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Abstract

We prove function field theorems supporting the Cohen–Lenstra heuristics for real
quadratic fields, and natural strengthenings of these analogs from the affine class
group to the Picard group of the associated curve. Our function field theorems also
support a conjecture of Bhargava on how local conditions on the quadratic field do not
affect the distribution of class groups. Our results lead us to make further conjectures
refining the Cohen–Lenstra heuristics, including on the distribution of certain elements
in class groups. We prove instances of these conjectures in the number field case. Our
function field theorems use a homological stability result of Ellenberg, Venkatesh, and
Westerland.
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1 Introduction
For any odd prime p, Cohen and Lenstra [13] conjectured the distribution of the Sylow
p-subgroups of class groups of imaginary and real quadratic fields. In particular, if we
consider the measure on finite abelian p-groups such that

μCL(A) := 1
|Aut(A)|

∏

i≥1
(1 − p−i),

they conjectured that this measure gives the distribution of the Sylow p-subgroups of
class groups of imaginary quadratic fields. For real quadratic fields, we make a probability
measure μr

CL on finite abelian p-groups by producing a random group as follows: pick
a random group B with respect to μCL, then pick a (uniform) random element b ∈ B,
and then form B/〈b〉. Then μr

CL(A) is the probability that this process produces a group
isomorphic to A. They then conjectured that μr

CL gives the distribution of the Sylow
p-subgroups of class groups of real quadratic fields.
One of the most compelling reasons to believe this modification for the real quadratic

case is by considering the function field analog. For a finite field Fq and an extension
K/Fq(t), let OK be the integral closure of Fq[t] in K and CK be the smooth projective
curve over Fq associated to K . When K/Fq(t) is imaginary quadratic (i.e. ramified over
∞), then Cl(OK ) � Pic0(CK ). However, when K/Fq(t) is real quadratic (i.e. ∞ splits
into ∞1,∞2), then Cl(OK ) � Pic0(CK )/〈∞1 − ∞2〉. The most direct analogy of the
Cohen–Lenstra heuristics from the number field case to the function field case asks about
the distribution of Cl(OK ). However, in the real quadratic function field case, we can
ask the richer question of the distribution of the Sylow p-subgroups of Pic0(CK ) and of
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∞1 − ∞2 ∈ Pic0(CK ). In this paper, we prove a theorem about the actual distribution for
this richer question. Before stating these results, we will explain a natural heuristic that
will predict what we obtain.
A pointed abelian p-group is a pair (A, a) where A is an abelian p-group and a ∈ A, and

two pointed abelian p-groups (A, a) and (B, b) are isomorphic if there is an isomorphism
A → B taking a to b. We put a measure μ on the set of isomorphism classes of pointed
abelian p-groups as follows. Pick a random group B with respect to μCL, then pick a (uni-
form) random element b ∈ B. Then μ(A, a) is the probability that this process produces
a pointed group isomorphic to (A, a). Our heuristic is that μ gives the distribution of
(Pic0(CK ),∞1 − ∞2).
In the progress that has been made on proving exact Cohen–Lenstra predictions for

class groups (e.g. [3,14,15,17,18]), the Cohen–Lenstrameasures have often been accessed
through their moments—moments that determine a unique distribution. So, we now turn
to the moments of μ (see [11, Sect. 3.3] for an explanation of the terminology “moments”
in this situation). We let Sur((B, b), (A, a)) denote the surjective homomorphisms from B
to A that take b to a. LetA• be a set with one representative from each isomorphism class
of pointed finite abelian p-groups.

Lemma 1.1 (Pointed moments) For any finite abelian p-group A and a ∈ A, we have
∑

(B,b)∈A•

| Sur((B, b), (A, a))|μ(B, b) = 1
|A| .

We call this average
∑

(B,b)∈A• | Sur((B, b), (A, a))|μ(B, b) the (A, a)-moment of μ. In
fact, these moments determine the measure μ.

Lemma 1.2 (Pointed moments determine distribution) If ν is a measure on isomorphism
classes finite abelian, pointed p-groups such that for all (A, a) ∈ A• we have

∑

(B,b)∈A•

| Sur((B, b), (A, a))|ν(B, b) = 1
|A| ,

then ν = μ.

We prove the following, which gives evidence towards the Cohen–Lenstra heuristics
over function fields as well as the refined heuristic above.

Theorem 1.3 (Pointed Pic0(CK ) distribution) Let A be a finite odd order abelian group,
let a ∈ A, and let

δ+
q := lim sup

m→∞

∑
K/Fq(t)real quad,NmDisc(K )=q2m | Sur((Pic0(CK ),∞1 − ∞2), (A, a))|

∑
K/Fq(t) real quad,NmDisc(K )=q2m 1

and δ−
q the corresponding lim inf . Then as q → ∞ among odd prime powers such that

(q(q − 1), |A|) = 1, we have

δ+
q , δ−

q → 1
|A| .

The function field analog of our refined heuristic above predicts that for each odd prime
power q with (q(q − 1), |A|) = 1 that δ±

q = |A|−1. In the case a = 0 we have the usual
group-indexed moments of Cl(OK ) (Corollary 4.6) and adding over a we have the usual
group-indexed moments of Pic0(CK ) (Corollary 4.5).
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We prove Theorem 1.3 by first converting the problem of counting pointed surjections
to a problemof counting extensions ofFq(t), which are parametrized by aHurwitz scheme
first defined Romagny and Wewers [24], and further studied by Ellenberg et al. [16]. We
use the Grothendieck-Lefschetz trace formula to count Fq points on these schemes. This
overall approach to the Cohen–Lenstra heuristics over function fields goes back to to
unpublished work of J.-K. Yu, and was also built upon by Achter [1].
Ellenberg, Venkatesh, and Westerland made a tremendous breakthrough in this

approach when they proved a homological stability theorem for the complex versions of
these Hurwitz schemes [17]. Also, Ellenberg, Venkatesh, and Westerland’s work on Hur-
witz schemes relates their components to group theoretic invariants [16]. Both of these
advances will go into the proof of Theorem 1.3. Ellenberg, Venkatesh, and Westerland
[17] have proven the non-pointed analog of Theorem 1.3 (i.e., the analog of Corollary 4.5)
for imaginary quadratic extensions, which was the motivation for their work on Hurwitz
schemes.
In [13], Cohen and Lenstra actually give a conjecture for the entire odd part of the

class groups of quadratic fields. In this paper, for simplicity we restrict ourselves to Sylow
p-subgroups when explaining the heuristics, but give our theorems about class groups
without this restriction. Note that all results support the heuristic that pi-parts of class
group behavior are independent at finite sets of primes pi.
We prove a similar result (Theorem 5.1) for quadratic extensions of Fq(t) inert over ∞

for non-pointed moments. Combining these results with those of Ellenberg, Venkatesh,
and Westerland, we come to the following conclusion. Among all quadratic K/Fq(t) we
have proven evidence that the Sylow p-subgroups of Pic0(CK ) are distributed by μCL, and
further that this distribution is unaffected by restricting to quadratic extensions with a
certain behavior at ∞. As long as we use Pic0(CK ), as opposed to Cl(OK ), we see there is
no difference between the real and imaginary distributions. Indeed, this gives evidence for
the following conjecture, which was made by Bhargava for number fields at the 2011 AIM
Workshop on the Cohen–Lenstra heuristics and the subject of many days of discussion at
the workshop. (For a number fieldK , letOK denote its ring of integers. For a finite abelian
group A, let Aodd denote its odd part.)

Conjecture 1.4 (Local conditions on K , c.f. [5]) In any of the following families, ordered
by discriminant, with their class groups as given:

(1) K/Q imaginary quadratic, Cl(OK )odd
(2) K/Q real quadratic, Cl(OK )odd
(3) K/Fq(t) quadratic, Pic0(CK )odd

the distribution of the respective class groups is not changed upon restricting only those
K that have specific completions at a finite set of nonarchimedian places (of Q or Fq(t)).
In particular, in (3) the Sylow p-subgroups are distributed by μCL when p � q(q − 1).

By the action of PGL2(Fq) in Theorem 1.3, we could replace ∞ by any degree 1 point of
CK , and so we have evidence for Conjecture 1.4(3), for a condition at any degree 1 place.
The prediction of Conjecture 1.4 for the average size of 3-torsion in the class groups

of real or imaginary quadratic fields was proven by Bhargava and Varma [8, Corollary 4].
Evidence for a generalization of Conjecture 1.4 to cubic extensions is given by Bhargava
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and Varma in [7], in which they prove the average size of 2-torsion of class groups of cubic
fields is not affected by local conditions at non-archimedian places.
In Conjecture 1.4, we could lump together the two cases over Q, so that the distribution

wouldbe the averageofμCL andμr
CL andmake the same statement.TheworkofDavenport

and Heilbronn [15] shows that the distribution is indeed (provably) affected by restricting
to only thoseK/Qwith a specific completion at∞. It is worth noting that the distribution
of class groups of cubic fields is also provably affected by certain global conditions on the
field, such as monogenicity, by work of Bhargava and Shankar [6].
Further, Theorem 1.3 leads us to conjecture the following on the distribution of special

elements in class groups. For an abelian group A, let Ap denote the Sylow p-subgroup of
A.

