem
of Zarhin [19, Thm 1.4.1] shows that T (XC)⊗Q is an irreducibleQ-Hodge structure. The
Mumford–Tate conjecture, which is known for K3 surfaces by Tankeev [16], then shows
that condition (3) is satisfied by H2(XK ,Q�) when T (XC)⊗Q is an absolutely irreducible
Q-Hodge structure, and the �K -action on

NS(XK ) ⊗ Q�1 = NS(XC) ⊗ Q�1

is absolutely irreducible.
Our final remark regards the last section of the paper. The main result of this section,

Lemma 6.3, shows a rather general criterion for the rigid descent of a variety X over an
algebraically closed field	 of characteristic zero to an algebraically closed subfield k ⊂ 	.

1.1 Questions

In the recent preprint [2], Baldi independently proves an analogue of Theorem 1.1 above
for K3 surfaces whose Picard rank ρ satisfies 12 ≤ ρ < 20. This is Theorem 1.2 of [2]
where he shows for representations

{ρ� : �K → Gl22−ρ(Q�)}�
satisfying analogues of conditions (2), (3) and (4) above, there is a finite extension L of K
such that ρ�|�L is isomorphic to T (XL)Q�

. The main question given our result and that of
Baldi is whether we can take L = K for the field of definition of the K3 surface X , or at
least if the degree of the finite extension can be bounded.
In both Baldi’s work and this paper, the arguments of [13] are immediately extended to

get a Q-Hodge structure V of K3 type from the collection of �-adic representations. The
next key step, which is unique to the K3 case, is to produce a lattice inside this Q-Hodge
structure and to show that this lattice is isomorphic to a (sub-)polarizedZ-Hodge structure
of H2(X,Z) for some complex K3 surface X . In Baldi’s paper, this is done by picking any
lattice T ⊂ V and then using an embedding theorem of Nikulin to get an embedding of
T into the K3 lattice � = U⊕3 ⊕ E8(−1)⊕2. Then one shows that the Hodge structure
induced byT on� is of K3 type and hence, by surjectivity of the periodmap, isomorphic to
H2(X,Z) for a K3 surfaceX overC. Baldi’s requirement that 12 ≤ ρ < 20 is a consequence
of the fact that this is the range for which the embedding theorem holds. For our proof,
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we show that V ∼= � ⊗Z Q as quadratic spaces and thus produce a Hodge structure on
the K3 lattice � from which we can apply surjectivity of the period map. In light of our
theorem and Baldi’s theorem it is natural to ask whether such a theorem holds for ‘Picard
rank’ 2 ≤ ρ ≤ 11, i.e. compatible system of representations {ρ� : �K → O(�⊗Q�)}which
decompose as ρ�

∼= V� ⊕Q�(−1)⊕ρ with V� irreducible (and satisfying conditions (2) and
(4) of Theorem 1.1). The author does not believe that the proofs of this paper or those of
Baldi can be adapted to prove an analogous theorem for 2 ≤ ρ ≤ 11.
Our originalmotivationwas to applyTheorem1.1 to answer a question about the section

conjecture for moduli spaces of K3 surfaces, as was done in [13, Thm 1.1] for abelian
varieties. The moduli space we are interested in is the space F2d , using the notation
of [14], classifying primitively polarized K3 surfaces of degree 2d. Using the following
diagram

1 π1(F2d) π1(F2d) �K 1

O(�2d ⊗ Ẑ)

α (2)

we can associate to each section s ∈ H (F2d, K ) an O(�2d ⊗ Ẑ) representation. If we
knew that this map was a bijection then an analogue of [13, Thm 1.1] could be proven.
However, a computation of the group π1(F2d) seems difficult. One approach might be
to compute the topological fundamental group of the complex analytic space Fan

2d and
then compare the profinite completion to a suitable orthogonal group. The domain Fan

