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Abstract

A theorem of Göttsche establishes a connection between cohomological invariants of
a complex projective surface S and corresponding invariants of the Hilbert scheme of n
points on S. This relationship is encoded in certain infinite product q-series which are
essentially modular forms. Here we make use of the circle method to arrive at exact
formulas for certain specializations of these q-series, yielding convergent series for the
signature and Euler characteristic of these Hilbert schemes. We also analyze the
asymptotic and distributional properties of the q-series’ coefficients.
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1 Introduction and statement of results
K3 surfaces are complex surfaces characterized by their particularly simple Hodge struc-
tures and trivial holomorphic tangent bundles. These manifolds are of particular interest
to physicists and mathematicians. For physicists, they serve as useful examples of Calabi-
Yaumanifolds, which are a class of spaces central in string theory, and formathematicians,
they serve as an interesting yet sufficiently simple example in 4-manifold theory and com-
plex differential geometry. These two roles came together in an unexpected way when
in [20] Yau and Zaslow conjectured (and later Beauville proved in [4]) that the count of
n-nodal curves on a K3 surface is equal to the Euler characteristic χ (Hilbn(S)) of Hilbert
schemes of n points on a K3 surface S.
Yau and Zaslow’s conjecture made use of a previous theorem of Göttsche (see [8, p. 37])

that provides an infinite product encoding the Euler characteristicsχ (Hilbn(S)) forHilbert
schemes of a K3 surface S. These Euler characteristics can be assembled in the form of
the generating function

XS(τ ) :=
∞∑

n=0
χ (Hilbn(S))qn = q

�(τ )
=

∞∏

n=1

1
(1 − qn)24

, (1.1)

where �(τ ) is the modular discriminant and q := e2π iτ .
Göttsche stated a more refined infinite product formula concerning Hodge numbers,

which are cohomological invariants that can be assembled into Betti numbers and the
Euler characteristic. Recently, Manschot and Zapata Rolon [14] studied the asymptotic
distribution of linear combinations of these Hodge numbers, which are realized as coeffi-
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cients of Laurent polynomials called theχy genera for K3 surfaces (see (2.4) for a definition
of χy). The χy genera can also be assembled using the generating function

YS(y; τ ) :=
∑

m,n
bS(m; n)ymqn :=

∑

n≥0
χy(Hilbn(S))qn. (1.2)

Akin to (1.1), Göttsche also provides an infinite product for YS(y; τ ) (see Lemma 2.2).
Manschot and Zapata Rolon [14] found for K3 surfaces S that if m is fixed, then as

n → ∞ we have

bS(m; n) ∼ π

3
√
2
n− 29

4 · exp(4π√
n).

Moreover, since the asymptotics for bS(m; n) do not depend onm, if we define

b∗
S(r; n) :=

∑

m≡r mod 2
bS(m; n),

it follows that b∗
S(0; n) ∼ b∗

S(1; n) as n → ∞. From a geometric perspective, n corresponds
to the length of the Hilbert scheme, and m corresponds to a particular monomial in the
χy-genus of Hilbn(S). Grouping the contributions by the coefficients of these monomials
in residue classes mod 2, we obtain an equidistribution in the limit as n goes to infinity.
Göttsche’s formula for Hodge numbers hs,t (Hilbn(S)) of Hilbert schemes of n points for

K3 surfaces is a special case of his more general formula, which states that for any smooth
projective complex surface S, we have

ZS(x, y; τ ) :=
∑

n≥0
χHodge(Hilbn(S))qn =

∞∏

n=1

∏
s+t odd(1 − xs−1yt−1qn)hs,t

∏
s+t even(1 − xs−1yt−1qn)hs,t

. (1.3)

For later use, we define cS(s, t; n) to be the coefficient of xsytqn in the power series expan-
sion of ZS(x, y; τ ).

Remark The Hodge polynomial χHodge(Hilbn(S)) is a Laurent polynomial in
Z[x, y, x−1, y−1], and we will sometimes write it as χHodge(Hilbn(S))(x, y) to make explicit
the Hodge polynomial’s dependence on x and y. If we specialize x and y to ±1, then
χHodge(Hilbn(S))(x, y) evaluates to different linear combinations of important topological
invariants. See Sect. 2 for a more detailed discussion of χHodge(Hilbn(S))(x, y).

We seek exact formulas for sequences assembled from the coefficients of (1.3) for a
more general class of smooth projective complex surfaces. We consider the distribution
of the coefficients cS(s, t; n) over residue classes mod 2; namely, if we let

c∗S(r1, r2; n) :=
∑

t≡r1 mod 2
s≡r2 mod 2

cS(s, t; n), (1.4)

we seek to determine the asymptotic properties of the sequences b∗
S(r; n) and c∗S(r1, r2; n).

To this end, we consider the asymptotics of the q-series

CS(r1, r2; τ ) :=
∑

n≥0
c∗S(r1, r2; n)qn. (1.5)

Our main result is the following. See Sect. 2 for a more detailed discussion of the coho-
mological invariants for which we state exact formulas and asymptotics below.

Theorem 1.1 Let S be a smooth projective surface. Then we have the following exact
formulas:
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(1) If 0 ≤ χ (S) < 24n, then we have

χ (Hilbn(S)) =2π
∑

j< χ (S)
24

∞∑

k=1
kχ (S)/2Ak (−χ (S), 0, j; n)χ (Hilbj(S))L∗(0, j, k ; n).

(2) If σ (S) ≤ χ (S) < 24n, then we have

σ (Hilbn(S)) = 2π
∑

j< χ (S)
24

∞∑

k=2
k even

Ak (σ (S),�(S), j; n)σ (Hilbj(S))
k�′(S)/2 L∗(0, j, k ; n)

+ 2π
∑

j< 3σ (S)−χ (S)
48

∞∑

k=1
k odd

(−1)nBk (σ (S),�(S), j; n)a(�(S), σ (S); j)
2�(S)/2k�′(S)/2 L∗(1, j, k ; n).

where �(S) := −(σ (S) + χ (S))/2 and �′(S) := (σ (S) − χ (S))/2.

Here a(α,β , j), Ak (α,β , j; n), Bk (α,β , j; n), L∗(0, j, k ; n), and L∗(1, j, k ; n) are defined in
Sects. 3, (2.19), (2.21), (4.4), and (5.4), respectively.

Remark In Theorem 1.1, Ak (α,β , j; n) and Bk (α,β , j; n) are known as Kloosterman sums,
and L∗(0, j, k ; n) and L∗(1, j, k ; n) are, up to simple multiplicative factors, modified Bessel
functions of the first kind.

Theorem 1.1 offers exact formulas as convergent infinite series. These formulas imply
the following asymptotics.

Corollary 1.2 Let S be a smooth projective surface. Then the following are true:

(1) Suppose χ (S) ≥ σ (S).

(a) If σ (S) < 0, then as n → ∞, we have

σ (Hilbn(S)) ∼ (−1)n2
7σ (S)−3χ (S)−14

8 3
σ (S)−χ (S)−2

8

(χ (S) − 3σ (S))
χ (S)−σ (S)+2

8 n
σ (S)−χ (S)−6

8

· exp
(

π

√
χ (S) − 3σ (S)

6
n
)
.

(b) If σ (S) > 0, then as n → ∞, we have

σ (Hilbn(S)) ∼ 2
3σ (S)−3χ (S)−14

8 3
σ (S)−χ (S)−2

8

χ (S)
χ (S)−σ (S)+2

8 n
σ (S)−χ (S)−6

8 exp
(

π

√
χ (S)
6 n
)
.

(c) If σ (S) = 0 and χ (S) �= 0, then as n → ∞, we have

σ (Hilb2n(S)) ∼ 2
−χ (S)−3

2 3
−χ (S)−2

8

χ (S)
2+χ (S)

8 n
−χ (S)−6

8 exp
(

π

√
χ (S)
3 n
)
.

Moreover, for all n we have

σ (Hilb2n+1(S)) = 0.
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(d) If σ (S) = χ (S) = 0, we have for all n,

σ (Hilbn(S)) = 0.

(2) (a) If χ (S) > 0, then, as n → ∞, we have

χ (Hilbn(S)) ∼ 2
−3χ (S)−5

4 3
−χ (S)−1

4 χ (S)
χ (S)+1

4 n
−χ (S)−3

4 exp
(

π

√
2χ (S)
3

n
)
.