Conjecture 1.5 (Distribution of elements in ClK ) Let p be an odd rational prime and Q
be Q or Fq(t) with p � q(q − 1). For K/Q let ClK be Cl(OK )p or Pic0(CK )p respectively,
and use + to denote the group law. For a finite place v of Q, if we consider quadratic
extensions K of Q that are split completely at v into v1, v2, ordered by discriminant, then
(informally) v1 − v2 is distributed uniformly in ClK . More precisely, in the number field
case if we restrict to K imaginary, or in the function field case, the isomorphism classes of
pairs (ClK , v1 − v2) are distributed according to μ.

Theorem 1.3 proves evidence towards Conjecture 1.5 in function field cases. We also
prove the prediction of Conjecture 1.5 on the average 3-torsion of the class groups in the
number field case, building on the work of Davenport and Heilbronn [15] (which proves
the original Cohen–Lenstra prediction for the average size of the 3-torsion of the class
group). For example, our result in the imaginary quadratic number field case is as follows
(see Theorem 6.1 for the complete result).

Theorem 1.6 (Distribution of elements in ClK , Z/3Z-moment ) Let v1, . . . , vn be finite
places of Q, and Fi be étale quadratic Qvi -algebras, with F1 = Q

⊕2
v1 . Let S

+ be the set of
imaginary quadratic extensions K of Q such that K ⊗Q Qvi � Fi. Let v1 split into w1 and
w2 in K and let a ∈ Z/3Z. We have

lim
X→∞

∑
K∈S+ ,|Disc(K )|<X | Sur((Cl(OK ), w1 − w2), (Z/3Z, a)|

∑
K∈S+ ,|Disc(K )|<X 1

= 1
3
.

Note that Theorem 1.6 also provides evidence for the philosophy of Conjecture 1.4
as the result is not changed by finitely many local conditions at finite places. Klagsbrun
[21] determines the Z/3Z-moments of quotients of the class groups of random quadratic
fields by primes above a fixed set of primes, which provides evidence for a generalization
of Conjecture 1.5 to multiple places in the base field. Evidence for a generalization of
Conjecture 1.5 to cubic extensions, as well as to multiple places in the base field, is given
by Klagsbrun in [20], in which he determines the Z/2Z-moments of quotients of the class
groups of cubic fields by primes above a fixed set of primes.
Our conjectures lead to some interesting predictions discussed in Sect. 7. We predict

that the number of Fq points on a hyperelliptic curve does not affect the number of Fq
points on the pk-torsion of its Jacobian (even though all of the Fq points of the Jacobian
are torsion points). We predict that among imaginary quadratic extensions K/Q split
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completely at a rational prime � into �1, �2, the distribution of Cl(OK )p/〈�1 − �2〉 is not
changed if we restrict to only those K for which �1 − �2 is trivial in Cl(OK )p.

1.1 Outline of the paper

In Sect. 2, we describe the Cohen–Lenstra measures, their moments, and show that the
moments determine the measures. In Sect. 3, we do the same for the analog for pointed
groups, and in particular we prove Lemmas 1.1 and 1.2. In Sect. 4, we prove Theorem 1.3,
giving evidence towards the pointedmoments of real quadratic Picard groups over rational
function fields. As corollaries, we obtain the non-pointed moments. In Sect. 5, we prove
pointed moments of inert (at ∞) quadratic Picard groups over rational function fields. In
Sect. 6, we prove instances of Conjecture 1.5 for number fields, including Theorem 1.6 (in
Theorem 6.1). In Sect. 7, we discuss some interesting consequences of our conjectures.

1.2 Notation

Throughout the paper we fix an odd prime p. The letter q will always denote a prime
power. Let Sur(A, B) denote the surjective homomorphisms from A to B. For elements gi
of an abelian group, we let 〈g1, . . . , gu〉 denote the subgroup generated by the gi. LetA be
the set of finite abelian p-groups (or more precisely, a set with one representative from
each isomorphism class of finite abelian p-groups). For a group A, we write Ap for the
Sylow p-subgroup of A.

2 Cohen–Lenstra measures andmoments
In this section we will explain the Cohen–Lenstra measures on A and the moments of
these measures. Each measure will be with respect to the σ -algebra that is the full power
set ofA. Let u be an integer, u ≥ 0. We define the Cohen–Lenstra measure μu, following
[13, Example 5.9], so that for A ∈ A, we have

μu(A) := 1
|A|u|Aut(A)|

∞∏

k=1
(1 − p−k−u).

In particular, for u = 0 the measure (called μCL above) describes the predicted dis-
tribution of Sylow p-subgroups of imaginary quadratic class groups and for u = 1 the
measure (called μr

CL above) describes the predicted distribution of Sylow p-subgroups of
real quadratic class groups (see [13, 8.1]).
We now give the moments of these distributions.

Proposition 2.1 (Lemma 3.2 of [29]) For any A ∈ A, we have that
∑

B∈A
| Sur(B, A)|μu(B) = |A|−u.

In particular, applying Proposition 2.1 when A = 1 shows that μu is a probability
measure. We now give another description of μu (see also [22, Theorem 10.9] for this
description of μu).

Proposition 2.2 Take a random group G according to μ0, and then select u elements gi ∈
G uniformly and independently at random. Then G/〈g1, . . . , gu〉 is distributed according
to μu.
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Proof Let K be a finite abelian p-group of order pb. If we apply [13, Proposition 4.3] (with
their k = ∞), we find that for any integers a ≥ b,

∑

B∈A|B|=pa

μ0(B)
1

|B|u
∑

b1 ,...,bu∈B
B/〈b1 ,...,bu〉�K

1 = p−bu 1
|Aut(K )|

∞∏

k=1
(1−p−k )

∑

C∈A
|C|=pa−b

| Sur(Zu, C)|
|C|u|Aut(C)| .

(1)

By [13, Corollary 3.7] (with their k = u and s = 0), we have
∑

a≥b

∑

C∈A
|C|=pa−b

| Sur(Zu, C)|
|C|u|Aut(C)| =

∏

1≤j≤u
(1 − p−j)−1.

Thus, summing Eq. (1) over all a ≥ b, we have

∑

B∈A
μ0(B)

1
|B|u

∑

b1 ,...,bu∈B
B/〈b1 ,...,bu〉�K

1 = 1
|K |u|Aut(K )|

∞∏

k=1
(1 − p−k )

∏

1≤j≤u
(1 − p−j)−1.

The left-hand side is the probability of producing K via the process described in the
proposition, and the right-hand side is μu(K ). 
�
In [13], it is this second description (of μ1) that in fact comes first, and the probabilities

for individual groups are later computed in [13, Example 5.9]. One can also prove that the
value μu(B) is the limit as n → ∞ of the probability that B is the cokernel of a random
matrix from Haar measure in Mn×(n+u)(Zp), as done by Friedman and Washington [19]
in the case u = 0 (using the same argument as Friedman and Washington). At first, it
seems this could give a convenient proof of the moments in Proposition 2.1. However,
since the limit in n does not a priori commute with the sum over B (though in fact this
can be shown), this approach turns out to be less convenient than that above.
In fact, the moments in Proposition 2.1 determine the measure μu.

Proposition 2.3 If μ is a measure onA such that for every A ∈ A we have
∑

B∈A
Sur(B, A)ν(B) = |A|−u,

then ν = μu.

The u = 0 case of Proposition 2.3 is Lemma 8.2 in [17]. Proposition 2.3 follows from
the proof of [30, Theorem 8.3] (see [29, Theorem 3.1] for a statement). We give a much
simpler proof here following [17] and in particular using the following lemma of infinite
dimensional linear algebra, the argument for which is given in the proof of Lemma 8.2 in
[17] (see also [10, Lemma 4.7] for a stronger statement).

Lemma 2.4 Let ai,j be non-negative real numbers indexed by pairs of natural numbers i, j,
such that there is an α < 2 so that for all i, we have ai,i = 1 and

∑
j aij = α. Let xj, yj be

non-negative reals indexed by natural numbers j. If for all i,
∑

j
ai,jxj =

∑

j
ai,jyj = 1,

then xj = yj for all j.
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Proof of Proposition 2.3 Enumerate the finite abelian p-groups asAi.Weapply Lemma 2.4
with

ai,j = |Ai|u| Sur(Aj, Ai)|
|Aj|u|Aut(Aj)|

and xj = |Aj|u|Aut(Aj)|ν(Aj) and yj = |Aj|u|Aut(Aj)|μu(Aj). It remains to check that

∑

j

|Ai|u| Sur(Aj, Ai)|
|Aj|u|Aut(Aj)| < 2.