2d
has an explicit description as the quotient by an orthogonal group of the complement
of an infinite union of hyperplane sections in a period domain Dd , see [7, Remark 6.3.7].
Given this explicit description, one may be able to compute the topological fundamental
group. This is expected to be very large, containing an infinitely generated free group
generated by loops around the hyperplane sections. These are the sorts of groups that
are not residually finite, and the kernel to the profinite completion can be very large, see
[17]. So while π

top
1 (Fan

2d ) is very far from any orthogonal group, it may happen that the
‘non-orthogonal’ part gets killed in the profinite completion.
Finally, the last question that naturally follows from this is paper is whether there are

analoguesofTheorem1.1 forhyperkahler varieties.There are knownresults on surjectivity
of the period map and global Torelli theorems are known for hyperkahler manifolds, see
[6], so it may be reasonable that methods in this paper could work for such varieties.

1.2 Terminology

Throughout the paper,K will be a number field with a fixed algebraic closureK . We write
�K = Gal(K/K ) for the absolute Galois group.
If K is a field, and F a field of characteristic 0, we denote by MK,F the category of

pure numerical motives over K with coefficients in F . If F = Q we simply write MK .
The functorsH�, HB, HdR are the �-adic, Betti and algebraic de Rham realization functors.
Implicitly whenever we write any of these functors, we are assuming the conjecture that
numerical equivalence is equal to homological equivalence for that cohomology theory,
and in this way the realization functors may be defined on numerical motives.
See Sect. 2 for notation about quadratic forms and lattices. IfV andW are either bothZ-

Hodge structures or Q-Hodge structures equipped with pairings (e.g. polarizations) then



Klevdal Res. Number Theory (2019) 5:16 Page 5 of 12 16

a map V → W is called a Hodge isometry if it is an isomorphism of Hodge structures
that also respects the pairings. All K3 surfaces are smooth and projective. We writeQ-HS
for the category of Q-Hodge structures.

2 Quadratic forms and lattices
2.1 Notation

If F is a field of characteristic zero, a quadratic space over F consists of a vector space V
with a non degenerate symmetric bilinear pairingV ⊗V → F (or equivalently a quadratic
form onV ). Of interest to us are quadratic spaces overQ,Qp andR. When we talk about a
latticeT , wemean a finitely generated free abelian groupT with a pairing (·, ·) : T×T → Z

that is non degenerate.

2.2 Lattices associated to K3 surfaces

We write U to denote the hyperbolic plane and E8 the lattice associated to the Dynkin
diagram E8.

Example 2.1 Let � be the lattice U⊕3 ⊕ E8(−1)⊕2. The disciminant d(�) = −1 so � is
even, unimodular and has signature (3, 19). This is called the K3 lattice, because if X is a
K3 surface over C, then the singular cohomology H2(X,Z) with the cup product pairing
is isomorphic to �. See [7].

We will need the following lemma for the proof of the main theorem.

Lemma 2.2 Let � be the K3 lattice. Then there exists aQ-quadratic space V of signature
(r, s) such that V ⊗Q Qp ∼= � ⊗Z Qp for all finite primes p if and only if (r, s) is one of the
following pairs:

(19, 3), (15, 7), (11, 11), (7, 15), (3, 19)

Proof By [4, Thm 1.3, p. 77] and the fact that we know that the local data, we compute
∏

p �=∞
cp(V ) =

∏

p �=∞
cp(�) = c∞(�) = −1

(here we use Theorem 1.3, p. 77; Theorem 1.2, p. 56, loc. cit.). Again those same two
theorems and the fact that we know the local data imply that (−1)s(s−1)/2 = −1, so
s ≡ 2, 3 mod 4. By the Grunwald-Wang theorem, we can assume that d(V ) = d(�).
Therefore by [4, Thm 1.2, p. 56] we have (−1)s = −1. We conclude from Theorem 1.3,
p. 77, loc. cit. that the required V will exist if and only if s ≡ 3 mod 4. Therefore the
possible signatures are (19, 3), (15, 7), (11, 11), (7, 15), (3, 19). ��

3 K3 surfaces
3.1 Facts about K3 surfaces

For convenience of the reader, we recall facts about K3 surfaces that we will use. All proofs
may be found in the book [7] whose terminology we use.
Let V be a finite free Z or Q-module. A Hodge structure of K3 type on V is a weight 2

Hodge structure such that V 2,0, V 0,2 are 1-dimensional and V i,j = 0 for |i− j| > 2. Let �

be the K3 lattice (see Example 2.1). The period domain D is defined as

D := {x ∈ P(�C) : (x, x) > 0, (x)2 = 0}
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Given an element x ∈ D we get a unique polarizable Hodge structure of K3 type on �

satisfying �2,0 = x and x ⊥ �1,1. The key fact that we use about K3 surfaces is the
surjectivity of the period map, which we recall here.

Theorem 3.1 (Surjectivity of the period map [7, Ch. 6, Rmk 3.3]) For any x ∈ D there
exists a K3 surface X and a Hodge isometry ϕ : H2(X,Z) ∼−→ � such that ϕ−1(x) spans
H2,0(X).

Following the definition of [8], two complex K3 surfaces X and X ′ are isogenous if there
exists aQ-Hodge isometryH2(X,Q) ∼−→ H2(X ′,Q). We record the following lemma to be
used later.

Lemma 3.2 Let X be a complex K3 surface, and let S(X) be the set of isomorphism classes
of complex K3 surfaces Y that are isogenous to X. Then S(X) is countable.

Proof The lemmawill follow from a theoremofHuybrechts alongwith the countability of
the Brauer group of a surface and finiteness results on Fourier-Mukai partners of twisted
K3 surfaces. Recall that a twistedK3 surface (S,α) consists of a K3 surface S and an element
α of the Brauer group of S. The set of twisted Fourier-Mukai partners of (S,α) is

FM(S,α) = {(S′,α′) | there is an equivalence Db(S,α) ∼= Db(S′,α′)}/ ∼=
where Db(S,α) is the derived category of α-twisted coherent sheaves on S. All that is
important for us is that for any K3 surface S and any α ∈ Br(X) the set FM(S,α) is
countable, see [11, Prop 4.3]
Let Y ∈ S(X). Then by [8], we can find Brauer classes α ∈ Br(X) and β ∈ Br(Y ),

complex K3 surfaces S1, . . . , Sn and Brauer classes αi,βi ∈ Br(Si) for i = 1, . . . , n such that
there is a chain of equivalences

(X,α) ∼FM (S1,α1), (S1,β1) ∼FM (S2,α2), . . . , (Sn−1,βn−1) ∼FM

(Sn,αn), (Sn,βn) ∼FM (Y,β)

Where we use ∼FM to denote the relation of being a twisted Fourier-Mukai partner.
Further, wemay assume n ≤ 22. Recall that Br(Si) = H2(Si,O×

Si )tors. From the exponential
sequence, we get an exact sequence

0 → H1(X,O×
Si ) → H2(Si,Z) → H2(Si,OSi ) → H2(Si,O×

Si ) → 0

and hence H2(Si,OSi ) is isomorphic as groups to C/Z⊕22−ρ(Si). It follows that Br(Si) is
isomorphic to (Q/Z)⊕22−ρ(Si) which is countable. Hence, givenX there are only countably
many options for α and by countability of FM(X,α) only countably many options for
(S1,α1). Likewise, there are only countably many options for β1 and hence only countably
many options for (S2,α2). Proceeding in this fashion we conclude there are only countably
many options for Y . ��

4 Motivic setup
We recall basics facts about motives and refer the reader to [1] for details. For a field
K , write PK for the category of smooth projective varieties over K . If F is a field of
characteristic zero we write MK,F for the category of pure homological motives over K
with coefficients in F . There is a functor h : PK → MK,F that functions as a universal
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cohomology theory, meaning that if H∗ : PK → F-Alg is a Weil cohomology theory,
then H∗ extends uniquely through h to a functorMK,F → F-Alg. Under the hom = num
conjecture (which says that numerical equivalence is the same as homological equivalence)
then the categoryMK,F is a semisimple rigid abelian tensor category by [10] (for all of the
categories of motives appearing in this paper, the hom = num conjecture is a consequence
of the Hodge or Tate conjecture, which we will assume). A choice of a Weil cohomology
theory H∗ that extends to MK,F is a fiber functor, making MK,F a neutral Tannakian
category. Thus by general theory, we have an equivalence betweenMK,F and RepGK,F (F ),
the category of F representations of the pro-reductive algebraic group GK,F = Aut⊗H∗.
We recall the most basic examples of fiber functors, and the extra structures they carry.