(b) If χ (S) = 0, then for all n we have

χ (Hilbn(S)) = 0.

The asymptotics in Corollary 1.2 imply the following asymptotic properties of b∗
S(r; n)

and c∗S(r1, r2; n).

Corollary 1.3 Let S be a smooth projective surface. Then the following are true:

(1) Suppose that χ (S) ≥ σ (S). If χ (S) + σ (S) > 0, then as n → ∞ we have

b∗
S(0; n) ∼ b∗

S(1; n).

If χ (S) + σ (S) = 0, then as n → ∞ we have

b∗
S(1; n) = 0.

If χ (S) + σ (S) < 0, then as n → ∞ we have

b∗
S(0; n) ∼ −b∗

S(1; n).

(2) Suppose that χ (S) ≥ σ (S). If h1,0 = 0, then as n → ∞ we have

c∗S(0, 0; n) ∼ c∗S(1, 1; n) and c∗S(0, 1; n) = c∗S(0, 1; n) = 0.

If h1,0 > 0, then as n → ∞ we have

c∗S(0, 0; n) ∼ c∗S(1, 1; n) ∼ −c∗S(0, 1; n) = −c∗S(1, 0; n).

Note that when S is a K3 surface, Corollary 1.3 (1) recovers the equidistribution of the
b∗
S(r; n) that follows from the work of Manschot and Zapata Rolon in [14].

Remark The Enriques-Kodaira Classification Theorem [3, p. 244] mostly describes the
possible Hodge structures of smooth complex surfaces. This theorem lists minimal mod-
els for many birational equivalence classes of surfaces, which determine h0,0, h1,0, h2,0,
and min{h1,1} for that class. By the blowup construction, every smooth complex projec-
tive surface S is birationally equivalent to a smooth complex projective surface S′ with
h1,1(S′) = h1,1(S) + 1 and hs,t (S′) = hs,t (S) for (s, t) �= (1, 1). A minimal model of a bira-
tional equivalence class is a surface that is not a blowup of any other smooth surface.
Since χ (S) and χ (S)− σ (S) increase linearly with h1,1(S), Theorem 1.1, Corollary 1.2, and
Corollary 1.3 apply to all surfaces in each birational equivalence class except those whose
Hodge structures fall in a certain finite set. In particular, if the minimal model satisfies
the hypotheses of these statements, then all surfaces in that class satisfy them. Excluding
surfaces of general type, the only classes of projective surfaces whose minimal models do
not satisfy these hypotheses are ruled surfaces of genus g ≥ 2 (see [3] and [18]).
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In Sect. 2, we will define all of the terms above and describe their topological and
geometric significance.Wewill also state important properties of the generating functions
of these sequences, which will be crucial in our deduction of the above formulas. In
Sect. 3 we will outline our use of the circle method to prove Theorem 6.1, a general
result from which Theorem 1.1 and Corollaries 1.2 and 1.3 are derived. Sections 4 and 5
include arguments necessary for this proof. In Sect. 6, these arguments are assembled, and
Theorem 6.1, Theorem 1.1, and Corollaries 1.2 and 1.3 are proven. In Sect. 7 we illustrate
our results with numerics.

2 Preliminaries
In this section, we present Göttsche’s result and specialize it in terms of weakly holo-
morphic modular forms. We then provide bounds on certain exponential sums known as
Kloosterman sums and bounds on I-Bessel functions. Both Kloosterman sums and Bessel
functions will appear in our application of the circle method in Sects. 4 and 5.
A compact complex manifold M has cohomological invariants called the Hodge num-

bers hs,t := hs,t (M), which are defined as the complex dimensions of the (s, t)-Dolbeault
cohomology spaceHs,t (M) (see [19]).When the context is clear, wewill not explicitly indi-
cate dependence of the Hodge numbers hs,t on the manifoldM. IfM is a Kähler manifold,
the Hodge numbers are related to the Betti numbers bn(M) by the formula

bn(M) =
∑

s+t=n
hs,t (M) (2.1)

(see [19, p. 198]). Moreover, for any manifold M one can construct a manifold Hilbn(M)
which can be thought of as a smoothed version of the nth symmetric product of M (see
[12]). For any smooth projective complex surface S, Göttsche’s formula allows one to
compute the Hodge numbers of Hilbn(S) for all n from the Hodge numbers of S.
In order to state Göttsche’s result, we first define the Hodge polynomial, which serves

as a generating function for the Hodge numbers ofM:

χHodge(M)(x, y) :=x−d/2y−d/2
∑

s,t
hs,t (M)(−x)s(−y)t , (2.2)

where d is the complex dimension ofM. We will generally supress the (x, y) for notational
convenience.
On page 37 of [8], Göttsche proved the remarkable fact that one can assemble theHodge

polynomial for Hilbn(S) using the Hodge numbers hs,t (S).

Theorem 2.1 (Göttsche) If S is a smooth projective complex surface, then we have that

ZS(x, y; τ ) :=
∑

n≥0
χHodge(Hilbn(S))qn =

∞∏

n=1

∏
s+t odd(1 − xs−1yt−1qn)hs,t

∏
s+t even(1 − xs−1yt−1qn)hs,t

.

Remark Note that for each n, |s|, |t| ≤ n in the definition of χHodge(Hilbn(S)).

By [2, p. 43], every such smooth projective complex surface S is Kähler, so by Serre duality
and Hodge symmetry, the Hodge numbers satisfy the following relations:

h0,0 = h2,2 h1,0 = h0,1 = h1,2 = h2,1 h2,0 = h0,2.
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By the additivity of the Hodge numbers, we need only consider the case where M is
connected, i.e. h0,0 = 1. In this case, we obtain:

ZS(x, y; τ ) =
∞∏

n=1

(
(1 − x−1qn)(1 − xqn)(1 − y−1qn)(1 − yqn)

)h1,0

(1 − x−1y−1qn)(1 − xyqn)
(
(1 − x−1yqn)(1 − xy−1qn)

)h2,0
(1 − qn)h1,1

.

(2.3)

This polynomial gives rise to other topological invariants upon substituting ±1 for x
and y. For example, the Hirzebruch χy-genus ofM is the polynomial

χy(M) :=
∑

s,t
(−1)ths,t (M)ys. (2.4)

We can express this in terms of the Hodge polynomial:

χHodge(Hilbn(S))(y, 1) = y−n
∑

s,t
(−1)ths,t (Hilbn(S))(−y)s = χ−y(Hilbn(S))y−n.

In terms of the Betti numbers, the Euler characteristic χ (M) is defined as

χ (M) :=
∑

n
(−1)nbn(M). (2.5)

Setting x = 1 and y = 1 in the Hodge polynomial, we see in reference to (2.1) and (2.5)
that

χHodge(Hilbn(M))(1, 1) = χ−1(Hilbn(M)) = χ (Hilbn(M)). (2.6)

On the other hand, setting x = −1 and y = 1 in the Hodge polynomial gives

χHodge(Hilbn(M))(−1, 1) = (−1)nχ1(Hilbn(M)) = (−1)nσ (Hilbn(S)), (2.7)

where the signature σ (M) of a d-dimensional complex manifoldM is the signature of the
intersection pairing on Hd(M) (see [15]). In terms of Hodge numbers of Kähler surfaces
S, the signature is given by

σ (S) = 2h2,0 + 2 − h1,1.

The discussion above indicates the importance of Göttsche’s infinite product formulas
(Theorem 2.1) as a vehicle for studying invariants of complex projective surfaces. This
is further illuminated by the following specializations of Theorem 2.1 in terms of these
invariants.

Lemma 2.2 If S is a smooth projective complex surface, then the following are true:

∞∑

n=0
χ−y(Hilbn(S))y−nqn =

∞∏

n=1

((1 − y−1qn)(1 − yqn))h1,0−h2,0−1

(1 − qn)h1,1−2h1,0
, (2.8)

∞∑

n=0
χ (Hilbn(S))qn =

∞∏

n=1
(1 − qn)−χ (S), (2.9)

∞∑

n=0
(−1)nσ (Hilbn(S))qn =

∞∏

n=1

(1 − qn)σ (S)

(1 − q2n)(σ (S)+χ (S))/2 . (2.10)
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Remark We note that (2.9) and (2.10) are alternate expressions for Z(1, 1; τ ) and
Z(1,−1; τ ) = Z(−1, 1; τ ), respectively. We can apply the same process to Z(−1,−1; τ )
to obtain

Z(−1,−1; τ ) =
∞∏

n=1

(1 − qn)4h1,0

(1 − q2n)χ (S)+8h1,0
. (2.11)

We now show that these functions can be assembled in linear combinations to give
alternate formulas for BS(r; τ ) and CS(r1, r2; τ ).