However, we have that

∑

j

|Ai|u| Sur(Aj, Ai)|
|Aj|u|Aut(Aj)| =

∑

j
|Ai|u| Sur(Aj, Ai)|μu(Aj)

∞∏

k=1
(1 − p−k−u)−1

=
∞∏

k=1
(1 − p−k−u)−1.

So it remains to check that
∏∞

k=1(1 − p−k−u) > 1/2. The expression is decreasing in p
and u, so it remains to check for p = 3 and u = 0, which can be done simply. 
�

3 Measures andmoments for pointed groups
We have the measure μ onA• defined in the introduction by choosing a group according
toμ0 andpicking a group element uniformly at random.Wewill nowanalyze themoments
of this measure analogously to the Cohen–Lenstra measures μu in Sect. 2.
Recall from the introduction, we have the following.

Lemma 1.1. (Pointed moments) For any finite abelian p-group A and a ∈ A, we have
∑

(B,b)∈A•

| Sur((B, b), (A, a))|μ(B, b) = 1
|A| .

Proof We have

∑

(B,b)∈A•

| Sur((B, b), (A, a))|μ(B, b) =
∑

B∈A

1
|B|

∑

b∈B
| Sur((B, b), (A, a))|μ0(B)

=
∑

B∈A

μ0(B)
|B|

∑

φ∈Sur(B,A)
| ker(φ)|

=
∑

B∈A

μ0(B)
|A| | Sur(B, A)| = 1

|A| ,

where the last equality is by Proposition 2.1. 
�

Lemma 3.1 We have

μ(B, b) = 1
|B||Aut(B, b)|

∞∏

k=1
(1 − p−k ).

Proof As Aut(B) acts on the elements of B, we have |Aut(B)| = |Aut(B, b)| · #{h ∈
B | (B, h) � (B, b)}, and the lemma follows. 
�
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In fact, the moments of Lemma 1.1 determine the distribution μ.
Lemma 1.2. If ν is a measure onA• such that for every (A, a) ∈ A• we have

∑

(B,b)∈A•

| Sur((B, b), (A, a))|ν(B, b) = 1
|A| ,

then ν = μ.

Proof Enumerate the finite abelian pointed p-groups as (Ai, ai). We apply Lemma 2.4
with

ai,j = |Ai|| Sur((Aj, aj), (Ai, ai))|
|Aj||Aut(Aj, aj)|

and xj = |Aj||Aut(Aj, aj)|ν(Aj, aj) and yj = |Aj||Aut(Aj, aj)|μ(Aj, aj). It remains to check
that

∑

j

|Ai|| Sur((Aj, aj), (Ai, ai))|
|Aj||Aut(Aj, aj)| < 2.

However, we have that

∑

j

|Ai|| Sur((Aj, aj), (Ai, ai))|
|Aj||Aut(Aj, aj)| =

∑

j
|Ai|| Sur((Aj, aj), (Ai, ai))|μ(Aj, aj)

∞∏

k=1
(1 − p−k )−1

=
∞∏

k=1
(1 − p−k )−1.

So it remains to check that
∏∞

k=1(1 − p−k ) > 1/2, as in Proposition 2.3. 
�

4 Theorems for real quadratic function fields
In this section we prove Theorem 1.3. The overall strategy is the same as in [10, Sects. 5
and 6] and [31, Sect. 3], which both prove function field results about non-abelian analogs
of class groups. However, many of the details are different and the argument below is
self-contained. We first translate the problem of interest into one of counting certain
extensions of Fq(t). We then will use the existence of a Hurwitz scheme parametrizing
such extensions (as they are equivalently curves with a map to the line), which comes
from work of Ellenberg, Venkatesh, and Westerland [16], building on work of Romagny
and Wewers [24]. Unlike in [10] and [31], in this paper we also use the homological
stability results of Ellenberg, Venkatesh, and Westerland [17] to have a bound on the ith
cohomology groups of the Hurwitz schemes that is exponential in i.

4.1 Notation

Let Q = Fq(t) for this section and the next. Let SCQ be the set of all quadratic extensions
of Q split completely at ∞. For K ∈ SCQ, let ∞1,∞2 be the two places of K over ∞. We
define Pic(CK ) to be the Picard group of the unique smooth, proper curve CK over Fq
associated to K . Let MK be the set of places of K , which are in bijection with the closed
points of CK . We have

Pic(CK ) =
⎛

⎝
⊕

v∈MK

Zv

⎞

⎠ /{div(f ) |f ∈ K }.
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There is a natural map Pic(CK ) → Z sending a place v corresponding to a closed point
of degree d to d, with kernel Pic0(CK ). Let Kun,ab be the maximal unramified abelian
extension of K . By class field theory, we have that the profinite completion ̂Pic(CK ) is
isomorphic to Gal(Kun,ab/K ).
Note that δK := ∞1 − ∞2 is not a well defined element in Pic0(CK ) because it depends

on the ordering of∞1,∞2, but it is well defined up to±, and thus the isomorphism class of
the pointed group (Pic0(CK ), δK ) is well-defined. The remainder of this section is devoted
to the proof of the pointed moments of Picard groups of real quadratic function fields.

4.2 Counting pointed surjections

In order to prove Theorem 1.3, we will first translate the problem from one of counting
pointed surjections to one of counting certain extensions of K . If K/Fq(t) is a quadratic
extension corresponding to φ : CK → P

1
Fq
, we have φ∗(∞) ∈ Pic(CK ), where if ∞ splits

into
∏

i ∞ei
i , we have φ∗(∞) = ∑

i ei∞i.

Proposition 4.1 Let K/Fq(t) be a quadratic extension corresponding to the map φ :
CK → P

1
Fq

of curves over Fq, and let d be the greatest common divisor of the degrees of the
points of CK . Let L be a subfield K ⊂ L ⊂ Kun,ab and let P ⊂ ̂Pic(CK ) be the corresponding
subgroup via Galois theory. Then dφ∗(∞) ∈ P if and only if

(1) L/Q is Galois, and
(2) Gal(K/Q), by conjugation in Gal(L/Q), acts as inversion on Gal(L/K ).

Also, since d|2, if P is odd index, then dφ∗(∞) ∈ P if and only if φ∗(∞) ∈ P.

Proof Let σ be the generator of Gal(K/Q). First, suppose that dφ∗(∞) ∈ P. If x is a
point of CK , then in ̂Pic(CK ) we have σ (x) + x = deg(x)φ∗(∞). Thus for D ∈ P, we have
σ (D) = deg(D)(∞1 + ∞2) − D ∈ P. Thus L/Q is Galois. For any D ∈ Pic(CK ), we have
σ (D) + D = deg(D)(∞1 + ∞2) ∈ P, so σ acts as inversion on Gal(L/K ).
Second, suppose that L/Q is Galois, and σ acts as inversion on Gal(L/K ). Let D be a

divisor of degree d. Since dφ∗(∞) = D + σ (D), it must be in the kernel of the map to
Gal(L/K ), i.e. P. 
�

Let Q be a global field with a place ∞. Let H be a finite group, and c a conjugacy
class of H . We fix a separable closure Q̄∞ of the completion Q∞. Then, inside Q̄∞ we
have the separable closure Q̄ of Q. This gives a map Gal(Q̄∞/Q∞) → Gal(Q̄/Q), and in
particular distinguished decomposition and inertia groups in Gal(Q̄/Q) at ∞. We define
(as in [16, Sect. 10.2]) a marked (H, c) extension of Q to be (L,π , m) such that L/Q is a
Galois extension of fields, π is an isomorphism π : Gal(L/Q) � H such that all inertia
groups in Gal(L/Q) (except for possibly the one at ∞) have image in {1} ∪ c, and m, the
marking, is a homomorphism L∞ := L ⊗Q Q∞ → Q̄∞. Note that restriction to L gives
a bijection between homomorphisms L∞ → Q̄∞ and homomorphisms L → Q̄. Two
marked (H, c) extensions (L1,π1, m1) and (L2,π2, m2) are isomorphic when there is an
isomorphism L1 → L2 taking π1 to π2 and m1 to m2. The marking m in a marked (G′, c)
extension (L,π , m) gives a map Gal(Q̄∞/Q∞) → Gal(L/Q). Composing with π we get an
infinity type Gal(Q̄∞/Q∞) → G′.
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Proposition 4.2 Let A be a finite abelian group of odd order, H := A �−1 S2 with the
action of S2 by inversion, and c the conjugacy class of order 2 elements of H. When K/Q is
a quadratic extension, we have a |A|-to-1map

{isom. classes of marked(H, c)-extnsL/Q|LA � K } → Sur
(
Pic0(CK ), A)

When K ∈ SCQ and a ∈ A, the surjections that send δK → a correspond to those L for
which 2 Frob∞1 �→ a ∈ Gal(L/Q). In particular, we have for a ∈ A:

∣∣ Sur((Pic0(CK ), δK ), (A, a))
∣∣

= #{isom. classes of marked(H, c)-extnsL/Q|2 Frob∞1 �→ a, LA � K }
|A| .