Example 4.1 Let K be any field, K sep be a separable closure and � a prime. For X smooth
projective over K , the �-adic cohomology H�(X) = H∗

et(XK sep ,Q�) is a Weil cohomology
theory on PK . Further, H�(X) has a natural �K = Gal(K sep/K )-action, and we write
H� : MK,Q�

→ RepQ�
(�K ) for the enriched �-adic realization functor. TheTate conjecture

asserts that H� is fully faithful when K is a number field.

Example 4.2 Let K = C. For a smooth projective variety X over C we can form the cor-
responding complex-analytic manifold Xan. Singular cohomologyHB(X) = H∗

sing(Xan,Q)
is a Weil cohomology theory on PC. Further, HB(X) has a Q-Hodge structure, and we
writeHB : MC → Q-HS for the enriched Betti realization functor. The Hodge conjecture
asserts that HB is fully faithful.

Example 4.3 Let K be a field of characteristic 0. For a smooth projective variety X over K
we have the algebraic de Rham complex	•

X/K . Algebraic de Rham cohomologyHdR(X) =
H

∗(X,	•
X/K ) is aWeil cohomology theory onPK (with coefficients inK ). Further,HdR(X)

has a filtration, and we write HdR : MK,K → FilK (with FilK the category of filtered
K -vector spaces) for the corresponding enriched de Rham realization functor.

For a given embedding ι : Q → Q� let Hι be the composition MK,Q → MK,Q�
→

Rep
Q�
(�K ). The following lemma is taken from [13], with a slightweakening of the hypoth-

esis due to [12], in which it is shown that the Tate conjecture implies the Grothendieck-
Serre semisimplicity conjecture.

Lemma 4.4 (Lemma 3.3 [13]) Assume the Tate and Fontaine–Mazur conjectures, and let
K be a number field. If r� : �K → GLN (Q�) is an irreducible geometric Galois representa-
tion. Then there exists an object M ofMK,Q such that r� ⊗Q�

Q�
∼= Hι(M).

5 Proof of main theorem
The first part of the proof follows closely that of [13, Thm 3.1], the main difference being
that we have to worry about carrying the bilinear form through the motivic yoga.

Proof of Theorem 1.1 Let {ρ� : �K → O(�⊗Q�)} be as in the theorem. Fix an embedding
ι0 : Q ↪→ Q�0 . Then from Lemma 4.4 (which extends to semisimple geometric repre-
sentations) we have a motive M in MK,Q such that Hι0 (M) ∼= ρ�0 ⊗ Q�0 . In fact, M has
coefficients in some finite extension E of Q inside Q. Let ρ : GK,E → GL22,E be the asso-
ciated motivic Galois representation. Now ι0 induces some place λ0 of E. If λ is a finite
place of E (say λ | �) let ρλ be the λ-adic realization of ρ. Then as in [13], for almost all
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places v of K there is an equality of the rational numbers

tr(ρλ(Frv)) = tr(ρλ0 (Frv)) = tr(ρ�0 (Frv)) = tr(ρ�(Frv)).