Lemma 2.3 Let S be a smooth projective complex surface. We have

BS(r, 
; n) = 1
2
(
ZS(1, 1; τ ) + (−1)rZS(1,−1; τ )

)
(2.12)

and

CS(r1, r2; τ ) = 1
4
∑

j1 mod 2
j2 mod 2

(−1)j2r2 (−1)j1r1ZS((−1)j2 , (−1)j1 ; τ ), (2.13)

where CS(r1, r2; τ ) is defined by (1.5).

Proof We prove only (2.13), since (2.12) follows from even simpler manipulations. We
have

∑

n≥0
c∗S(r1, r2; n)qn = 1

4
∑

s,t,n
cS(s, t; n)

∑

j1 mod 2
j2 mod 2

(−1)j2(s+r2)(−1)j1(t+r1)qn

= 1
4
∑

j1 mod 2
j2 mod 2

(−1)j2r2 (−1)j1r1
∑

s,t,n
cS(s, t; n)(−1)j2s(−1)j1tqn

= 1
4
∑

j1 mod 2
j2 mod 2

(−1)j2r2 (−1)j1r1ZS((−1)j2 , (−1)j1 ; τ ).

�

2.1 Modularity properties of specializations of Göttsche’s identity

The infinite products (2.9), (2.10), and (2.11) can be written in terms of the Dedekind eta
function, the weight 1/2 modular form on SL2(Z) (with multiplier) that is defined by

η(τ ) := q1/24
∞∏

n=1
(1 − qn). (2.14)

This is done explicitly in the following lemma.

Lemma 2.4 Let S be a smooth projective complex surface. We have that

ZS(1, 1; τ ) = qχ (S)/24 1
η(τ )χ (S)

, (2.15)

ZS(−1, 1; τ ) = ZS(1,−1; τ ) = qχ (S)/24 η(τ )σ (S)

η(2τ )(σ (S)+χ (S))/2 , (2.16)

ZS(−1,−1; τ ) = qχ (S)/24 η(2τ )4h1,0

η(τ )χ (S)+8h1,0
. (2.17)
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Having expressed ZS(±1,±1; τ ) as an eta quotient (up to a fractional power of q), we
define

Hα,β (q) := qχ (S)/24η(τ )αη(2τ )β = ZS(x, y; τ ), (2.18)

where x, y = ±1 and α and β are determined by x, y, and the Hodge numbers of S. Thus,
(up to a fractional power of q), Hα,β is a modular form on �0(2). In our application of
the circle method to prove our main results, we use the modularity of Hα,β to determine
the behavior of this function when τ is near the rational number h/k . The modular
transformation equations for Hα,β are given in the following lemma. The q-expansion
of Hα,β gives the behavior of Hα,β for τ near i∞, and this lemma relates the behavior
of Hα,β near i∞ to its behavior near h/k. We present two transformation equations,
corresponding to the two different cusps of �0(2). These cusps partition the rationals h/k
into two parts, based on the parity of k . The two cusps will make distinct contributions to
our final formula.

Lemma 2.5 Let k be a positive integer, let h satisfy the condition (h, k) = 1, and let h′

satisfy hh′ ≡ −1 mod k. Further suppose Re(z) > 0. Define

ωα,β (h, k) := exp (−π i(αs(h, k) + βs(2h, k))) ,

where s(h, k) is the Dedekind sum

s(h, k) :=
k−1∑

r=1

((
r
k

))((
hr
k

))
,

and ((x)) is the sawtooth function

((x)) :=
⎧
⎨

⎩
0 x ∈ Z

x − �x� − 1
2 x /∈ Z.

(1) If 2 | k, we have

Hα,β

(
exp

(
2π ih
k

− 2πz
k

))

= z− α+β
2 ωα,β (h, k) · exp

(
(α + 2β)

π

12k

(
z − 1

z

))

× Hα,β

(
exp

(
2π ih′

k
− 2π

zk

))
.

(2) If 2 � k, we have

Hα,β

(
exp

(
2π ih
k

− 2πz
k

))

= z− α+β
2 ωα,β (h, k)
2β/2 · exp

(
π

24k

(
2(α + 2β)z − 2α + β

z

))

× Hβ ,α

(
exp

(
π ih′

k
− π

zk

))
.
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Proof From [1, p. 96], we know

H−1,0

(
exp

(
2π ih
k

− 2πz
k

))

= z
1
2 exp(π is(h, k)) exp

(
π

12k

(
1
z

− z
))

H−1,0

(
exp

(
2π ih′

k
− 2π

kz

))
,

where (h, k) = 1, τ = (iz + h)/k , hh′ ≡ −1 mod k , and s(h, k) is the Dedekind sum
defined above. Similarly, [9] shows that if 2 | k , then

H−1,1

(
exp

(
2π ih
k

− 2πz
k

))

= exp(π i(σ (h, k)) exp
(

π

12k

(
z − 1

z

))
H−1,1

(
exp

(
2π ih′

k
− 2π

zk

))
,

where σ (h, k) := s(h, k) − s(2h, k), and if 2 � k

H−1,1

(
exp

(
2π ih
k

− 2πz
k

))

= 2− 1
2 exp(π iσ (h, k)) exp

(
π

24k

(
1
z

+ 2z
))

H−1,1

(
exp

(
π ih′

k
− π

zk

))−1
.

To prove the lemma, we note that Hα,β (q) = H−1,0(q)−(α+β) · H−1,1(q)β and Hα,0(q2) =
H0,α(q). �

Remark When we apply the circle method to find the coefficients of the q-expansion of
Hα,β in Sects. 3, 4, and 5, we consider τ ∈ H on the horizontal line segment

L = {τ | τ = u + N−2i, 0 ≤ u ≤ 1}.
As N → ∞, L approaches the positive real axis directly from above. As discussed in Sect.
3, for the purpose of estimates we partition L into line segments that have midpoints at
h/k + iN−2 for cusp representatives 0 ≤ h/k ≤ 1 and k ≤ N. When we reparameterize
these line segments in terms of the variable z introduced in the statement of Lemma 2.5,
they become small vertical line segments just to the right of the origin in the z-plane.
Lemma 2.5 allows us to estimate the value of Hα,β for z on these small vertical line
segments.

2.2 Bounds on certain Kloosterman sums

In order to bound the error terms that will result from estimating the contour integral
(3.1), we need bounds on Kloosterman sums of the form

Ak (α,β , j; n) :=
∑

0≤h<k
(h,k)=1

ωα,β (h, k) exp
(

−2π inh
k

+ 2π ih′j
k

)
(2.19)

=:
∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n) (2.20)
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and

Bk (α,β , j; n) :=
∑

0≤h<k
(h,k)=1

ωα,β (h, k) exp
(

−2π inh
k

+ π ih′j
k

)
(2.21)

=:
∑

0≤h<k
(h,k)=1

Bh,k (α,β , j; n). (2.22)

These sums admit the trivial estimate O(k). However, in the case α + β = 0, we will need
a sharper estimate. In addition, we will occasionally restrict the values of ki to an interval
N − k < ki ≤ σ < N , which will in turn restrict h′ to one or two intervals modulo k . For
bounding purposes, it suffices to consider sums of the form

∑′

0≤h<k
(h,k)=1

Ah,k (α,β , j; n) and
∑′

0≤h<k
(h,k)=1

Bh,k (α,β , j; n)

where the ′ indicates that h′ is restricted to an interval 0 ≤ σ1 ≤ h′ < σ2 ≤ k . Thus we
will need the following lemma.

Lemma 2.6 For α and β fixed, α + β = 0, the sums
∑′

0≤h<k
(h,k)=1

Ah,k (α,β , j; n) and
∑′

0≤h<k
(h,k)=1

Bh,k (α,β , j; n)

are subject to the estimate

O(n1/3k2/3+ε)

uniformly in σ1, σ2, and j.