Moreover, for the L above we have NmDisc(L) = NmDisc(K )|A|.

Proof We have a natural identification of Sur(Pic0(CK ), A) and

Sur(Pic(CK )/〈φ∗(∞)〉, A),
since we have the exact sequence

1 → Pic0(CK ) → Pic(CK )/〈φ∗(∞)〉 → Z/2Z.

We will now construct the map. Note that in each isomorphism class of marked (H, c)
extensions ofQ, there is a distinguished element such that L ⊂ Q̄ andm|L is the inclusion
map. We start with a distinguished

L ∈ {
isom. classes of marked(H, c)-extnsL/Q|LA � K, 2 Frob∞ �→ ±a

}
.

The H structure gives an isomorphism Gal(L/K ) � A. Since L/Q is an (H, c)-extension,
this implies that L/K is abelian and unramified, so we have L ⊂ Kun,ab. This gives us a sur-
jection ̂Pic(CK ) → A. We can see that the surjection sends φ∗(∞) to 0 by Proposition 4.1,
and also when K ∈ SCQ, we can trace the image of Frob∞ by the argument above.
We have that Gal(Kun,ab/K ) � ̂Pic(CK ). From Proposition 4.1, we see that a surjec-

tion Pic(CK )/〈φ∗(∞)〉 → A corresponds exactly to an L with K ⊂ L ⊂ Kun,ab and
an isomorphism Gal(L/K ) � A such that L/Q is Galois and Gal(K/Q) = 〈σ 〉 acts
as inversion on Gal(L/K ). In particular when K ∈ SCQ, in Gal(L/Q), we have that
δK = Frob∞1 − Frob∞2 = Frob∞1 −σ (Frob∞1 ) = 2 Frob∞1 .
Since L/Q is Galois and σ acts as −1 on Gal(L/K ), we have Gal(L/Q) � A �−1 S2.

Moreover, there are |A| choices of an isomorphism Gal(L/Q) � A �−1 S2 that restrict
to the given choice of Gal(L/K ) � A, each determined by which element of H \ A goes
to (1, τ ), where τ is the generator of S2. The fact that L/K is unramified implies that we
obtain, for each of these |A| choices, a marked (H, c)-extension, where the marking is by
the inclusion into Q̄.
Since L/K is unramified, we have the statement on their discriminants.
We can check that the constructions given above are inverse to each other, which

completes the proof of the proposition. 
�

4.3 Group theory definitions

In this section, we will give necessary group theory definitions for using the results from
[16]. In this section, we will work with a finite group H .
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Given a finite groupH and a conjugacy class c ofH , we will define the universal marked
central extension H̃ of H (with respect to c), following [16, Sect. 7]. In this section, we
suppose that if [g] ∈ c and d is relatively prime to the order of g , then [gd] ∈ c. (If this is
not the case, more complicated definitions are required.) Let C be a Schur cover of H so
we have an exact sequence

1 → H2(H,Z) → C → H → 1

by the Schur covering map. For x, y ∈ H that commute, let x̂ and ŷ be arbitrary lifts to C ,
and let 〈x, y〉 be the commutator [x̂, ŷ] ∈ C , which actually lies in H2(H,Z) since x and y
commute. It we take the quotient of the above exact sequence by all 〈x, y〉 for x ∈ c and y
commuting with x, we obtain an exact sequence

1 → H2(H, c) → H̃c → H → 1, (2)

which is still a central extension, defining H2(H, c) and H̃c. Let (H )ab denote the abelian-
ization of H . The universal marked central extension is H̃ := H̃c ×(H )ab Z and the map
Z → (H )ab sends 1 to an image of an element of c. We have a map H̃ → H , given through
projecting to the first factor. (See [16, Sect. 7] for why this is called a universal marked
central extension.)
Let Ẑ be the inverse limit lim←− Z/nZ taken over n relatively prime to q (we follow the

notation of [16] instead of the more customary Ẑ
′). We are now going to define an action

of Ẑ
× on H̃ , called the discrete action [16, Sect. 8.1.7, Eq. 9.4.1]. There is an action of Ẑ

×

onH given by powering. We pick one element g ∈ c and one lift ĝ ∈ H̃c of g . Next we will
extend this to a mapˆ : c → H̃c such that for all g ∈ c, we have ĝ has image g in H . We
define ̂hgh−1 = h̃ĝ h̃−1 for any choice of lift h̃ ∈ H̃c of h, and since H̃c → H is central, the
definition does not depend on our choice of lift. For α ∈ Ẑ

×

z(α) = ĝ−α ĝα .

First, we note that z(α) is defined by a product in H̃c, but actually lies in H2(H, c) since its
image in H is trivial. Second, one can work out that z(α) does not depend on the choice
of g ∈ c (see [31, Sect. 3.1]).
The discrete action of Ẑ

× on H̃ is given by

α ∗ (g,m) = (gαz(α)m,m).

4.4 Properties of the Hurwitz scheme

In this theorem, we recall the properties of the Hurwitz scheme constructed by Ellenberg,
Venkatesh, and Westerland, building on work on Romagny and Wewers [24], as well as
results on its homological stability from [17] and components [16]. An extension L/Fq(t)
is regular if it does not contain a non-trivial base field extension Fqr (t)/Fq(t).

Theorem 4.3 (Ellenberg, Venkatesh, andWesterland)1 LetH be a finite groupwith trivial
center and let c be a conjugacy class of order 2 elements of H, such that the elements of c
generate H. Let Fq be a finite field with q relatively prime to |H |. There is a Hurwitz scheme
CHurH,n over Z[|H |−1] constructed in [16, Sect. 8.6.2] with the following properties:

1The paper [16] has been temporarily withdrawn by the authors because of a gap which affects Sects. 6, 12 and some
theorems of the introduction of [16]. That gap does not affect any of the results from [16] that we use in this paper.
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(1) We have CHurH,n is a finite étale cover of the relatively smooth n-dimensional config-
uration space Confn of n distinct unlabeled points in A

1 over SpecZ[|H |−1].
(2) There is an action of H on CHurH,n.
(3) The scheme CHurH,n has an open and closed subscheme CHurc,1H,n such that for h ∈ H

there is a bijection between

(a) isomorphism classes of regular marked (H, c)-extensionsM of Fq(t)with unram-
ified infinity type φ such that φ(F
) = h and such that the total degree of
ramified non-infinite places of Fq(t) is n (where F
 is a lift of Frobenius to
Gal(Fq(t)∞/Fq(t)∞) that acts trivially on Fq((t−1/∞))).

(b) points of s ∈ CHurc,1H,n(F̄q) such that h−1 Frob(s) = s [16, Sect. 10.4].

(4) We have CHurH,n(C) is homotopy equivalent to a topological space CHurH,n [16,
Section 8.6.2], such that for any field k of characteristic relatively prime to |H |, there
is a constant C such that for all i ≥ 1 and for all n we have dimHi(CHurH,n, k) ≤ Ci

[17, Proposition 2.5 and Theorem 6.1].
(5) Given H, for all n sufficiently large and all q with (q, |H |) = 1, for h ∈ H the h−1 Frob

fixed components of CHurc,1H,n ⊗Z[|H |−1] F̄q are in bijection with elements (x, n) ∈ H̃
such that q−1 ∗ (x, n) = ĥ−1(x, n)ĥ (where ĥ is any lift of h to H̃) and x has trivial
image in H [16, Theorem 8.7.3] (see Sect. 4.3 for definitions).

Remark 4.4 The scheme CHurc,1H,n comes from restricting to the parametrization of covers
of P

1 all of whose local inertia groups have image in c ∪ {1} and that are unramified at ∞.
The argument that CHurc,1H,n is an open and closed subscheme is as in [17, Sect. 7.3].
Our description of the components requires a bit of translation from that in [16, The-

orem 8.7.3]. They biject the components with Ẑ
× equivariant functions from topological

generators of lim←−μn (taken over n relatively prime to q) to the preimage of 1 in H̃ that
are fixed by the action of h−1 Frob on lim←−μn. By choosing any topological generator of
lim←−μn, its image under a function to H̃ gives us a corresponding element of H̃ , and the
action of Frob corresponds to the above discrete action of q−1 on H̃ .

4.5 Proof of Theorem 1.3

We continue the notation from Sect. 4.1. Let H := A �−1 S2 and Q = Fq(t). In Proposi-
tion 4.2, given K , we have

#
{
isom. classes of marked(H, c)-extnsL/Q|2 Frob∞1 �→ a, LA � K

}

=#
{
isom. classes of marked(H, c)-extnsL/Q|2 Frob∞2 �→ a, LA � K

}
.