By Brauer-Nesbitt, a continuous semisimple Galois representation ρ of �K is determined
by tr(ρ(σ )) for σ in a dense subset of �K . By Chebotarev we may take the collection Frv
for v as above and conclude that

ρλ
∼= ρ� ⊗Q�

Eλ

for all λ. Conditions (1) and (3) of our assumption say for a place λ1 | �1 that ρ�1 ⊗ Eλ1 (1)
splits as a sum of the trivial representation and an absolutely irreducible representation.
By the Tate conjecture, we conclude that ρ = 1(−1) ⊕ ρ′ (where 1(−1) is the Tate twist
of 1) with ρ′ absolutely irreducible. It follows that each ρ� is isomorphic to Q�(−1) ⊕ V�

with V� an absolutely irreducible representation of �K .
Lemma3.4 of [13] shows thatρ′ descends toQ, and clearly 1(−1) does, henceρ descends

to Q. We have �K -equivariant pairings ρ� ⊗ ρ� → Q�, and thus there are pairings ρλ ⊗E
ρλ → Eλ. By the Tate conjecture, there is an isomorphism

(
Sym2ρ∨

E
)GK,E ⊗E Eλ

∼= (
Sym2ρ∨

λ

)�K

Hence we get a non degenerate GK,E-equivariant pairing ρE ⊗E ρE → E. However each
local pairing descends to Q�. By Galois descent the map

HomGK (ρ ⊗Q ρ,Q) → HomGK,E (ρE ⊗ ρE, E)�Q

is an isomorphism, and therefore the pairing on ρE descends to a pairing ρ ⊗Q ρ → Q.
Now that we have a motivic Galois representation ρ : GK → GL22,Q whose �-adic

realizations are ρ�, we can do some comparisons. Let M ∈ MK be the corresponding
rank 22 motive. Objects ofMK enjoy the de Rham comparison theorem of p-adic Hodge
theory. In particular, for v and �2 as in condition (4) there are isomorphisms:

HdR(M) ⊗K BdR,Kv
∼−→ H�2 (M) ⊗Q�2

BdR,Kv

Hence

HdR(M) ⊗K Kv ∼= DdR,Kv (H�2 (M)) =
(
H�2 (M) ⊗Q�2

BdR,Kv

)�Kv

By assumption (4) and the comparison isomorphism, the Hodge filtration on HdR(M)
satisfies

dimK griHdR(M) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = 0, 2,

20 if i = 1,

0 otherwise.

The Betti de-Rham comparison theorem states that

HdR(M|C) ∼= HB(M) ⊗Q C,

so HB(M) is a Hodge structure of K3 type. It is also a Q-quadratic space, coming from
the motivic pairing. We will show that there is an isomorphism of Q-quadratic spaces
HB(M) ∼= � ⊗ Q with � the K3 lattice U⊕3 ⊕ E8(−1)⊕2. First, note that we have com-
parison isomorphisms HB(M) ⊗ Q�

∼= H�(M) that respect the pairings on both spaces.
By assumption H�(M) ∼= � ⊗ Q� as quadratic spaces, so to show that HB(M) ∼= � ⊗ Q
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it is enough to show that HB(M) has the same signature as �, which is (3, 19). Now
M = 1(−1) ⊕ M′ withM′ absolutely irreducible. Thus we have an orthogonal decompo-
sition of Hodge structures HB(M) = Q(−1) ⊕ HB(M′) with HB(M′) irreducible.
Wecompute thepossible signatures onHB(M′). First, there is a smoothprojectiveX such

thatM′ ↪→ hk (X)(j) for some integers k, j where hk (X)(j) is themotive whose realization is
Hk (X)(j). The pairing onM′ is up to a scalar multiple the same as the intersection pairing
coming from a polarization L on X because dimQ(Sym2ρ′∨)GK = 1. SinceM′ has weight
2, we know that k is even and k − 2j = 2. There is a decomposition of motives [1, Prop
5.2.5.1]

hk (X) =
⊕

r≤k
Lrhk−2r

prim (X)(−r)

soM′ ⊂ Lrhk−2r
prim (X)(j − r) for some r and thusH1,1

B (M′) ⊂ LrHj+1−r,j+1−r
prim (X). The inter-

section pairing on this subspace is definite by the Hodge index Theorem [18, Thm 6.32].
By Lemma 2.2 the only possible signatures of HB(M) are (3, 19), (7, 15), (11, 11), (15, 7)
and (19, 3) but since the form is definite on the 19-dimensional subspace H1,1(M′) ⊂
HB(M) ⊗ C, the signature must be (3, 19) or (19, 3). The quadratic form restricted to
HB(1(−1)) is determined by an element α of Q×/(Q×)2. Assumption (1) assures that the
image of HB(1(−1)) under the comparison isomorphism