Proof The proof is a simple adaptation of those of Theorems 2 and 3 of [9], which follow
the proof of Theorem 2 in [13]. Equations (3.5) and (4.11) in [9] together state that if 2 | k ,
we have

exp(π i(s(h, k) − s(2h, k))) = exp
(
2π i

(
4φ(uh + vh′)
(k/2, 2)Gk

+ r(h, k)
))

where r(h, k) is a rational number that depends on k and hmod 4, φ,G, and v are integers
that depend only on k , and u is a polynomial in k . (5.7) states that if 2 � k , then

exp(π i(s(h, k) − s(2h, k))) = exp
(
2π i

(
�(uh + vh′)

gk
+ r(h, k)

))

with r, v and u as before, and � and g integers dependent on k . The proof of Lemma 2.6
proceeds as in [9], with u, v, and r replaced with βu, βv and βr, respectively. �

2.3 Bounds on I-Bessel functions

Asnoted in the introduction, an important ingredient in our exact formulas is themodified
Bessel function of the first kind, which is also known as the I-Bessel function. Here we
recall a number of facts from [7] about I-Bessel functions that will be useful throughout
our arguments. We define the I-Bessel function of order v as

Iv(z) :=
(
z
2

)v ∞∑

k=0

( 1
4 z

2)k

k !�(v + k + 1)
.
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From this definition it follows that for 0 < x < 1, we have

|Iv(x)| <
4
3

·
(x
2

)v
. (2.23)

We also recall an integral representation of the I-Bessel function which we will use in
Sects. 4 and 5: for v ≥ 0, we have

Iv(z) =
( 1
2z
)−v

2π i

∫

R
tv−1 exp

[
t + z2

4t

]
dt, (2.24)

where R is any simple closed contour surrounding the origin.

3 Outline of the circle method
In this section, we outline our use of the circle method to find exact formulas for coef-
ficients a(α,β ; n) of Hα,β where α + β ≤ 0. This corresponds to those cases where Hα,β
is essentially a modular form of non-positive weight. These cases are special because
non-constant holomorphic modular forms do not exist in non-positive weight. We make
use of the method of Rademacher, introduced in [17], which improved upon the earlier
work of G. H. Hardy and Srinivasa Ramanujan on the partition function. We adapt the
implementation of this method along the lines of earlier works by Hagis (see [9,10], and
[11]).
The basic ingredient of the circle method is Cauchy’s integral formula, which we use to

obtain

a(α,β ; n) = 1
2π i

∫

C

Hα,β (q)
qn+1 dq. (3.1)

We letC be the circle of radius e−2πN−2 centered at the origin, whereN is an upper bound
on the denominator of the cusp representatives under consideration. We emphasize that
we choose C to be a circle with this particular radius; there are many paths that could be
chosen in applying Cauchy’s integral formula, but the one we choose here is a particular
choice following the implementationof the circlemethod in [9,10], and [11].The exponent
n will be fixed, and N will later be allowed to approach infinity. As N → ∞, the main
contribution to this integral comes from a dense set of poles on the boundary of the unit
circle, where each pole is located at a root of unity e2π ih/k . The locations of these poles
follow from the definition of Hα,β in (2.18) and the locations of the zeros of η(τ ) afforded
by the product representation (2.14).
The generating function Hα,β is, up to a fractional power of q, a modular form with

non-positive weight on �0(2) in the cases we consider. As shown in Lemma 2.5, we have
thatHα,β has a pole of order−(α+2β)/24 at the cusp of�0(2) whose representatives have
all even denominators and a pole of order−(2α+β)/48 at the cusp whose representatives
have all odd denominators.
Since we have descriptions of Hα,β near all roots of unity, we divide C into Farey arcs

ξh,k for (h, k) = 1, which decrease in length and approach the point e2π ih/k asN increases.
Figure 1 shows the Farey arc ξ1,3 for N = 10, 20, and 30. By estimating Hα,β along these
Farey arcs, we obtain a convergent series for the coefficients a(α;β , n) as N → ∞. These
series are exact formulas which yield Theorem 6.1.
We will need explicit descriptions of these Farey arcs. First, we can rewrite

1
2π i

∫

C

Hα,β (q)
qn+1 dq =

∑

0≤h<k≤N
(h,k)=1

1
2π i

∫

ξh,k

Hα,β (q)
qn+1 dq.
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Fig. 1 Farey arcs ξ1,3

In the Farey series of order N , we consider the fraction h/k and its two neighbors,

h1
k1

<
h
k

<
h2
k2

, (3.2)

discussed in [16]. Each of hi and ki depend on h, k and N as described in [16]. Note that
N − k < ki ≤ N . On the arc ξh,k , we can introduce the variable θ via the transformation

q = exp
[
−2πN−2 + 2π i

(
h
k

+ θ

)]
= exp

[
2π ih
k

− 2πz
k

]
,

where

−ϑ ′
h,k := − 1

k(k1 + k)
≤ θ ≤ 1

k(k2 + k)
=: ϑ ′′

h,k .

Setting z = k(N−2 − iθ ) on each arc ξh,k , we obtain

a(α,β ; n) =
∑

0≤h<k≤N
(h,k)=1

e−
2π inh

k

∫ ϑ ′′
h,k

−ϑ ′
h,k

Hα,β
(
e
2π ih
k − 2πz

k
)
e
2πnz
k dθ .

Guided by Lemma 2.5, we break up the sum into even and odd k , writing

a(α,β ; n) = S(0, N ; n) + S(1, N ; n), (3.3)

where

S(r, N ; n) :=
∑

0≤h<k≤N
(h,k)=1

k≡r mod 2

e−
2π inh

k

∫ ϑ ′′
h,k

−ϑ ′
h,k

Hα,β
(
e
2π ih
k − 2πz

k
)
e
2πnz
k dθ .

Wehenceforth omit dependence on α and β from the names ofmost variables. Section 2.2
gives estimates on sums of roots of unity known as Kloosterman sums that are needed to
bound the error terms. Section 4 extracts behavior from S(0, N ; n) that will contribute to
the exact formula and bounds the error terms. Throughout the following three sections,
n, α, and β are fixed.
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4 The even case
4.1 Decomposing S(0, N; n)

Here we will extract main term and error term behavior from

S(0, N ; n) :=
N∑

k=1
k even

∑

0≤h<k
(h,k)=1

e−
2π inh

k

∫ ϑ ′′
h,k

−ϑ ′
h,k

Hα,β
(
e
2π ih
k − 2πz

k
)
e
2πnz
k dθ .

Towards this goal, we apply the transformation law (1) in Lemma 2.5 for Hα,β and even
k . In the process, we replace the resulting term

Hα,β

(
exp

(
2π ih′

k
− 2π

zk

))
=

∞∑

j=0
a(α,β ; j) exp

(
2π ih′j

k
− 2π j

zk

)

with its series expansion and re-express z = kw, yielding

S(0, N ; n) =
∞∑

j=0

N∑

k=1
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)a(α,β ; j)k− α+β
2

×
∫ ϑ ′′

h,k

−ϑ ′
h,k

w− α+β
2 exp

[
w
(
(α + 2β)

π

12
+ 2πn

)

+ 1
w

(
−(α + 2β)

π

12k2
− 2π j

k2

)]
dθ .

The coefficient of 1/w inside the above exponential is positive if and only if j < −(α +
2β)/24. Accordingly, we let

S(0, N ; n) = Q(0, N ; n) + R(0, N ; n) (4.1)
where Q(0, N ; n) is the sum over those j < −(α + 2β)/24, and R(0, N ; n) consists of the
remaining terms in S(0, N ; n). We will show later that Q(0, N ; n) yields mostly main term
behavior, whereas R(0, N ; n) yields error term behavior. On this note, we observe that
if α + 2β ≥ 0, then Q(0, N ; n) is in fact an empty sum, which corresponds to the weak
growth near e2π ih/k for k even discussed at the end of Sect. 2.1. Thus in our analysis of
Q(0, N ; n) we may assume α + 2β < 0. Additionally, we will assume n > −(α + 2β)/24,
which guarantees that the coefficient on w inside the exponential is positive.

4.2 Decomposing Q(0, N; n)

We now break up Q(0, N ; n) into three parts: one which will be extended to a Bessel
function in the following subsection, as well as two error terms. Towards this goal, we
divide the intervals of integration into three parts according to

−ϑ ′
h,k = − 1

k(k + k1)
≤ − 1

k(N + k)
<

1
k(N + k)

≤ 1
k(k + k2)

= ϑ ′′
h,k .