The F
 in Theorem 4.3 is a Frobenius element in Gal(L/Q) and since K/Q is split com-
pletely, we have F
 = Frob∞1 or Frob∞2 . So we can sum Proposition 4.2 over K ∈ SCQ
to obtain

∑

K∈SCQ,NmDisc(K/Q)=q2m

∣∣ Sur((Pic0(CK ), δK ), (A, a))
∣∣

=#{isom. classes of marked(H, c)-extnsL/Q|LA ∈ SCQ, 2F
 �→ a}
|A| .
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Wewill now see that all of the L that appear above are regular. If L/Q contains an exten-
sion ofFq(t), then it corresponds to some cyclic quotient ofH . However, the abelianization
ofH is S2, so this can only happenwhenLA isFq2 (t).However,Fq2 (t) is not split completely
over ∞.
By Theorem 4.3 (3) with h = a/2 and n = 2m, we then have

∑

K∈SCQ,NmDisc(K/Q)=q2m

∣∣ Sur((Pic0(CK ), δK ), (A, a))
∣∣

= #{s ∈ CHurc,1H,2m(F̄q) | h−1 Frob(s) = s}
|A| .

Let X := CHurc,1H,2m ⊗Z[|H |−1] Fq . If h = 1, we would need to then count Fq points of X .
However, for general h, we need to count Fq points of a different variety Y over Fq such
that Y ⊗Fq F̄q � X ⊗Fq F̄q . We can descend X ′ := X ⊗Fq F̄q to Y over Fq using the
action of Gal(F̄q/Fq) onX ′ in which the Frobenius in the Galois group acts as h−1 Frob on
X ′, where Frob is the action of Frobenius using X as the Fq structure of X ′ (see, e.g. [23,
Corollary 16.25]). So the Frobenius action on Y (F̄q) corresponds to the action of h−1 Frob
on X(F̄q). Thus, we have

∑

K∈SCQ,NmDisc(K/Q)=q2m

∣∣ Sur((Pic0(CK ), δK ), (A, a))
∣∣ = # Y (Fq)

|A| .

We will apply the Grothendieck-Lefschetz trace formula to X ′ � Y ⊗Fq F̄q . By Theo-
rem 4.3 (1), we have that X ′ is smooth of dimension 2m. We have that dimHi

c,ét(X
′,Q�) =

dimH4m−i
ét (X ′,Q�) by Poincaré Duality.

Next, we will relate dimHj
ét(X

′,Q�) to dimHj(CHurc,1H,2m(C),Q�) for some � > 2m. To
compare étale cohomology in characteristic 0 and positive characteristic, we will use
[17, Proposition 7.7]. The result [17, Proposition 7.7] gives an isomorphism of étale
cohomology between characteristic 0 and positive characteristic in the case of a finite
cover of a complement of a reduced normal crossing divisor in a smooth proper scheme.
Though [17, Proposition 7.7] is only stated for étale cohomology with coefficients in
Z/�Z, the argument goes through identically for coefficients in Z/�kZ, and then we can
take the inverse limit and tensor with Q� to obtain the result of [17, Proposition 7.7]
with Z/�Z coefficients replaced by Q� coefficients. So we apply this strengthened ver-
sion to conclude that dimHj

ét(X
′,Q�) = dimHj

ét((CHur
c,1
H,2m)C),Q�). (As in [17, Proof of

Proposition 7.8], we apply comparison to CHurc,1H,2m ×Conf2m PConf2m, where PConf2m
is the moduli space of 2m labelled points on A

1, and is the complement of a rela-
tive normal crossings divisor in a smooth proper scheme [17, Lemma 7.6]. Then we
take S2m invariants to compare the étale cohomology of CHurc,1H,2m across characteris-
tics.) By the comparison of étale and analytic cohomology [2, Exposé XI, Theorem 4.4]
dimHj(CHurc,1H,2m(C),Q�) = dimHj

ét((CHur
c,1
H,2m)C),Q�).

By Theorem 4.3 (4), there is a constant C such that for all j ≥ 1 and for all m, we
have dimHj(CHurc,1H,2m(C),Q�) ≤ Cj . Thus dimHj

ét(X
′,Q�) ≤ Cj for all j ≥ 1. Thus using

Poincaré duality, dimHi
c,ét(X

′,Q�) ≤ C4m−i for all i < 4m.
We will apply Grothendieck-Lefschetz for the Frobenius map from Y on X ′, which is

h−1 Frob (where Frob is the Frobenius map from X). By Theorem 4.3 (5), we have that
the number of components of X ′ fixed by h−1 Frob for 2m ≥ nH for some fixed nH is
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equal to the number of (x, 2m) ∈ H̃ with x ∈ H2(H, c) and q−1 ∗ (x, 2m) = ĥ−1(x, 2m)ĥ.
Since x is central in H̃c, this is the same as the number of (x, 2m) ∈ H̃ with x ∈ H2(H, c)
and q−1 ∗ (x, 2m) = (x, 2m), which is #H2(H, c)[q − 1] by [31, Proposition 3.1]. By [16,
Example 9.3.2], we have that #H2(H, c) is a quotient of #H2(A,Z) so if (q−1, |A|) = 1 then
#H2(H, c)[q − 1] = 1.
So we have

#Y (Fq) =
∑

j≥0
(−1)j Tr

(
h−1 Frob |Hj

c,ét(X ′ ,Q�)

)

and also we know Tr(h−1 Frob |H4m
c,ét((X ′ ,Q�)) is q

2m times the number of components of X ′

fixed by h−1 Frob. Since X is smooth, we have that the absolute value of any eigenvalue
of Frob on Hj

c,ét(X
′,Q�) is at most qj/2 in absolute value, and since h−1 is finite order and

commutes with Frob the same is true for eigenvalues of h−1 Frob. Thus, for 2m ≥ nA,

∣∣#Y (Fq) − q2m
∣∣ =

∣∣∣∣∣∣

∑

0≤j<2 dimX
(−1)j Tr(Frob |Hj

c,ét(XF̄q ,Q�)
)

∣∣∣∣∣∣

≤
∑

0≤j<2 dimX
qj/2C4m−j

≤ q2m
∑

1≤i
(√q/C)−i.

Thus, for fixed q > C2,

lim sup
m→∞

∑
K∈SCQ,NmDisc(K/Q)=q2m | Sur((Pic0(CK ), δK ), (A, a))|∑

K∈SCQ,NmDisc(K/Q)=q2m 1

= lim sup
m→∞

∑
K∈SCQ,NmDisc(K/Q)=q2m | Sur((Pic0(CK ), δK ), (A, a))|

q2m − q2m−1

= lim sup
m→∞

q2m + O( q2m√q/C−1 )

(q2m − q2m−1)|A|

= lim sup
m→∞

1 + O( 1√q/C−1 )

(1 − q−1)|A| .

The implied constant in the big O notation is 1. A similar argument works for the lim inf
and the theorem follows.

4.6 Corollaries

Note that by adding Theorem 1.3 over all elements a ∈ A, we have the following corollary,
which gives evidence that among real quadraticK/Fq(t), the Sylowp-subgroups Pic0(CK )p
are distributed according the measure μ0 defined in Sect. 2.

Corollary 4.5 For a finite odd order abelian group A, let

δ+
q := lim sup

m→∞

∑
K/Fq(t) real quad,NmDisc(K )=q2m | Sur(Pic0(CK ), A)|

∑
K/Fq(t) real quad,NmDisc(K )=q2m 1
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and δ−
q the corresponding lim inf . Then as q → ∞ among odd prime powers such that

(q(q − 1), |A|) = 1, we have

δ+
q , δ

−
q → 1.

By restricting Theorem 1.3 to the case a = 0 and using the fact that Cl(OK ) �
Pic0(CK )/〈∞1−∞2〉,we obtain the following corollary, which gives evidence that among
real quadratic K/Fq(t), the groups Cl(OK )p are distributed according the measure μ1

defined in Sect. 2.

Corollary 4.6 For a finite odd order abelian group A, let

δ+
q := lim sup

m→∞

∑
K/Fq(t) real quad,NmDisc(K )=q2m | Sur(Cl(OK ), A)|

∑
K/Fq(t) real quad,NmDisc(K )=q2m 1

and δ−
q the corresponding lim inf . Then as q → ∞ among odd prime powers such that

(q(q − 1), |A|) = 1, we have

δ+
q , δ−

q → 1
|A| .

Note that it is not clear whether the groups Cl(OK )p (or Pic0(CK )p) are “distributed
according to a measure,” i.e. whether there is a measure ν such that for all non-negative
functions f , we have

lim
m→∞

∑
K∈SCQ,NmDisc(K/Q)=q2m f (Cl(OK )p)∑

K∈SCQ,NmDisc(K/Q)=q2m 1
=

∑

H fin ab p-group
f (H )ν(H ).