HB(1(−1)) ⊗ Q�
∼= H�(1(−1))

maps to the line spanned by the vector (e + df ) ⊗ 1 in � ⊗ Q� (using the notation in
Theorem1.1). The fact that (e+df )2 = 2d shows that the image ofα inQ×

� /(Q×
� )

2 is 2d for
almost all �. Thus by the Grunwald–Wang theorem, we have that α = 2d. Consequently,
there is an isomorphism of quadratic spaces HB(1(−1)) ∼= Q(2d) where the bilinear form
on Q(2d) is given by (a, b) = 2dab. In particular, the pairing on HB(1(−1)) is positive
definite. We conclude that the signature on HB(M) is (3, 19) which completes the proof
thatHB(M) ∼= �⊗Q as quadratic spaces. Let i : � ↪→ HB(M) be an embedding and write
�(M) for the image of � under this embedding.
Now �(M) has an induced Z-Hodge structure from that on HB(M). By surjectivity of

the period map (Theorem 3.1) we know that there is a K3 surface X over C with a Hodge
isometry H2(X,Z) ∼= � ⊂ HB(M). The Hodge conjecture implies that M|C ∼= h2(X)
and further that this isomorphism respects the pairings on each motive. For each σ ∈
Aut(C/Q) we have

h2(X)σ ∼= M|σ
C

= M|C ∼= h2(X),

whereM|C is the image ofM under base changeMK → MC and h2(X)σ ,M|σ
C
are the σ -

conjugates ofh2(X) andM|C. Since these isomorphisms respect the pairing, upon applying
Betti realization we see that X is isogenous to each conjugate Xσ , hence by Corollary 6.4,
X admits a model over Q. We denote this model by X

Q
and write XC for the complex K3

surface above. The map

HomM
Q
(h2(X

Q
),M|

Q
) → HomMC

(h2(XC),M|C)
is an isomorphism, and hence there is an isomorphism α : h2(X

Q
) → M|

Q
in M

Q
. Let

L be a finite extension of K such that both X and α are defined over L. Hence we get an
isomorphism α : h2(X) → M|L inML which yields isomorphisms

H�(α) : H2(XL,Q�)
∼−→ H�(M) = ρ|�L ⊗ Q�

��
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6 Descent
In this section we prove that complex K3 surfaces that are isogenous to all of their Q-
conjugates admit models over number fields. This will follow from a general spreading
out argument.

Proposition 6.1 Let L be an extension of a characteristic zero field K and E and F subex-
tensions of L. Suppose that

(1) K is algebraically closed in one of E or F .
(2) E and F are algebraically disjoint over K .

Then E and F are linearly disjoint over K .

Proof Let {xi}i∈I be a transcendence basis for E over K and define E0 = K ({xi}i∈I ).
Likewise let {yj}j∈J be a transcendence basis for F over K and define F0 = K ({yj}j∈J ).
First, notice that E0 and F0 are linearly disjoint over K . This follows from the fact that

they are algebraically disjoint over K , and E0 and F0 are purely transcendental extensions
of K see by [3, Ch. V, §14, Prop. 14]. It also follows from the same proposition that E and
F0 are linearly disjoint over K , as are E0 and F . The theorem holds as long as EF0 and E0F
are linearly disjoint over E0F0, by [3, Ch. V, §14, Prop. 8]. In what follows, we will assume
that K is algebraically closed in E.
We will show that E ∩ F = K . We already know that E0 ∩ F0 = K as they are linearly

disjoint over K . Any element α ∈ E ∩ F is contained in a finite extension of E0 and F0
so we may assume for now that E is finite over E0 and F is finite over F0. We claim that
TrE/E0 (α) ∈ K . Indeed since α ∈ EF0 and α ∈ E0F we have the following equalities