Omitting the integrands, the split becomes

Q(0, N ; n) =
∑

j<− α+2β
24

N∑

k=2
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)a(α,β ; j)

×
[∫ 1

k(N+k)

− 1
k(N+k)

+
∫ − 1

k(N+k)

− 1
k(k1+k)

+
∫ 1

k(k2+k)

1
k(N+k)

]

=: Q0(0, N ; n) + Q1(0, N ; n) + Q2(0, N ; n). (4.2)
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4.3 ExtendingQ0(0, N; n)

Here we will extend the path of integration of Q0(0, N ; n) to obtain a modified Bessel
function. Implementing the variable transformation w = N−2 − iθ , we have

Q0(0, N ; n) =
∑

j<− α+2β
24

N∑

k=2
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)a(α,β , j)

ik
α+β
2

·
∫ N−2+ i

k(N+k)

N−2− i
k(N+k)

w− α+β
2

× exp
[
w
(
(α + 2β)

π

12
+ 2πn

)
+ 1

w

(
−(α + 2β)

π

12k2
− 2π j

k2

)]
dw.

We will now extend the path of integration to the rectangle R with vertices

±N−2 ± i
k(N + k)

.

Omitting the integrands, we write

Q0(0, N ; n) = 2π
∑

j<− α+2β
24

N∑

k=2
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)a(α,β , j)

k
α+β
2

·
{

1
2π i

∫

R
− 1
2π i

[∫ −,+

+,+
+
∫ −,−

−,+
+
∫ +,−

−,−

]}
. (4.3)

We name L∗(0, j, k ; n) := 1/2π i
∫
R, and we name the three remaining integrals

J1(0, j, k, N ; n), J2(0, j, k, N ; n), and J3(0, j, k, N ; n), respectively.Wewill give an exact descrip-
tion of L∗(0, j, k ; n) as a Bessel function, and bound each Ji(0, j, k, N ; n).

4.4 Expressing L∗(0, j, k; n) as a Bessel function
In this subsection, we express L∗(0, j, k ; n) in terms of a modified Bessel function of the
first kind.
In the remaining subsections, we will bound each of the error terms that we have

encountered, demonstrating that the only significant contribution from S(0, N ; n) comes
from L∗(0, j, k ; n). To L∗(0, j, k ; n) we apply the variable transformation

u = w
(
(α + 2β)

π

12
+ 2πn

)
,

which gives

L∗(0, j, k ; n) =
[
(α + 2β)

π

12
+ 2πn

] α+β
2 −1 1

2π i

∫

R′
u−
(

α+β
2

)

× exp
[
u + 1

u

{[
−(α + 2β)

π

12k2
− 2π j

k2

] [
(α + 2β)

π

12
+ 2πn

]}]
du.

It follows from the integral representation of the I-Bessel function (2.24) that

L∗(0, j, k ; n) =
[
−(α + 2β)

π

12k2
− 2π j

k2

] 1
2− α+β

4 [
(α + 2β)

π

12
+ 2πn

]− 1
2+ α+β

4 Iv(s0(j, k))

(4.4)

where

v := 1 − α + β

2
, s0(j, k) := 2

√[
−(α + 2β)

π

12k2
− 2π j

k2

] [
(α + 2β)

π

12
+ 2πn

]
.
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4.5 Bounding R(0, N; n)

In this section we will bound R(0, N ; n), which we recall is given by

R(0, N ; n) =
∑

j≥− α+2β
24

N∑

k=1
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)a(α,β ; j)

×
∫ ϑ ′′

h,k

−ϑ ′
h,k

(kw)−
α+β
2 exp

[
w
(
(α + 2β)

π

12
+ 2πn

)

+ 1
w

(
−(α + 2β)

π

12k2
− 2π j

k2

)]
dθ .

We will show that R(0, N ; n) = O(N−δ) for some δ > 0. Setting

E := E(w,α,β , n, k, j) := exp
[
w
(
(α + 2β)

π

12
+ 2πn

)
+ 1

w

(
−(α + 2β)

π

12k2
− 2π j

k2

)]

and splitting the integral into three parts as in (4.2), we obtain

R(0, N ; n) =
∑

j≥− α+2β
24

N∑

k=1
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)a(α,β ; j)

×
[ ∫ 1

k(N+k)

− 1
k(N+k)

(kw)−
α+β
2 Edθ +

N+k−1∑


=k1+k

∫ − 1
k(
+1)

− 1
k


(kw)−
α+β
2 Edθ

+
N+k−1∑


=k2+k

∫ 1
k(
+1)

1
k


(kw)−
α+β
2 Edθ

]

=
∑

j≥− α+2β
24

a(α,β ; j)
N∑

k=1
k even

∫ 1
k(N+k)

− 1
k(N+k)

(kw)−
α+β
2 Edθ

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n) (4.5)

+
∑

j≥− α+2β
24

a(α,β ; j)
N∑

k=1
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)
N+k−1∑


=k1+k

∫ − 1
k(
+1)

− 1
k


(kw)−
α+β
2 Edθ

(4.6)

+
∑

j≥− α+2β
24

a(α,β ; j)
N∑

k=1
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)
N+k−1∑


=k2+k

∫ 1
k(
+1)

1
k


(kw)−
α+β
2 Edθ .

(4.7)

Our goal is to bound the expressions (4.5), (4.6), and (4.7). We begin by bounding |E|.
As a reminder, we have w = N−2 − iθ and |θ | ≤ 1/Nk , so that Re(1/w) ≥ k2/2 and
Re(w) = N−2. Therefore for j ≥ −(α + 2β)/24,

|E| ≤ exp
[
N−2

(
(α + 2β)

π

12
+ 2πn

)
− (α + 2β)

π

24
− π j

]
.

Thus for N > 0, we have

exp
[
N−2

(
(α + 2β)

π

12
+ 2πn

)
− (α + 2β)

π

24

]
= O(1). (4.8)
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Noting that the series
∑∞

j=0 a(α,β ; j)e−π j definingHα,β (i/2) converges absolutely, we have
that for fixed n, (4.5) admits the estimate

O

⎛

⎜⎜⎝
N∑

k=1
k even

∫ 1
k(N+k)

− 1
k(N+k)

(kw)−
α+β
2 dθ

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)

⎞

⎟⎟⎠

= O

⎛

⎜⎜⎝
N∑

k=1
k even

N
α+β
2 −1

k
∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)

⎞

⎟⎟⎠ .

If α + β < 0, we can use the trivial Kloosterman sum bound O(k) to show that

O

⎛

⎜⎜⎝
N∑

k=1
k even

N
α+β
2 −1

k
∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)

⎞

⎟⎟⎠ = O
(
N

α+β
2
)
. (4.9)

If α + β = 0, we can make use of Lemma 2.6 to show that for fixed n,

O

⎛

⎜⎜⎝
N∑

k=1
k even

N
α+β
2 −1

k
∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)

⎞

⎟⎟⎠ = O

⎛

⎜⎝
N∑

k=1
k even

k−1/3+ε

N

⎞

⎟⎠ = O(N−1/3+ε).

(4.10)

The summands (4.6) and (4.7) are handled in a similar way. The only important differ-
ence is that we must first switch the order of summation as in [16, p. 507] to obtain

∞∑

j≥− α+2β
24

a(α,β ; j)
N∑

k=1
k even

N+k−1∑


=N+1

∫ − 1
k(
+1)

− 1
k


(kw)−
α+β
2 E

∑

0≤h<k
(h,k)=1

N−k<k2≤l−k

Ah,k (α,β , j; n)dθ .

(4.11)

Thedesired bound is nowobtained via the samemethods used to bound (4.5).As described
in Sect. 2.2, Lemma 2.6 is equipped to handle the incomplete Kloosterman sum in (4.11).
By (4.9), (4.10), and corresponding statements for (4.6) and (4.7), we obtain in all cases

R(0, N ; n) = O(N−δ) (4.12)

for some δ > 0.