So even if we knew δ±
q = 1, we could not use Proposition 2.3 to conclude that the

averages of an arbitrary f are predicted as by the Cohen–Lenstra heuristics. Informally,
the moments determine the measure, but we don’t know whether the class groups are
distributed according to ameasure! (Though for f an indicator function, see [17, Corollary
8.2].)

5 Inert quadratic function fields
Wecontinuewith the notation given in Sect. 4.1. Let INQ be the set of quadratic extensions
of Q inert at ∞. We then have the following theorem giving evidence that over K ∈ INQ,
the Sylow p-subgroups Pic0(CK )p are distributed according to μ0.

Theorem 5.1 For a finite odd order abelian group A, let

δ+
q := lim sup

m→∞

∑
K∈INQNmDisc(K )=q2m | Sur(Pic0(CK ), A)|∑

K∈INQNmDisc(K )=q2m 1

and δ−
q the corresponding lim inf . Then as q → ∞ among odd prime powers such that

(q(q − 1), |A|) = 1, we have

δ+
q , δ

−
q → 1.

The proof below is analogous to, but easier than, the proof of Theorem 1.3.
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Proof LetH := A�−1 S2 andQ = Fq(t).We sumProposition 4.2 overK ∈ INQ to obtain

∑

K∈INQ,NmDisc(K/Q)=q2m
| Sur(Pic0(CK ), A)|

= #{isom. classes of marked(H, c)-extnsL/Q|LA ∈ INQ}.

Note that LA ∈ INQ if and only if in the marked extension π (F
) ∈ H \ A and π is
unramified at ∞.
Almost all of the L that appear above are regular. If L/Q contains an extension of Fq(t),

then it corresponds to some cyclic quotient of H . However, the abelianization of H is S2,
so this can only happen when LA = K is Fq2 (t). Since Pic0(CFq2 (t)) is trivial, it does not
contribute to the sum unless A is trivial (in which case the theorem is immediate).
Thus, when A is non-trivial, by Theorem 4.3 (3), we then have

∑

K∈INQ,NmDisc(K/Q)=q2m
| Sur(Pic0(CK ), A)|

=
∑

h∈H\A

#{s ∈ CHurc,1H,n(F̄q) | h−1 Frob(s) = s}
|A| .

We let n = 2m. Let X ′ := X ⊗Fq F̄q . As in the proof of Theorem 1.3, we construct Yh so
that

#{s ∈ CHurc,1H,n(F̄q) | h−1 Frob(s) = s} = #Yh(Fq)

and Yh ⊗Fq F̄q � X ′. As in the proof of Theorem 1.3, for some prime � we have
dimHi

c,ét(X
′,Q�) ≤ C2n−i for all i < 2n.

We will apply Grothendieck-Lefschetz for the Frobenius map from Yh on X ′, which is
h−1 Frob (where Frob is the Frobenius map from X). As in the proof of Theorem 1.3, we
apply Theorem 4.3 (5) to conclude that the number of components ofX ′ fixed by h−1 Frob
for even n ≥ nH for some fixed nH is 1.
So we have, as in the proof of Theorem 1.3, for even n ≥ nA,

|#Yh(Fq) − qn| ≤ qn
∑

1≤i
(√q/C)−i.

Thus, for fixed q > C2,

lim sup
m→∞

∑
K∈INQ,NmDisc(K/Q)=q2m | Sur(Pic0(CK ), A)|∑

K∈INQ,NmDisc(K/Q)=q2m 1

= lim sup
m→∞

∑

h∈H\A

q2m + O( q2m√q/C−1 )

(q2m − q2m−1)|A|

= lim sup
m→∞

1 + O( 1√q/C−1 )

(1 − q−1)
.

The implied constant in the big O notation is 1. A similar argument works for the lim inf
and the theorem follows. 
�
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6 Number field results on distribution of℘1 − ℘2

In this section, we see that the (Z/3Z, g)-moments predicted by Conjecture 1.5 hold in the
number field case, and moreover are not affected by finitely many local conditions on the
quadratic field, in the spirit of Conjecture 1.4. We reduce the problem to counting cubic
andquadratic extensionswith certain local conditions, and thenuse theworkofDavenport
and Heilbronn [15] to count cubic extensions. This strategy and the computation of local
masses follows along similar lines to the proof of [8, Corollary 4]. For a number field K ,
letOK denote its ring of integers.

Theorem 6.1 (Distribution of elements in ClK , Z/3Z-moment) Let v1, . . . , vn be finite
places of Q, and Fi be étale quadratic Qvi -algebras, with F1 = Q

⊕2
v1 . Let S be the set of

quadratic extensions K ofQ such that K ⊗Q Qvi � Fi. Let S+ and S− denote the imaginary
and real extensions in S, respectively. Let v1 split into w1 and w2 in K and let g ∈ Z/3Z.
We have

lim
X→∞

∑
K∈S+ ,|Disc(K )|<X | Sur((Cl(OK ), w1 − w2), (Z/3Z, g)|

∑
K∈S+ ,|Disc(K )|<X 1

= 1
3
,

and

lim
X→∞

∑
K∈S− ,|Disc(K )|<X | Sur((Cl(OK ), w1 − w2), (Z/3Z, g)|

∑
K∈S− ,|Disc(K )|<X 1

= 1
9
.

We can of course add these pointed moments up over the three choices of g ∈ Z/3Z

and recover the theorem of Davenport and Heilbronn [15, Theorem 3] in the case n = 0
or the theorem of Bhargava and Varma [8, Corollary 4] when there are local conditions.
(Note that | Sur(Cl(OK ),Z/3Z)| + 1 is the size of the 3-torsion of Cl(OK ).)
The proof of the following proposition is similar to that of Proposition 4.2. This number

field version is easier than the function field version, because for any K/Q quadratic with
σ generating Gal(K/Q) and L/K unramified abelian we have that L/Q is Galois and σ acts
by inversion of Gal(L/Q), and so an analog of Proposition 4.1 is not required. We say a
cubic extension L is nowhere overramified if no rational prime ramifies to degree 3.

Proposition 6.2 Let c the conjugacy class of order 2 elements of S3. When K/Q is
quadratic, we have a 2-1map

Sur(Cl(OK ),Z/3Z) → {isom. classes of nowhere overram. non-cyclic cubic

L/Q|L̃A3 � K },
given by letting L̃ be the unramified extension of K associated to the surjection, and L a
cubic subfield of L̃ so that L̃ is the Galois closure of L over Q. Moreover, if v1 is split into w1
and w2 in K , then under the above bijection, the image of w1 −w2 is trivial in Z/3Z if and
only if L is split completely over v1.

Asking that K ∈ S in Theorem 6.1 translates directly into conditions on the allowable
restrictions on the isomorphism type of L ⊗Q Qvi . Thus in order to count the objects on
the right hand side in Proposition 6.2, we will count isomorphism classes of cubic number
fields L/Qwith restrictions on the isomorphism type of L⊗QQvi . To ask that L is nowhere
overramified and non-cyclic we need 1) that L/Q is not Galois and 2) in the associated
map φ3 : GQ → S3 to L no inertia group has image including a 3-cycle. The second
requirement is a condition on the isomorphism type of L ⊗Q Qv at every finite place v.
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The following theorem on counting cubic extensions with local restrictions will be
essential. For a prime p of Q let | · |p be the p-adic absolute value so that |p|p = p−1, and
let | · |∞ ≡ 1 be the trivial absolute value.

Theorem 6.3 (Theorem 4.1 of [14], see also Theorem 1 and Section 5 of [15]) Let
v0 = ∞, v1, . . . vn be distinct places of Q and Ri (for i = 0, . . . , n) be a set of iso-
morphism classes of degree 3 étale Qvi -algebras. For a place v of Q and an étale Qv-
algebra Mv, let c(Mv) = |Aut(Mv/Qv)|−1|Disc(Mv/Qv)|v, and c(Ri) = ∑

M∈Ri c(M). Let
c3(v) = ∑

M/Qv deg. 3 étale c(M). Then

lim
X→∞

#{L/Q cubic, up to isom. | |Disc L| < X ; L ⊗Q Qvi ∈ Ri i = 0, . . . , n}
X

= 1
3ζ (3)

n∏

i=0

c(Ri)
c3(vi)

.

We will need a similar theorem for quadratic extensions.

Theorem 6.4 (follows from Theorem 1.1 of [28], see also Lemma 6.1 of [27]) Let
v0 = ∞, v1, . . . vn be distinct places of Q and Ri (for i = 0, . . . , n) be a set of iso-
morphism classes of degree 2 étale Qvi -algebras. For a place v of Q and an étale Qv-
algebra Mv, let c(Mv) = |Aut(Mv/Qv)|−1|Disc(Mv/Qv)|v, and c(Ri) = ∑

M∈Ri c(M). Let
c2(v) = ∑

M/Qv deg. 2 étale c(M). Then

lim
X→∞

#{K/Q quad., up to isom. | |DiscK | < X ;K ⊗Q Qvi ∈ Ri i = 0, . . . , n}
X

= 1
ζ (2)

n∏

i=0

c(Ri)
c2(vi)

.