[EF : E0F ]TrE0F/E0F0 (α) = TrE0F/E0F0 (TrEF/E0F (α))

= TrEF/E0F0 (α)

= TrEF0/E0F0 (TrEF/EF0 (α))

= [EF : EF0]TrEF0/E0F0 (α)

Notice that TrEF0/E0F0 (α) = TrE/E0 (α) as EF0 ∼= E ⊗E0 E0F0 (as the two fields are linearly
disjoint over E0 by the first remarks, and E is algebraic over E0) and trace is invariant
under extension of scalars. Therefore

TrE/E0 (α) = TrEF0/E0F0 (α) = [EF : E0F ]
[EF : EF0]

TrE0F/E0F0 (α) = [EF : E0F ]
[EF : EF0]

TrF/F0 (α) ∈ F0

and consequently TrE/E0 (α) ∈ E0∩F0 = K . However, by the same reasoning TrE/E0 (αn) ∈
K for n = 0, 1, 2, . . . , [E : E0]. From Newton’s identities, we see that the minimal polyno-
mial of α over E0 has coefficients in K , and therefore α is algebraic over K . But from the
assumption that K is algebraically closed in E we see that α ∈ K , as required.
Finally, to show that EF0 and E0F are linearly disjoint over E0F0 we may enlarge E and

F so that they are normal over E0 and F0 respectively. Then EF0 and E0F are normal over
E0F0 and hence it is enough to show that EF0 ∩ E0F = E0F0. Suppose x ∈ EF0 ∩ E0F and
write x = ef0 = e0f for e0 ∈ E0, e ∈ E, f0 ∈ F0 and f ∈ F . Then ee−1

0 = ff −1
0 ∈ E ∩ F = K .

Therefore e = (ee−1
0 )e0 ∈ KE0 = E0 and therefore x ∈ E0F0 as required. ��

Corollary 6.2 Let 	 be an extension of a field k with 	 and k algebraically closed of
characteristic zero. Suppose that 	 has uncountable transcendence degree over k. Then
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for any subextension E of 	 that is countably generated over k, there is an element σ ∈
Aut(	/k) such that E and σ (E) are linearly disjoint over k.

Proof Let x1, x2, . . . be a transcendence basis of E over k , and let y1, y2, . . . be any elements
of 	 such that the collection {x1, x2, . . . , y1, y2, . . .} are algebraically independent over k .
Let σ ∈ Aut(	/k) be any element satisfying σ (xi) = yi. By construction the fields E and
σ (E) are algebraically disjoint over k . As k is algebraically closed, the previous theorem
shows E and σ (E) are linearly disjoint over k . ��

Lemma 6.3 Let 	 be an extension of a field k with 	 and k algebraically closed of char-
acteristic zero, and 	 of uncountable transcendence degree over k. Let X be a variety over
	 whose conjugates Xσ for σ ∈ Aut(	/k) are contained in a countable set. Then X admits
a model over k.

Proof We can choose σ1, σ2 . . . ∈ Aut(	/k) so that every conjugate of X is isomorphic to
Xσi for some i. For each i, Xσi is defined over a finitely generated field extension Ki over k .
Let K ⊂ 	 be the composite in 	 of K1, K2 . . . so that Xσ1 , Xσ2 , . . . (hence any conjugate
of X) admit models over K . Note that K countably generated over k . Let τ ∈ Aut(	/k) be
any automorphism with τ (K ) and K linearly disjoint over k which exists by Corollary 6.2.
Suppose X0 is a model of X over Ki for some i. As Xτ is isomorphic (over 	) to Xσj for
some j, we know that Xτ

0 is a model of Xσj over τ (Ki). Thus Xσj admits a model over Kj
and τ (Ki). These are finitely generated and linearly disjoint over k , so Xσj admits a model
over k , (this can be seen from the proof of [5, Thm. 1]). Hence X admits a model over k . ��

Corollary 6.4 If X is a complex K3 surface and X is isogenous to Xσ for all σ ∈ Aut(C/Q)
then X admits a model over Q.