4.6 BoundingQ1(0, N; n) and Q2(0, N; n)

In this subsection, we will bound those segments of the Farey arcs that do not contribute
to the Bessel integral. We will explicitly bound just Q2(0, N ; n) because similar arithmetic
yields the same bound for Q1(0, N ; n). First, as in (4.6) and (4.7) we split our path of
integration into many smaller intervals, obtaining

Q2(0, N ; n) =
∑

j<− α+2β
24

N∑

k=1
k even

∑

0≤h<k
(h,k)=1

Ah,k (α,β , j; n)a(α,β ; j)k− α+β
2

×
N+k−1∑

l=k2+k

∫ 1
kl

1
k(l+1)

w− α+β
2 Edθ .
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Now, as in 4.11, we switch the order of summation, which yields

Q2(0, N ; n) =
∑

j<− α+2β
24

a(α,β ; j)
N∑

k=1
k even

k− α+β
2

N+k−1∑

l=N+1

∫ 1
kl

1
k(l+1)

w− α+β
2 Edθ

×
∑

0≤h<k
(h,k)=1

N−k<k2≤l−k

Ah,k (α,β , j; n).

We have, similarly to (4.8), that E = O(1).
Since |w| ≤ (2/(N 2k2))1/2, we have

N+k−1∑

l=N+1

∫ 1
kl

1
k(l+1)

w− α+β
2 Edθ = O

(
(Nk)

α+β
2 −1

)
.

Here and throughout, the constant implied by the big Oh notation depends at most on
α,β , n. The following steps are analogous to the final steps of Sect. 4.5, where the cases
α + β < 0 and α + β = 0 are considered separately. We conclude that

Q1(0, N ; n), Q2(0, N ; n) = O(N−δ) (4.13)

for some δ > 0.

4.7 Bounding J1(0, j, k, N; n), J2(0, j, k, N; n), J3(0, j, k, N; n)

As a reminder, we have

J1(0, j, k, N ; n) :=
∫ −N−2+ i

k(N+k)

N−2+ i
k(N+k)

w− α+β
2 Edw,

J3(0, j, k, N ; n) :=
∫ +N−2− i

k(N+k)

−N−2− i
k(N+k)

w− α+β
2 Edw,

and

J2(0, j, k, N ; n) :=
∫ −N−2− i

k(N+k)

−N−2+ i
k(N+k)

w− α+β
2 Edw.

We first consider J1 and J3. Here one easily finds Re(w) ≤ N−2 and Re(1/w) ≤ 4k2, and
from this obtains E = O(1). Since the interval length is 2N−2 and |w| ≤ √

2/kN , we have
that J1 and J3 are O

(
(kN )(α+β)/2−1)

)
.

For J2, we need only note that Re(w) and Re(1/w) are negative to show that E = O(1).
Since the length of the interval is 2/N (k + N ), we see that J2 is O

(
(kN )(α+β)/2−1)

)
. We

proceed as in Sects. 4.5 and 4.6 to show that
N∑

k=2
k even

Ak (α,β , j; n) {J1 + J2 + J3} = O(N−δ) (4.14)

for some δ > 0, as desired.
Recalling our decomposition ofQ0(0, N ; n) in (4.3) and the bound given by (4.14) above,

we can now estimate
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Q0(0, N ; n) = 2π
∑

j<− α+2β
24

N∑

k=2
k even

Ak (α,β , j; n)a(α,β , j)

k
α+β
2

L∗(0, j, k ; n) + O(N−δ). (4.15)

5 The odd case
The odd case follows a manner very similar to the even case, and the discrepancies are
all consequences of the differences between the transformation formulas (1) and (2) in
Lemma 2.5 for even and odd k .

5.1 Decomposing S(1, N; n)

Here we will extract main term and error term behavior from

S(1, N ; n) =
∑

0≤h<k≤N
(h,k)=1
k odd

e−
2π inh

k

∫ ϑ ′′
h,k

−ϑ ′
h,k

Hα,β
(
e
2π ih
k − 2πz

k
)
e
2πnz
k dθ .

We apply the transformation law (2) in Lemma 2.5 for Hα,β and odd k , obtaining

S(1, N ; n) =
∞∑

j=0

N∑

k=1
k odd

∑

0≤h<k
(h,k)=1

Bh,k (α,β , j; n)a(β ,α; j)

2β/2k
α+β
2

×
∫ ϑ ′′

h,k

−ϑ ′
h,k

w− α+β
2 exp

[
w
(
(α + 2β)

π

12
+ 2πn

)

+ 1
w

(
−(2α + β)

π

24k2
− π j

k2

)]
dθ

as in Sect. 4.1.
In this case the coefficient on 1/w inside the above exponential is positive if and only if

j < −(2α + β)/24. Thus we stratify S(1, N ; n) via

S(1, N ; n) = Q(1, N ; n) + R(1, N ; n), (5.1)

where Q(1, N ; n) is the sum over those j < −(2α + β)/24. As in the even case, Q(0, N ; n)
will yield mostly main term behavior, whereas R(0, N ; n) will yield error term behavior.
We continue to assume that n > −(α + 2β)/24.

5.2 Decomposing Q(1, N; n)

Wewill now break upQ(1, N ; n) into three parts, which play the same roles as in Sect. 4.2.
Omitting the integrands, we have

Q(1, N ; n) =
∑

j<− 2α+β
24

N∑

k=1
k odd

∑

0≤h<k
(h,k)=1

Bh,k (α,β , j; n)a(β ,α; j)

2β/2k
α+β
2

×
[∫ 1

k(N+k)

− 1
k(N+k)

+
∫ − 1

k(N+k)

− 1
k(k1+k)

+
∫ 1

k(k2+k)

1
k(N+k)

]

=: Q0(1, N ; n) + Q1(1, N ; n) + Q2(1, N ; n). (5.2)
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5.3 ExtendingQ0(1, N; n)

In this subsection, wewill extend the path of integration ofQ0(1, N ; n) to obtain amodified
Bessel function. Via the variable transformation w = N−2 − iθ , we can write

Q0(1, N ; n) =
∑

j<− 2α+β
24

N∑

k=1
k odd

∑

0≤h<k
(h,k)=1

Bh,k (α,β , j; n)a(β ,α; j)

i2β/2k
α+β
2

×
∫ N−2+ i

k(N+k)

N−2− i
k(N+k)

w− α+β
2 exp

[
w
(
(α + 2β)

π

12
+ 2πn

)

+ 1
w

(
−(2α + β)

π

24k2
− π j

k2

)]
dw.

Considering the rectangle R described in Section 4.3, we write

Q0(1, N ; n) = 2π
∑

j<− 2α+β
24

N∑

k=1
k odd

∑

0≤h<k
(h,k)=1

Bh,k (α,β , j; n)a(β ,α; j)

2β/2k
α+β
2

×
{

1
2π i

∫

R
−1

i

[∫ −,+

+,+
+
∫ −,−

−,+
+
∫ +,−

−,−

]}
. (5.3)

Omitting the integrands,wewriteL∗(1, j, k ; n) := 1/2π i
∫
R, andwename the three remain-

ing integrals J1(1, j, k, N ; n), J2(1, j, k, N ; n), and J3(1, j, k, N ; n), respectively.

5.4 Expressing L∗(1, j, k; n) as a Bessel function
Now, we will express L∗(1, j, k ; n) exactly as a modified Bessel function of the first kind. To
L∗(1, j, k ; n) we apply the same variable transformation as in Sect. 4.4, which gives

L∗(1, j, k ; n) =
[
−(2α + β)

π

24k2
− π j

k2

] 1
2− α+β

4

×
[
(α + 2β)

π

12
+ 2πn

]− 1
2+ α+β

4 Iv(s1(j, k)), (5.4)

where

s1(j, k) := 2

√[
−(2α + β)

π

24k2
− π j

k2

] [
(α + 2β)

π

12
+ 2πn

]

and v is the same as in Sect. 4.4.