Proof of Theorem 6.1 For i = 2, . . . , n, let Ri be the set of cubic étale extensions of Qvi
such that the associated φ3 : GQvi

→ S3 has sign map φ2 : GQvi
→ S2 corresponding to

Fi, and such that the image of inertia under φ3 does not include a 3-cycle. For i = 1, we
let R1 = {Q⊕3

v1 }, and for i = 0 we let R0 be {C ⊕ R} or {R⊕3} depending on whether we
are in the S+ or S− case, respectively. Label the places v /∈ {v0, . . . , vn} by vn+1, vn+2, . . . ,
and for i ≥ n+ 1, let Ri be the set of cubic étale extensions of Qvi such that the associated
φ3 : GQvi

→ S3 does not have a 3-cycle in its image of inertia. Let F0 be {C} or {R⊕2}
depending on whether we are in the S+ or S− case, respectively.
We have, from Proposition 6.2,

lim
X→∞

∑
K∈S+ ,|Disc(K )|<X | Sur((Cl(OK ), w1 − w2), (Z/3Z, 0)|

∑
K∈S+ ,|Disc(K )|<X 1

= lim
X→∞

2#{isom. classes of non-cyclic cubicL/Q||Disc(L1)| < X, L ⊗Q Qvi ∈ Ri, i ≥ 0}
#{isom. classes of quad.K/Q||Disc(K )| < X, K ⊗Q Qvi � Fi, i = 0, . . . , n} .

Let

NY (X) := #{isom. classes of cubicL/Q||Disc(L)| < X, L ⊗Q Qvi ∈ Ri, i = 0, . . . , Y }.
By Theorem 6.3, for finite Y ≥ n, we have

lim
X→∞

NY (X)
X

= 1
3ζ (3)

Y∏

i=0

c(Ri)
c3(vi)

.
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We have N∞(X) ≤ NY (X), so

lim sup
X→∞

N∞(X)
X

≤ 1
3ζ (3)

∞∏

i=0

c(Ri)
c3(vi)

.

Also, we have

N∞(X) ≥ NY (X) −
∑

i>Y
#{isom. classes of cubicL/Q||Disc(L)| < X, vi ram. deg.3inL.}

By [14, Lemma 5.1], there is a constant C such that for all i ≥ 1, and associated prime vi,
we have

#{isom. classes of cubicL/Q||Disc(L)| < X, vi ram. deg.3inL}
X

≤ C
v2i

.

So,
N∞(X)

X
≥ NY (X)

X
−

∑

i>Y

C
v2i

,

and thus

lim inf
X→∞

N∞(X)
X

≥ 1
3ζ (3)

∞∏

i=0

c(Ri)
c3(vi)

and we conclude

lim
X→∞

N∞(X)
X

= 1
3ζ (3)

∞∏

i=0

c(Ri)
c3(vi)

.

Since

lim
X→∞

#{isom. classes of cyclic cubicL/Q||Disc(L)| < X}
X

= 0

by [12, Eq. (1)], if we define

N ′
Y (X) := #{isom. classes of non-cyclic cubicL/Q||Disc(L)|

< X, L ⊗Q Qvi ∈ Ri, i = 0, . . . , Y },
we have

lim
X→∞

N ′∞(X)
X

= 1
3ζ (3)

∞∏

i=0

c(Ri)
c3(vi)

.

By Theorem 6.4, we have that

lim
X→∞

#{isom. classes of quad.K/Q||Disc(K )| < X, K ⊗Q Qvi � Fi, i = 0, . . . , n}
X

= 1
ζ (2)

n∏

i=0

c(Fi)
c2(vi)

.

Thus,

lim
X→∞

∑
K∈S+ ,|Disc(K )|<X | Sur((Cl(OK ), w1 − w2), (Z/3Z, 0)|

∑
K∈S+ ,|Disc(K )|<X 1

= 2ζ (2)
3ζ (3)

∞∏

i=0

c(Ri)
c3(vi)

n∏

i=0

c2(vi)
c(Fi)

.

It remains to compute the local factors.
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We have that for a finite place v that c3(v) = 1 + v−1 + v−2 and c2(v) = 1 + v−1 and
for i > n that c(Ri) = 1+ v−1. (For tame v this is a simple computation with the absolute
tame Galois group, and for wild v these are the n = 2, 3 cases of Bhargava’s mass formula
for local fields [4, Theorem 1.1], and follow from Serre’s mass formula [25, Théorème 2],
as well.) Also, c3(∞) = 2/3 and c2(∞) = 1.
When 2 ≤ i ≤ n, we will see that c(Ri) = c(Fi). Given φ : GQv → S3 such that the

inertia group does not have image containing a 3-cycle, since the inertia group is a normal
subgroup, either | im(φ)| = 2 or φ is unramified. If Fi is unramified, then every element of
Ri must be unramified. If Fi = Q

⊕2
vi , then Ri = {Q⊕3

vi , Kvi},whereKvi/Qvi is the unramified
extension of degree 3, and c(Fi) = 1/2 and c(Ri) = 1/6 + 1/3 = 1/2. If Fi/Qvi is an
unramified field extension of degree 2, then Ri = {Fi}, and c(Fi) = c(Ri). If Fi is ramified,
then since | im(φ)| = 2, we have Ri = {Fi ⊕ Qvi} and c(Fi) = c(Ri). Now in the case i = 1,
we have c(R1) = 1/6 and c(F1) = 1/2. So,

lim
X→∞

∑
K∈S+ ,|Disc(K )|<X | Sur((Cl(OK ), w1 − w2), (Z/3Z, 0)|

∑
K∈S+ ,|Disc(K )|<X 1

= ζ (2)
3ζ (3)

c(R0)
c(F0)

∞∏

p

1 + p−1

1 + p−1 + p−2 = c(R0)
3c(F0)

.

Since c({C}) = 1/2 and c({R ⊕ C}) = 1/2, we conclude the first case of the theorem
when g = 1. Since c({R⊕2}) = 1/2 and c(R⊕3) = 1/6, we conclude the second case of the
theorem when g = 1.
For non-trivial g , we can either subtract the pointed moments we have just proven

from the known (non-pointed) moments, or make the argument as above but with R1
replaced the set of the unramified cubic field extension of Qv1 . Either approach tells us
the average number of surjections in which w1 − w2 has non-trivial image. We note that
by the automorphism of Z/3Z there must be an equal number of surjections with each
non-trivial image, and we conclude the theorem. 
�

In fact, if finitely many places vi are required to split completely into v′
i and v′′

i in the
quadratic extension, using the argument in the proof of Theorem 6.1, one can count
surjections where±(v′

i - v
′′
i ) have any given possible list of images in Z/3Z. However, note

that (Cl(OK ), v′
1 - v′′

1 , v
′
2 - v′′

2) is not a well-defined “double-pointed group,” and so one
necessarily must keep track of the images of plus or minus certain elements if tracking
more than one. Klagsbrun [21] avoids this technical issue by studying the quotients of
Cl(OK ) by the elements of v′

i − v′′
i instead of moments of pointed groups.

7 Predictions of conjectures
In this section, we will discuss some of the predictions of Conjectures 1.4 and 1.5. In the
function field analog, the question of the size of Pic0 can be rephrasedmore geometrically.
We consider hyperelliptic curves over Fq , and ask how many Fq points there are on their
Jacobians (as Pic0(CK ) = Jac(CK )(Fq)). Since the differences of Fq points of a curve give
Fq points of its Jacobian, one might first guess that curves with more points would have
more points in the p-torsion of their Jacobians. Conjecture 1.4 has the counter-intuitive
prediction that the number ofFq points on the curve, #CK (Fq), does not affect the number
of Fq points on the pk-torsion of the Jacobian, # Jac(CK )[pk ](Fq) (even though all of the
points in Jac(CK )(Fq) are torsion points). This is because the number of Fq points on
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CK is determined by the completions of K at the q + 1 degree 1 places of Fq(t). So even
if we restrict to hyperelliptic curves with the maximum number of Fq points, 2q + 2,
Conjecture 1.4 predicts that # Jac(CK )[pk ](Fq) is distributed just as it is for hyperelliptic
curves with no points, or for all hyperelliptic curves. In particular, the predicted average
of # Jac(CK )[pk ](Fq) is k + 1
It is worth noting that restricting to hyperelliptic curves CK with the maximal number

of Fq points does indeed provably make the asymptotics of the average of # Jac(CK )(Fq)
larger, which can be deduced from work of Taniguchi [26, Theorem 6.7]. There are at
least two important caveats, which are that 1) the average size of # Jac(CK )(Fq) is infinite
and 2) Jac(CK )(Fq) includes 2-torsion which does not follow the heuristics discussed in
this paper.
Supposewe consider imaginary quadratic extensionsK ofQ split completely at a rational

prime � into �1, �2. Conjecture 1.5 then predicts that the probability that �1 − �2 is trivial
in Cl(OK )p is 1 − p−1. We can see this since

∑
A∈A |Aut(G)|−1|G|−1 ∏

k≥1(1 − p−k ) =
1 − p−1. Further, for a random group G from μCL and a uniform random element g ∈ G
we have that

Prob(G � A|g = 1) = (1 − p−1)−1 Prob(G � A and g = 1)

= |Aut(A)|−1|A|−1
∏

k≥2
(1 − p−k ).