Proof By assumption Xσ ∈ S(X) where S(X) is the isogeny class of X . From Lemma 3.2
S(X) is countable and by the previous lemma it follows that X has a model over Q. ��

Acknowledgements
It is a pleasure to thank Stefan Patrikis, for suggested this problem to me, for his patient guidance and for the many
helpful discussions we had. I would also like to thank Domingo Toledo for some helpful discussions. The author was
partially supported by NSF DMS 1246989.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 July 2018 Accepted: 22 January 2019 Published online: 31 January 2019

References
1. André, Y.: Une introduction aux motifs: motifs purs, motifs mixtes, périodes. Société mathématique de France (2004)
2. Baldi, G.: Local to global principle for the moduli space of K3 surfaces. arXiv:1802.02042 (2018)
3. Bourbaki, N.: Algebra II: Chapters 4–7. Springer, New York (2013)
4. Cassels, J.W.S.: Rational Quadratic Forms. Courier Dover Publications, Mineola (2008)
5. Derome, G.: Descente algébriquement close. J. Algebra 266(2), 418–426 (2003)
6. Huybrechts, D.: A global Torelli theorem for hyperkähler manifolds (after Verbitsky). Séminaire Bourbaki 1040

(2010–2011)
7. Huybrechts, D.: Lectures on K3 Surfaces, vol. 158. Cambridge University Press, Cambridge (2016)
8. Huybrechts, D.: Motives of isogenous K3 surfaces. arXiv:1705.04063 (2017)
9. Ihara, Y., Nakamura, H.: Some illustrative examples for anabelian geometry in high dimensions. Lond. Math. Soc. Lect.

Note Ser. 1(242), 127–138 (1997)
10. Jannsen, U.: Motives, numerical equivalence, and semi-simplicity. Invent. Math. 107(1), 447–452 (1992)

http://arxiv.org/abs/1802.02042
http://arxiv.org/abs/1705.04063


16 Page 12 of 12 Klevdal Res. Number Theory (2019) 5:16

11. Ma, S.: Twisted Fourier–Mukai number of a 3 surface. Trans. Am. Math. Soc. 362(1), 537–552 (2010)
12. Moonen, B.: A remark on the Tate conjecture. arXiv:1709.04489 (2017)
13. Patrikis, S., Voloch, J., Zarhin, Y.: Anabelian geometry and descent obstructions on moduli spaces. Algebra Number

Theory 10(6), 1191–1219 (2016)
14. Rizov, J.: Moduli stacks of polarized K3 surfaces in mixed characteristic. Serdica Math. J. 32, 131–178 (2006)
15. Schneps, L., Lochak, P.: Geometric Galois Actions. In: London Mathematical Society Lecture Note Series, vol. 242

(1997)
16. Tankeev, S.G.: K3 surfaces over number fields and the Mumford–Tate conjecture. Math. USSR Izvestiya 37(1), 191

(1991)
17. Toledo, D.: Projective varieties with non-residually finite fundamental group. Publ. Math. l’Inst. Hautes Études Sci.

77(1), 103–119 (1993)
18. Voisin, C.: Hodge theory and complex algebraic geometry. In: I. volume 76 of Cambridge Studies in Advanced

Mathematics (2002)
19. Zarhin, Y.G.: Hodge groups of K3 surfaces. J. Reine Angew. Math. 341(193–220), 54 (1983)

http://arxiv.org/abs/1709.04489

	Recognizing Galois representations of K3 surfaces
	Abstract
	1 Introduction
	1.1 Questions
	1.2 Terminology

	2 Quadratic forms and lattices
	2.1 Notation
	2.2 Lattices associated to K3 surfaces

	3 K3 surfaces
	3.1 Facts about K3 surfaces

	4 Motivic setup
	5 Proof of main theorem
	6 Descent
	Acknowledgements
	References