5.5 Bounding the odd case error terms

R(1, N ; n), Qμ(1, N ; n), and Jν(1, j, k, N ; n) for μ = 1, 2 and ν = 1, 2, 3 are bounded in
a manner which is nearly identical to the corresponding arguments in the even case.
The main differences between these expressions and their even case counterparts are the
coefficient a(β ,α; j) from the expansion of Hβ ,α and the coefficient

−(2α + β)
π

24k2
− π j

k2
of 1/w in the exponential. Note that in Sects. 4.5, 4.6, and 4.7, the terms −(α + 2β)/12 in
the coefficient of 1/w, which correspond to−(2α+β)/24 in the odd case, may as well have
been arbitrary negative real numbers that are fixed in this discussion. The same holds for
−2π as the coefficient of j, except when we used the absolute convergence of the series
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defining Hα,β (i/2) in Sect. 4.5. In the odd case, we need to use the absolute convergence
of the series defining Hβ ,α(i/4) to obtain the same result. Running the same arguments
with these minor adjustments, we obtain

R(1, N ; n) = O(N−δ), (5.5)

Qμ(1, N ; n) = O(N−δ), (5.6)

and

∑

0≤h<k
(h,k)=1

Bh,k (α,β , j; n)
(
∑

ν

Jν(1, j, k, N ; n)
)

= O(N−δ) (5.7)

for some δ > 0, where μ = 1, 2 and ν = 1, 2, 3.
Recalling our decomposition ofQ0(1, N ; n) in (5.3) and the bounds given by (5.7) above,

we conclude that

Q0(1, N ; n) = 2π
∑

j<− 2α+β
24

N∑

k=1
k odd

Bk (α,β , j; n)a(β ,α, j)

2β/2k
α+β
2

L∗(1, j, k ; n) + O(N−δ). (5.8)

6 Proof of Theorem 1.1 and Corollaries 1.2 and 1.3
We now apply our work from Sects. 3, 2.2, and 4 to obtain exact formulas for a(α,β ; n),
and afterwards we will extract asymptotic behavior from those formulas. Finally, we will
express these exact and asymptotic formulas in terms of our topological invariants to
prove Theorem 1.1 and Corollary 1.2.

Theorem 6.1 Let α + β ≤ 0, and assume n > −(α + 2β)/24. Then

a(α,β ; n) = 2π
∑

j<− α+2β
24

∞∑

k=2
k even

Ak (α,β , j; n)a(α,β , j)

k
α+β
2

L∗(0, j, k ; n) (6.1)

+ 2π
∑

j<− 2α+β
24

∞∑

k=1
k odd

Bk (α,β , j; n)a(β ,α; j)

2β/2k
α+β
2

L∗(1, j, k ; n). (6.2)

Proof Making use of the decompositions (4.1) and (4.2), as well as the estimates (4.12),
(4.13), and (4.15), we have

S(0, N ; n) = 2π
∑

j<− α+2β
24

N∑

k=2
k even

Ak (α,β , j; n)a(α,β , j)

k
α+β
2

L∗(0, j, k ; n) + O(N−δ).

Similarly, by the decompositions (5.1) and (5.2), as well as the estimates (5.5), (5.6), and
(5.8), we have

S(1, N ; n) = 2π
∑

j<− 2α+β
24

N∑

k=1
k odd

Bk (α,β , j; n)a(β ,α, j)

2β/2k
α+β
2

L∗(1, j, k ; n) + O(N−δ).
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But by the parity split in (3.3), these estimates imply that

a(α,β ; n) = 2π
∑

j<− α+2β
24

N∑

k=2
k even

Ak (α,β , j; n)a(α,β , j)

k
α+β
2

L∗(0, j, k ; n)

+ 2π
∑

j<− 2α+β
24

N∑

k=1
k odd

Bk (α,β , j; n)a(β ,α; j)

2β/2k
α+β
2

L∗(1, j, k ; n)

+ O(N−δ)

for some δ > 0. Keeping n fixed and letting N → ∞, we obtain (6.1). �

Remark In [5], Bringmann and Ono obtained exact formulas for the coefficients of har-
monicMaass forms of non-positive weight using the theory ofMaass-Poincaré series. Our
results can therefore also be obtained using their work.

In the following corollary, we make use of Theorem 6.1 to obtain approximations for
a(α,β ; n) for large n. We will see that the main contribution for large n comes from one
of the first two summands in k .

Corollary 6.2 Suppose that α + β ≤ 0.

(1) If α = 0 and β �= 0, then as n → ∞ we have

a(0,β ; 2n) ∼ 2
3β−5
4 3

β−1
4 (−β)

1−β
4 n

β−3
4 exp

(
π

√−2β
3

n
)
.

(2) If α < 0, then as n → ∞ we have

a(α,β ; n) ∼ 2
2α+β−3

2 3
α+β−1

4 (−(2α + β))
−α−β+1

4 n
α+β−3

4 exp
(

π

√−(2α + β)
3

n
)
.

(3) If α > 0, then as n → ∞ we have

a(α,β ; n) ∼ (−1)n2
3α+3β−7

4 3
α+β−1

4 (−(α + 2β))
1−α−β

4 n
α+β−3

4 exp
(

π

√−(α + 2β)
6

n
)
.

Proof Consider the case α < 0. Let

a(α,β ; n) =: 2π
(
M−(α,β ; n) + E−(α,β ; n)

)
,

where we let

M−(α,β ; n) := B1(α,β , 0; n)a(β ,α; 0)

2
β
2

L∗(1, 0, 1; n)

and

E−(α,β ; n) :=2π

⎛

⎜⎝
� α+2β

24 �∑

j=0

∞∑

k=2
k≡0 mod 2

fA(α,β , j, k ; n)+
� 2α+β

24 �∑

j=0

∞∑

k=3
k≡1 mod 2

fB(α,β , j, k ; n)

⎞

⎟⎠ ,

(6.3)
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where

fA(α,β , j, k ; n) := Ak (α,β , j; n)a(α,β , j)

k
α+β
2

L∗(0, j, k ; n)

and

fB(α,β , j, k ; n) := Bk (α,β , j; n)a(β ,α, j)

2βk
α+β
2

L∗(1, j, k ; n).

To prove Corollary 6.2 for α < 0, it suffices to show that E−(α,β ; n) = o(L∗(1, 0, 1; n)) and
then to carry out the necessary simplification of 2πM−(α,β ; n).
Using the bound (2.23), themonotonicity of the I-Bessel functions, and the trivial bound

on the Kloosterman sums, it follows from (6.3) that

E−(α,β ; n) ≤
( −(α + 2β)

α + 2β + 24n

) v
2

×
�− α+2β

24 �∑

j=0
|a(α,β , j)|

(
KA(α,β , j; n) + �s0(j, 1)�Iv(s0(0, 2))

)

+
( −(2α + β)

α + 2β + 48πn

) v
2

×
�− 2α+β

24 �∑

j=0

|a(β ,α; j)|
2β/2

(
KB(α,β , j; n) + �s1(j, 1)�Iv(s1(0, 3))

)
,

where

KA(α,β , j; n) := 4
3

∑

k>�s0(j,1)�
k≡0 mod 2

Ak (α,β , j; n)
kv+1

(
s0(0, 1)

2

)v
,

and

KB(α,β , j; n) := 4
3

∑

k>�s1(j,1)�
k≡1 mod 2

Bk (α,β , j; n)
kv+1

(
s1(0, 1)

2

)v
.

If α + β < 0, we use the trivial bound on the Kloosterman sums to obtain

KA(α,β , j; n) ≤ 4
3

(
s0(0, 1)

2

)v s0(j, 1)1−v

1 − v
and

KB(α,β , j; n) ≤ 4
3

(
s1(0, 1)

2

)v s0(j, 1)1−v

1 − v
,

and if α + β = 0, we use Lemma 2.6 to obtain

KA(α,β , j; n) = O(n
1
3 s0(j, 1)−

1
3+ε)

and

KB(α,β , j; n) = O(n
1
3 s1(j, 1)−

1
3+ε).

Therefore, since E−(α,β ; n) is bounded by a finite sum of rational functions and I-Bessel
functions, it follows from

Iv(x) ∼ ex√
2πx
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that E−(α,β ; n) = o(L∗(1, 0, 1; n)), and that the statement of Corollary 6.2 follows from a
simplification of 2πM(α,β ; n).
If α > 0, the proof of Corollary 6.2 followsmutatis mutandis if we let

a(α,β ; n) := 2π
(
M+(α,β ; n) + E+(α,β ; n)

)
,

where we let

M+(α,β ; n) := A2(α,β , 0; n)a(β ,α; 0)

2
α+β
2

L∗(0, 0, 2; n)

and

E+(α,β ; n) :=2π

⎛

⎜⎝
� α+2β

24 �∑

j=0

∞∑

k=4
k≡0 mod 2

fA(α,β , j, k ; n)+
� 2α+β

24 �∑

j=0

∞∑

k=1
k≡1 mod 2

fB(α,β , j, k ; n)

⎞

⎟⎠ .