Thus, if we restrict to thoseK such that �1−�2 is trivial inCl(OK )p, Conjecture 1.5 predicts
that Cl(OK )p is then distributed according to μr

CL, like the Sylow p-subgroups of class
groups of real quadratic fields. Said another way, if among imaginary quadratic extensions
K of Q split completely at a rational prime � we consider the group Cl(OK )p/〈�1 − �2〉,
the distribution is predicted to be μr

CL, and is predicted to not change even if we restrict
to only those K for which �1 − �2 is trivial in Cl(OK )p.
We now see somewhat of a contrast to the first paragraph of this section. We restrict

to imaginary quadratic extensions K of Q split completely at a rational prime � such that
�1 − �2 is non-trivial in Cl(OK )p (forcing, in particular, Cl(OK )p to be non-trivial). In this
case, Conjecture 1.5 predicts, for example, that the p-torsion Cl(OK )[p] has average size
p + p−1 (as opposed to average size 2 among all imaginary quadratics).

Acknowledgements
The author would like to thank Jordan Ellenberg, Akshay Venkatesh, Nigel Boston, Silas Johnson, Manjul Bhargava, Takashi
Taniguchi, and Jürgen Klüners for useful conversations and comments on this paper. The author would also like to thank
the anonymous referee for detailed comments that improved the exposition of the paper. This work was done with the
support of an American Institute of Mathematics Five-Year Fellowship, a Packard Fellowship for Science and Engineering,
a Sloan Research Fellowship, and National Science Foundation Grants DMS-1147782 and DMS-1301690 and CAREER
Grant DMS-1652116, and a Vilas Early Career Investigator Award.

Received: 19 October 2017 Accepted: 10 September 2018 Published online: 25 September 2018

References
1. Achter, J.D.: The distribution of class groups of function fields. J. Pure Appl. Algebra 204(2), 316–333 (2006)
2. Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie Des Topos et Cohomologie Étale Des Schémas. Tome 3. Lecture

Notes in Mathematics, Vol. 305. Springer, Berlin (1973). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964
(SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat

3. Bhargava, M.: The density of discriminants of quartic rings and fields. Ann. Math. (2) 162(2), 1031–1063 (2005)
4. Bhargava,M.:Mass formulae for extensions of local fields, and conjectures on thedensity of number fielddiscriminants.

Int. Math. Res. Not. IMRN 2007(9), rnm052 (2007)
5. Bhargava, M.: Variations on the Cohen-Lenstra heuristics. The Cohen-Lenstra heuristics for class groups. Talk at AIM

Workshop (2011)



41 Page 22 of 22 Wood Res. Number Theory (2018) 4:41

6. Bhargava, M., Shankar, A.: Binary quartic forms having bounded invariants, and the boundedness of the average rank
of elliptic curves. arXiv:1006.1002v2. (reference is to arxiv version 2, not published version) (2010)

7. Bhargava, M., Varma, I.: On themean number of 2-torsion elements in the class groups, narrow class groups, and ideal
groups of cubic orders and fields. Duke Math. J. 164(10), 1911–1933 (2015)

8. Bhargava, M., Varma, I.: The mean number of 3-torsion elements in the class groups and ideal groups of quadratic
orders. Proc. Lond. Math. Soc. (3) 112(2), 235–266 (2016)

9. Bhargava, M., Shankar, A., Tsimerman, J.: On the Davenport-Heilbronn theorems and second order terms. Invent.
Math. 193(2), 439–499 (2013)

10. Boston, N., Matchett Wood, M.: Non-abelian Cohen-Lenstra heuristics over function fields. Compos. Math. 153(7),
1372–1390 (2017)

11. Clancy, J., Kaplan, N., Leake, T., Payne, S., Melanie, M.M.: On a Cohen–Lenstra heuristic for Jacobians of random graphs.
J. Algebr. Comb. 42(3), 701–723 (2015)

12. Cohn, H.: The density of abelian cubic fields. Proc. Am. Math. Soc. 5, 476–477 (1954)
13. Cohen, H., Jr Lenstra, H.W.: Heuristics on Class Groups of Number Fields. In Number Theory, Noordwijkerhout 1983

(Noordwijkerhout, 1983), Lecture Notes in Mathematics, vol. 1068, pp. 33–62. Springer, Berlin (1984)
14. Datskovsky, B., Wright, D.J.: Density of discriminants of cubic extensions. J. Reine Angew. Math. 386, 116–138 (1988)
15. Davenport, H., Heilbronn, H.: On the density of discriminants of cubic fields. II. Proc. R. Soc. London Ser. A 322(1551),

405–420 (1971)
16. Ellenberg, J.S., Venkatesh, A., Westerland, C.: Homological Stability for Hurwitz Spaces and the Cohen-Lenstra Conjec-

ture over Function Fields, II. arXiv:1212.0923 [math] (December 2012)
17. Ellenberg, J.S., Venkatesh, A., Westerland, C.: Homological stability for Hurwitz spaces and the Cohen-Lenstra conjec-

ture over function fields. Ann. Math. Second Ser. 183(3), 729–786 (2016)
18. Fouvry, É., Klüners, J.: On the 4-rank of class groups of quadratic number fields. Invent. Math. 167(3), 455–513 (2007)
19. Friedman, E., Washington, L.C.: On the Distribution of Divisor Class Groups of Curves Over a Finite Field. Théorie des

nombres (Quebec. PQ, 1987). de Gruyter, Berlin (1989)
20. Klagsbrun, Z.: The Average Sizes of Two-Torsion Subgroups in Quotients of Class Groups of Cubic Fields.

arXiv:1701.02838 [math] (Jan 2017)
21. Klagsbrun, Z: Davenport-Heilbronn Theorems for Quotients of Class Groups. arXiv:1701.02834 [math] (Jan 2017)
22. Lengler, J.: The Cohen-Lenstra heuristic: methodology and results. J. Algebra 323(10), 2960–2976 (2010)
23. Milne, J.S.: Descent Theory. In Algebraic Geometry, http://www.jmilne.org/math/CourseNotes/ag.html. (2015)
24. Romagny, M., Wewers, S.: Hurwitz spaces. In: Bertrand, D. (ed.), Groupes de Galois Arithmétiques et Différentiels,

Séminar Congress, vol. 13, pp. 313–341. Mathematical Society of France, Paris (2006)
25. Serre, J.-P.: Une “formule de masse” pour les extensions totalement ramifiées de degré donné d’un corps local. C. R.

Acad. Sci. Paris Sér. A-B 286(22), A1031–A1036 (1978)
26. Taniguchi, T.: A mean value theorem for orders of degree zero divisor class groups of quadratic extensions over a

function field. J. Number Theory 109(2), 197–239 (2004)
27. Taniguchi, T., Thorne, F.: Secondary terms in counting functions for cubic fields. Duke Math. J. 162(13), 2451–2508

(2013)
28. Wood, M.M.: On the probabilities of local behaviors in abelian field extensions. Compos. Math. 146(1), 102–128 (2010)
29. Wood, M.M.: Random integral matrices and the Cohen Lenstra heuristics. Am. J. Math. arXiv:1504.04391 [math] (April

2015)
30. Wood, M.M.: The distribution of sandpile groups of random graphs. J. Am. Math. Soc. 30(4), 915–958 (2017)
31. Wood, M.M.: Nonabelian Cohen-Lenstra moments. Duke Math. J. arXiv:1702.04644 [math] (Feb 2017)

http://arxiv.org/abs/1006.1002v2
http://arxiv.org/abs/1212.0923
http://arxiv.org/abs/1701.02838
http://arxiv.org/abs/1701.02834
http://www.jmilne.org/math/CourseNotes/ag.html
http://arxiv.org/abs/1504.04391
http://arxiv.org/abs/1702.04644

	Cohen-Lenstra heuristics and local conditions
	Abstract
	1 Introduction
	1.1 Outline of the paper
	1.2 Notation

	2 Cohen–Lenstra measures and moments
	3 Measures and moments for pointed groups
	4 Theorems for real quadratic function fields
	4.1 Notation
	4.2 Counting pointed surjections
	4.3 Group theory definitions
	4.4 Properties of the Hurwitz scheme
	4.5 Proof of Theorem 1.3
	4.6 Corollaries

	5 Inert quadratic function fields
	6 Number field results on distribution of 1-2
	7 Predictions of conjectures
	Acknowledgements
	References