Finally, we observe that a(0,β ; 2n) = a(β , 0, n), and so making the necessary substitutions
for the case α < 0 yields the case α = 0. �
We are now in a position to prove Theorem 1.1, our exact formulas for χ (Hilbn(S))

and σ (Hilbn(S)), and Corollary 1.2, our asymptotic formulas for χ (Hilbn(S)), σ (Hilbn(S)),
b∗(r, 2; n) and c∗(r1, r2; n). At this point, the work is a simple application of Theorem 6.1
and Corollary 6.2.

Proof of Theorem 1.1 The proof follows from Lemma 2.2 and Theorem 6.1. We note only
that in the derivation of (1.1) the sum over odd k is actually a sum over even j, since
a(0,−χ (S); j) = 0 for odd j. Noting this and replacing j with 2j, we obtain (1.1). �
Proof of Corollary 1.2 This follows from Corollary 6.2 and (2.9) and (2.10) in Lemma 2.2.

�
Proof of Corollary 1.3 The coefficients of our functions ZS(x, y; τ ), where x, y = ±1, are of
the form a(α,β ; n) for someα andβ determined by (2.11) andLemma2.2. For convenience
we define

aS(x, y; n) := a(α,β ; n).

By Corollary 6.2, each of these coefficient sequences is asymptotic to a function of the
form c1nc2 exp(

√
Gn), where c1, c2, and G only depend x, y, and S. We will let GS(x, y)

denote this value G. Note that GS(x, y) essentially determines the growth of the sequence
aS(x, y; n) in the sense that if GS(x1, y1) < GS(x2, y2), then aS(x1, y1; n) = o(aS(x2, y2; n)).
The proof of (1) now follows easily from Corollary 6.2, (2.9), (2.10), and (2.11). As a

reminder, (2.12) tells us

BS(r, 2; τ ) = 1
2
(Z(1, 1; τ ) + (−1)rZ(1,−1; τ )) .

One makes use of Corollary 6.2 to check that GS, (1, 1) > GS(1,−1) if and only if σ (S) +
χ (S) > 0 and GS, (1, 1) < GS(1,−1) if and only if σ (S) + χ (S) < 0. Note that GS(1, 1) =
GS(1,−1) whenever χ (S) = −σ (S), and in this case ZS(1, 1; τ ) = ZS(1,−1; τ ), so that
b∗
S(1; n) = 0 for all n. Also, if χ (S) ≤ 0, (χ (S), σ (S)) �= (0, 0), we have from Theorem 15.1

in [6] that aS(1, 1; n) = o(aS(1,−1; n)). Since this requires σ (S)+χ (S) ≤ 0, we can remove
the hypothesis that χ (S) > 0.
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To prove (2), we first recall that (2.13) gives

CS(r1, r2; τ ) = 1
4
∑

j1 mod 2
j2 mod 2

(−1)j2r2 (−1)j1r1ZS((−1)j2 , (−1)j1 ; τ ).

Wenote that by (2.11), thehypotheses ofCorollary 6.2 are always satisfied forZ(−1,−1; τ ),
since

4h1,0 − (χ (S) − 8h1,0) = −(2h0,0 + 2h2,0 + h1,0) ≤ 0

for all S. Note also that for χ (S) ≥ 0, we have

GS(−1,−1) − GS(1, 1) = 2χ (S) + 12h1,0

3
− 2χ (S)

3
= 4h1,0 ≥ 0.

If h1,0 = 0, we have ZS(1, 1; τ ) = ZS(−1,−1; τ ). If χ (S) ≤ 0, we have aS(1, 1; n) =
o(aS(−1,−1; n)) by Theorem 15.1 in [6]. Since χ (S) ≤ 0 requires h1,0 > 0, we have

aS(1, 1; n) + (−1)r1+r2aS(−1,−1; n) ∼ KaS(−1,−1; n),

where

K :=

⎧
⎨

⎩

2 h1,0 = 0 and r1 + r2 ≡ 0 mod 2

0 h1,0 = 0 and r1 + r2 ≡ 1 mod 2

1 h1,0 > 0 and r1 + r2 ≡ 0 mod 2

−1 h1,0 > 0 and r1 + r2 ≡ 1 mod 2.

Wenowsee that ifGS(−1,−1) > GS(1,−1), then c∗S(r1, r2; n) ∼ (K/4)aS(−1,−1; n),which
gives the desired result. To conclude the proof, one simply checks that this inequality holds
for both σ (S) ≥ 0 and σ (S) < 0. �

7 Examples
Here we illustrate Theorem 1.1 and Corollaries 1.2 and 1.3 with examples of numerical
computations.

Example 7.1 To demonstrate Theorem 1.1, we focus on S, a 2-dimensional torus blown
up at one point, a Hirzebruch surface �0 ∼= P

1 × P
1, P2. We have χ (S) = 1, χ (P2) = 3,

σ (P2) = 1, χ (�0) = 4, and σ (�0) = 0, so that we can consider the functions

∞∑

n=0
χ (Hilbn(S))qn = H−1,0(q) = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + · · ·

∞∑

n=0
(−1)nσ (Hilbn(�0))qn = H0,−2(q) = 1 + 0q + 2q2 + 0q3 + 5q4 + 0q5 + 10q6 + · · ·

∞∑

n=0
(−1)nσ (Hilbn(P2))qn = H1,−2(q) = 1 − q + q2 − 2q3 + 3q4 − 4q5 + 5q6 + · · · .

Table 1 lists a2(−1, 0; n), a2(0,−2; n), and a2(1,−2; n) for small values of n, where
aN (α,β ; n) is the approximation obtained fromTheorem1.1 by summing over 1 ≤ k ≤ N .
The rows correspond to the series above in order.
As Corollary 1.2 indicates, the quality of these approximations improves as n → ∞.

Moreover, choosing larger values ofN gives better approximations. Table 2 gives approx-
imations when N = 75.
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Table 1 Approximate values in Theorem 1.1, N = 2

n 1 2 3 4 5 6

a2(−1, 0; n) 1.0029... 2.0808... 2.9340... 5.0296... 7.0278... 10.9325...

a2(0,−2; n) 0 2.1281... 0 4.8883... 0 10.1650...

a2(1,−2; n) −0.8747... 1.3314... −1.9544... 2.7902... −3.8958... 5.3410...

Table 2 Approximate values in Theorem 1.1, N = 75

n 1 2 3 4 5 6

a75(−1, 0; n) 0.9999.. 2.0005... 2.9999... 4.9999... 6.9999... 10.9999...

a75(0,−2; n) 0.0001... 1.9999... −0.0002... 5.0001... −0.0000... 9.9999...

a75(1,−2; n) −1.0004... 1.0003... −2.0000... 3.0005... −3.9994... 5.0003...

Table 3 Comparative asymptotic properties of b∗
S′ (r, 2; n)

n 5 10 15 20 25

�0
S′ (n) 0.5714... 0.5054... 0.4977... 0.4993... 0.5000...

�1
S′ (n) −0.4285... −0.4946... −0.5023... −0.5006... −0.5000...

Table4 Comparative asymptotic properties of c∗
S′ (r1, r2; n)

n 5 10 15 20 25

�
0,0
S′ (n) 0.2505... 0.2500... 0.2500... 0.2500... 0.2500...

�
0,1
S′ (n) −0.2499... −0.2499... −0.2500... −0.2500... −0.2500...

�
1,0
S′ (n) −0.2499... −0.2499... −0.2500... −0.2500... −0.2500...

�
1,1
S′ (n) 0.2495... 0.2499... 0.2499... 0.2499... 0.2499...

Example 7.2 For an illustration of Corollary 1.3, let S′ be C2 ×P
1 blown up at two points,

where C2 is a curve of genus 2. In Tables 3, and 4 we take

�r
S(n) :=

b∗(r, 2; n)∑
r mod 2 |b∗(r, 2; n)| and �

r1 ,r2
S (n) := c∗(r1, r2; n)∑

r1 mod 2
r2 mod 2

|c∗(r1, r2; n)| .

Corollary 1.3 (1) states that �0
S′ (n) → 1/2 and �0

S′ (n) → 1/2 as n → ∞, which
is illustrated by Table 3. Corollary 1.3 (2) states that �

0,0
S′ (n),�1,1

S′ (n) → 1/4 and
�

0,1
S′ (n),�1,0

S′ (n) → −1/4, which is illustrated by Table 4.
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